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Abstract: Encryption has come up as a solution and different encryption algorithms play an important role in data security on 

cloud. Encryption algorithms is used to ensure the security of data in cloud computing. Due to some limitations of existing 

algorithms, there is need for more efficient methods in implementation for public key cryptosystems. Elliptic Curve Cryptography 

(ECC) is based on elliptic curves defined over a finite field. Elliptic Curve Cryptography has many features that distinguish it 

from other cryptosystems, one of which is that it is still relatively new cryptosystem. As such, many improvements in performance 
have been discovered during the last few years for Galois Field operations both in Polynomial Basis and in Normal Basis. . 

However, there is still some confusion to the relative performance of these new algorithms and very little examples of practical 

implementations of these new algorithms. Efficient implementations of the basic arithmetic operations in finite fields GF(2m) are 

desired for the applications of cryptography and coding theory. The elements in GF(2m) can be represented in various bases. The 

choice of basis used to represent field elements has a significant impact on the performance of the field arithmetic. The 

multiplication methods that use polynomial basis representations are very efficient in comparison to the best methods for 

multiplication using the other basis representations. This paper focuses on user confidentiality protection in cloud computing 

using enhanced elliptic curve cryptography (ECC) algorithm over Galois Field GF(2m). The Strength of the proposed ECPC 

algorithm depends on the complexity of computing discrete logarithm in a large prime modulus, and the Galois Field allows 

mathematical operations to mix up data easily and effectively. The methodology used involves encrypting and decrypting data to 

ensure user confidentiality protection and security in the cloud. Results show that the performance of ECPC over Galois Field, in 
two area of evaluation, is better than the other algorithm which is used for comparison purpose. 
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I. INTRODUCTION 

Security in cloud computing involves concepts such as 

network security, equipment and control strategies deployed 

to protect data, applications and infrastructure associated 

with cloud computing [1]. An important aspect of cloud is 

the notion of interconnection with various materials which 

makes it difficult and necessary securing these 

environments. Security issues in a cloud platform can lead 

to economic loss, also a bad reputation if the platform is 

oriented large public and are the cause behind the massive 

adoption of this new solution. The data stored in the cloud 

for customers represents vital information. This is why the 
infringement of such data by an unauthorized third party is 

unacceptable. There are two ways to attack data in Cloud 

[2]. One is outsider attack and the other is insider attack. 

The insider is an administrator who can have the possibility 

to hack the user’s data. The insider attack is very difficult to 

be identified. So the users should be very careful while 

storing their data in cloud storage. Hence, the need to think 

of methods that impede the use of data even though the data 

is accessed by the third party, he shouldn’t get the actual 

data. So, all the data must be encrypted before it is 

transmitted to the cloud storage [3]. Security allows the 

confidentiality, integrity, authenticity and availability of 
information. The development of technologies and their 

standardization makes available a set of algorithms and 

protocols for responding to these issues [4]. Many 

encryption algorithms have been developed and 

implemented in order to provide more secured data 

transmission process in cloud computing environment, such 

as, DES, AES, RC4, Blowfish, and 3DES for symmetric 

category and RSA, DH for asymmetric category [5, 6].  

This paper focuses on user confidentiality protection in 

cloud computing using enhanced elliptic curve cryptography 

(ECC) algorithm over Galois Field GF(2m ) [7]. The 

Strength of the proposed ECC algorithm depends on the 

complexity of computing discrete logarithm in a large prime 

modulus, and the Galois Field allows mathematical 

operations to mix up data easily and effectively. Elliptic 
Curve Cryptography Algorithm provides secure message 

integrity and message authentication, along with non-

repudiation of message and data confidentiality. Elliptical 

curve cryptography (ECC) is a public key encryption 

technique based on elliptic curve theory that can be used to 

create faster, smaller, and more efficient cryptographic keys 

[8]. ECC generates keys through the properties of the 

elliptic curve equation instead of the traditional method of 

generation as the product of very large prime numbers. 

Because ECC helps to establish equivalent security with 

lower computing power and battery resource usage, it is 
becoming widely used for cloud applications. 

Efficient finite field arithmetic is essential for fast 

implementation of Elliptic Curve Cryptography (ECC) in 

software environments. Finite field squaring is an important 

arithmetic operation in the binary finite field GF(2m). 

Squaring is required for many cryptographic techniques 

based on the Discrete Logarithm Problem (DLP) in the 

multiplicative group of a finite field or additive group of 
points on an Elliptic Curve defined over a finite field [9]. In 

this paper we present a new method for performing binary 

finite field squaring in Polynomial Basis. 

Elliptic Curve 

Elliptic curve [10] has a unique property that makes it 

suitable for use in cryptography i.e. it’s ability to take any 

two points on a specific curve, add them together and get a 

third point on the same curve. The main operation involved 

in ECC is point multiplication, i.e. multiplication of a scalar 

K with any point P on the curve to obtain another point Q on 
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the same curve. An elliptic curve is defined by an equation, 

is of two variables, with coefficients. For the purpose of 

cryptography, the variable and coefficients are limited to a 

special kind of set called a FINITE FIELD. The general 

equation for an elliptic curve is:  

y2 + axy + by = x3 + cx2 + dx + e 

where a, b, c, d and e are real numbers and x and y also take 

their values from real number. A simplified elliptic curve 

equation is given as:  

y2 – x8 + dx + e 

 

In Elliptical Curve Cryptography, the Elliptic Curve is 

used to define the members of the set over which the group 

is calculated i.e. an operation on any two elements of the set 

will give a result that is the member of the same set as well 

as operations between them which defines how math work 

in the group. In real time situation the ECC is implemented 

over a finite prime field and in hardware, where binary 

number are used, the field is GF (2m). The GF is a finite 
field namely Galois Field. The field of finite primes 

provides the ECC that allows encipher to encrypt the data 

very easily but for the cryptologist the process of beginning 

to attack the encrypted message is very difficult. The GF (p) 

is the field of integers module p, and consists of all the 

integers from 0 to p-1 in case of square graph, p*p in size, 

where p is a very large prime number. To implement the 

ECC in software to handle prime numbers as well as other 

number, ECC allows the development of potable chips that 

can be deployed over the mobile devices and provide a 

suitable and processor friendly encryption . Like every other 
design consists of ECC that is implicated on hardware over 

binary finite fields, point adding and doubling on elliptic 

curve and scalar multiplication.  

1.1 Polynomial Basis Representation 

Galois fields are fields with a finite field order q which is 

also the number of elements in the field [11]. A Galois field 

of order q is here denoted as GF(q). The order q of the field 

is always a prime p or a power of a prime pm [12]. Galois 

fields are commonly used for cryptography purposes but 

there are many applications using Galois fields also e.g. in 

the study of error-correcting codes. Field orders (field sizes) 
used for cryptography are usually huge (e.g. m > 150) in 

order to make crypto analysis harder. The security offered 

by the cryptosystem usually increases exponentially when m 

becomes larger. For cryptography applications m in GF(2m) 

should be a prime, in order to avoid a crypto analysis attack. 

Galois fields with a polynomial basis are most commonly 

used in elliptic curve cryptography and therefore they are 

presented here in detail. The other commonly used basis is 

called optimal normal basis (ONB), Polynomial basis has 

proven to be faster and easier to implement than optimal 

normal basis and it is therefore usually preferred to ONB. 

Galois field with a polynomial basis is generated with an 
irreducible polynomial over GF (2N). 

For the polynomial basis representation, each element of the 

field represents a polynomial, f(x) of the form:  

f(x) = a0 + a1x + a2 x2 + a3x3 + aixi 

All coefficients, ai, of the polynomial are either zero or one. 

Therefore each operation, such as addition, subtraction, and 

multiplication are defined using polynomial arithmetic with 

the coefficients reduced modulo 2. For example, the bit 

sequence 01100101 would represent the polynomial:  

x6 + x5 + x2 + 1 

Since operations such as multiplication and squaring take 
inputs of size m bits and result in values 2m-1 bits, there 

must be a method for reducing the result of these operations 

into elements of the Galois field. As a result, these values 

are reduced by a reduction polynomial of order m for an m 

bit field. Therefore taking the reduction polynomial raised to 

any power of x and adding it to a field element will result in 

a value congruent to the original field element modulo the 

reduction polynomial.  

 

Field operations [13]: the following arithmetic operations 

are defined on the elements of GF(2m) when using a 

polynomial basis representation with reduction polynomial 

p(x): 

 

Addition Operation 

It can be done only using one n-bit XOR operation (equal to 

bit wise addition module 2). The sum of two elements A, B 

∈ GF(2m) is given by below equation. 

𝐶(𝑥) =  𝐴(𝑥) 𝑋𝑜𝑟 𝐵(𝑥) = ∑ (𝑎𝑖  𝑋𝑜𝑟 𝑏𝑖)𝑥𝑖

𝑚−1

𝑖=0

 

Square Operation 

The binary representation of element’s square is done by 

inserting a 0 bit between consecutive bits of the binary 

representation. The square of A ∈ GF(2m) is given by below 

equation. 

𝐴2(𝑥) =  ∑ 𝑎𝑖𝑥
2𝑖

𝑚−1

𝑖=0

 

Multiplication Operation 

Assume we have two elements A(x), B(x) belongs to binary 

field GF(2m) with irreducible polynomial P(x). Field 

multiplication done by two steps [14]: 

1. Polynomial multiplication of A(x) and B(x) 

C’(x) = A(x). B(x) 

2. Reduction using irreducible polynomial p(x) 

C(x) = C’(x) mod P(x) 

 

 

Reduction Operation 
Multiplication and square operations need as mention above 

a reduction process which is the process to reduce the order 

of resulting values from larger than m to less or equal to m. 

C(x) = C’(x) mod P(x) 

Inversion Operation 

Inversion is the most time-consuming process when 

computing the scalar multiplication in elliptic curve 

cryptography using Montgomery method. Inversion in 

binary finite field is the process of getting a-1 for a nonzero 

element a є GF(2m) such that: 

(A. A-1) = 1 mod f(x) 

II.SECURITY ALGORTIHMS 

A.  Elliptic Curve Cryptography (ECC) 

Elliptical curve cryptography (ECC) is one of the public key 

encryption techniques that generate best cryptographic keys 

according to the elliptic curve theory. It creates smaller keys 
within a short period. Rather than using large prime 

numbers for key generation, ECC uses the properties of 

elliptic curves to generate keys. Elliptic curve is a 

nonsingular cubic curve with two variables in a certain field 

and an infinite rational point [15, 16]. Each user generates a 

public- private key pair, where the public key is applied for 

encryption and signature verification and the private key is 

applied for decryption and signature generation. The high 

level of security can be achieved in ECC using a 164 bit 

key, where the traditional techniques need 1024 bit key. 

Data security using ECC algorithm 

Key generation 

 A selects random integer dA, which is A’s private 

key 
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 A generates a public key PA = dA * B 

 B selects a private key dB and generates a public 

key PB = dB * B 

 A generates the security key Key = dA * PB 

 B generates the security key Key = dB * PA 

Signature Generation 

 For signing a message m by sender of cloud A, 

using A’s private key dA 

 Calculate e = HASH(m), where HASH is a 

cryptographic hash function, such as SHA-1 

 Select a random integer k from [1, n-1] 

 Calculate r = x1 (mod n), where (x1, y1) = k * B. If 

r = 0, go to step III 

 Calculate s = k-1(e + dA * r) (mod n). If s = 0, go to 

step III 

 The signature is the pair (r, s) 

 Finally, send signature (r, s) to B 

Encryption algorithm 
Assume A sends an encrypted message to B 

 A takes plaintext message m, and encodes it onto a 

point, pm, 

 from the elliptic group 

 A chooses another random integer, k from interval 

[1, p-1] 

 The cipher text is a pair of points pc = [(kB), (pm + 

k * PB)] 

 Send cipher text pc to B 

Decryption algorithm 

B will decrypt cipher text pc 

 B computes the product of the first point from pc 

and its private key dB, which is kB * dB 

 B takes this product and subtracts it from the 
second point from pc, (pm + k * PB) – kB * dB, 

since PB = dB * B, so the difference is pm 

 Finally, B decodes pm to get the message m 

Signature Verification 

If B wants to authenticate A’s signature, B must have A’s 

public key pA 

 Verify that r and s are integers in [1, n-1] 

 Calculate e = HASH(m), where HASH is the same 

function used in the signature generation 

 Calculate w = (s – 1) % n 

 Calculate u1 = e*w % n and u2 = r*w % n 

 Calculate (x1,y1) = u1 * B + u2 * PA 

 The signature is valid if x1 = r % n, otherwise 

invalid 

EXAMPLE 

1. Curve Size: Small, Curve Type: Real number, 

Curve attributes: a=5, b=17, Curve: y² = x³ + 5x + 

17, Point P = (0.97|4.77), Point Q = (-1.7|1.89), 
Point R = P + Q = (1.88|-5.75) 

Encryption Chart: 

 

 

 

2. Curve Size: Large, Curve Type: F(p), Select curve 

attributes: ANSI X9.62,Curve: prime192v1, Radix: 16 

hexadecimal, Curve attributes: y2 = x3 + 5x + 17, where 

a = fffffffffffffffffffffffffffffffefffffffffffffffc 

b = 

64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 

 p = fffffffffffffffffffffffffffffffeffffffffffffffff 

Base point G: Point P  
x = 

f2cf5cf93ee95d8748114264ae71b15ca8160d8b777a2e23 

y= 

8fc23224426e91604820b16640a917d0ca5dfd6ad77abc28 

Base point G: point Q 

x = 

f6cc36cbfedacbbb246b8e964095a35f95649b5fd52a6d4b 

 y=997afb853b3d846f0382fd51b96578e52f625f118e3cd4b7 

Point R : R = P + Q 

x= 

28f240764a3a9bd72bc28dbf29be9174d5952671163c2e5a 
 y= 

dab81b6b5b17e7e3d96c23f3831ab1f88465c60cd1ba7c75d 

 

3. Curve Size: Large, Curve Type: F(2^m), Select curve 

attributes : ANSI X9.62, Curve: c2pnb163v1, Radix : 16 

hexadecimal 

a = 72546b5435234a422e0789675f432c89435de5242 

b = c9517d06d5240d3cff38c74b20b6cd4d6f9dd4d9 

m = 163 

 

Base Point P: 
x = 00000002 72d6f150 ded9a40e e782567b 93a50953 

ea4bf931 

y= 00000004 c7884023 97d60585 f8ac1958 14c2120b 

3a75ffb3 

 

Base point Q: 

X=00000003 a8299d26 75107724 2bcb451a b9f01903 

dd1a1c24 

Y= 00000003 a1e44106 4c3aa00e 572c7132 e2323827 

9eeac2b2 

Point R : R = P + Q 

X= 00000000 99f7d988 80557118 7fb939c7 009beb7d 
57405f8e 

Y= 00000004 d5e68ee4 e9d6f508 774a7d6a f83bdc3c 

e78dfc47 

4. Curve Size: Small, Curve Type: F(2^m), curve attributes : 

m=5, f = x^5+x+1,a=1,b=1,Curve: y² + xy = x³ + x² + 1 , 

Point P = (g3|g15), Point Q = (g28|g1), Point R = P + Q = 

(0|1) 
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Decryption Chart: 

 

B. ECDSA (Elliptic Curve Digital Signature Algorithm) 

Signature algorithm is used for authenticating a device or a 

message sent by the device. For example consider two 

devices A and B. To authenticate a message sent by A, the 

device A signs the message using its private key. The device 

A sends the message and the signature to the device B. This 

signature can be verified only by using the public key of 

device A. Since the device B knows A‟s public key, it can 

verify whether the message is indeed send by A or not. 

ECDSA is a variant of the Digital Signature Algorithm 
(DSA) that operates on elliptic curve groups. For sending a 

signed message from A to B, both have to agree up on 

Elliptic Curve domain parameters. The domain parameters 

are defined in above section. Sender „A‟ 

have a key pair consisting of a private key dA (a randomly 

selected integer less than n, where n is the order of the 

curve, an elliptic curve domain parameter) and a public key 

QA = dA * G (G is the generator point, an elliptic curve 

domain parameter) [17]. An overview of ECDSA process is 

defined below: 

Signature Generation 
For signing a message m by sender A, using A‟s private key 

dA 

 Calculate e = HASH (m), where HASH is a 

cryptographic hash function, such as SHA-1 

 Select a random integer k from [1,n − 1] 

 Calculate r = x1 (mod n), where (x1, y1) = k * 

 If r = 0, go to step 2 

 Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to 

step 2 

 The signature is the pair (r, s) 

Signature Verification 
For B to authenticate A's signature, B must have A‟s public 

key QA 

 Verify that r and s are integers in [1,n − 1]. If not, 

the signature is invalid 

 Calculate e = HASH (m), where HASH is the same 

function used in the signature generation 

 Calculate w = s −1 (mod n) 

 Calculate u1 = ew (mod n) and u2 = rw (mod n) 

 Calculate (x1, y1) = u1G + u2QA 

 The signature is valid if x1 = r(mod n), invalid 

otherwise 

EXAMPLE 

Signature originator:  PARKAVI PARKAVI 

Domain parameters to be used 'EC-prime239v1': 

Chosen signature algorithm: ECSP-DSA with hash function 

SHA-1 

Size of message M to be signed: 349 bytes 

Bit length of c + bit length of d = 473 bits 

Message = “Elliptic Curve Cryptography Algorithm 

provides secure message integrity and message 

authentication, along with non-repudiation of message and 

data confidentiality. Elliptical curve cryptography (ECC) is 

a public key encryption technique based on elliptic curve 

theory that can be used to create faster, smaller, and more 

efficient cryptographic keys” 

Encrypted Data: 

45 6C 6C 69 70 74 69 63 20 43 75 72 76 65 20 43 72 79 70 

74 6F 67 72 61 70 68 79 20 41 6C 67 6F 72 69 74 68 6D 20 

70 72 6F 76 69 64 65 73 20 73 65 63 75 72 65 20 6D 65 73 
73 61 67 65 20 69 6E 74 65 67 72 69 74 79 20 61 6E 64 20 

6D 65 73 73 61 67 65 20 61 75 74 68 65 6E 74 69 63 61 74 

69 6F 6E 2C 20 61 6C 6F 6E 67 20 77 69 74 68 20 6E 6F 

6E 2D 72 65 70 75 64 69 61 74 69 6F 6E 20 6F 66 20 6D 65 

73 73 61 67 65 20 61 6E 64 20 64 61 74 61 20 63 6F 6E 66 

69 64 65 6E 74 69 61 6C 69 74 79 2E 20 45 6C 6C 69 70 74 

69 63 61 6C 20 63 75 72 76 65 20 63 72 79 70 74 6F 67 72 

61 70 68 79 20 28 45 43 43 29 20 69 73 20 61 20 70 75 62 

6C 69 63 20 6B 65 79 20 65 6E 63 72 79 70 74 69 6F 6E 20 

74 65 63 68 6E 69 71 75 65 20 62 61 73 65 64 20 6F 6E 20 

65 6C 6C 69 70 74 69 63 20 63 75 72 76 65 20 74 68 65 6F 
72 79 20 74 68 61 74 20 63 61 6E 20 62 65 20 75 73 65 64 

20 74 6F 20 63 72 65 61 74 65 20 66 61 73 74 65 72 2C 20 

73 6D 61 6C 6C 65 72 2C 20 61 6E 64 20 6D 6F 72 65 20 

65 66 66 69 63 69 65 6E 74 20 63 72 79 70 74 6F 67 72 61 

70 68 69 63 20 6B 65 79 73 

Elliptic curve E described through the curve equation: y^2 = 

x^3 + ax + b (mod p) : 

a  = 

883423532389192164791648750360308885314476597252

960362792450860609699836 

b  = 

738525217406992417348596088038781724164860971797
098971891240423363193866 

Private key = 1555396496 

Public key W=(Wx,Wy) (W is a point on the elliptic curve) 

of the signature originator: 

W  = 

498983585649476684779866001437955898822619169124

900114917067219042145728 

Wx = 

257713192384992372601894948053528538433271784776

80636228439122380858358 

Wy  = 
590689380461104336768855452018992077095972376197

849521427225501160565422 

Calculate a 'hash value' f (message representative) from 

message M, using the chosen hash function SHA-1. 

f  = 

688647667391257344464700168711587982973589536722 

 ECDSA SIGNATURE as follows:  

G has the prime order r and the cofactor k (r*k is the number 

of points on E): 

k  = 1 

Point G on curve E (described through its (x,y) coordinates): 

Gx = 
589075071874896415819042058021272878589931382652

794723051500724702204335 

Gy = 

262156637887296030273498439906415542995025924302

19030584717324687640726 

r  = 

883423532389192164791648750360308884807550341691

627752275345424702807307 

The secret key s is the solution of the EC discrete log 

problem W=x*G(x unknown) 
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S= 

984798318739053275805434320259199826309687696686

34286404736321250868508 

Signature: 

Convert the group element Vx (x co-ordinates of point V on 

elliptic curve) to the number i: 

  i  = 

257713192384992372601894948053528538433271784776

80636228439122380858358 

Calculate the number c = i mod r (c not equal to 0): 

c = 
257713192384992372601894948053528538433271784776

80636228439122380858358 

Calculate the number d = u^(-1)*(f + s*c) mod r (d not equal 

to 0): 

d = 

857619492440415404493030721946871188013339908769

645505946566222067422866 

ECDSA VERIFICATION as follows: 

If c or d does not fall within the interval [1, r-1] then the 

signature is invalid: 

c and d fall within the required interval [1, r-1]. 
Calculate the number h = d^(-1) mod r: 

h  = 

301425859988941933382400436834981756621918815251

59628439407884297263008 

Calculate the number h1 = f*h mod r: 

h1 = 

100526286692619263037459460844101930192281458563

226921221632012545629751 

Calculate the elliptic curve point P = h1 G + h2 W  

Calculate the number h2 = c*h mod r: 

h2 = 

716186784840960678243349953702295630776402814580
900960233630220398403170 (If P = (Px, Py) = (inf, inf) 

then the signature is invalid): 

  Px = 

257713192384992372601894948053528538433271784776

80636228439122380858358  Py = 

590689380461104336768855452018992077095972376197

849521427225501160565422 

Convert the group element Px (x co-ordinates of point P on 

elliptic curve) to the number i: 

 i  = 

257713192384992372601894948053528538433271784776
80636228439122380858358 

Calculate the number c' = i mod r: 

c' = 

257713192384992372601894948053528538433271784776

80636228439122380858358 

If c' = c then the signature is correct; otherwise the signature 

is invalid: 

 

 

C. ECDH (Elliptic Curve Diffie-Hellman Algorithm) 

ECDH [18] is a key agreement protocol that allows two 

parties to establish a shared secret key that can be used for 

private key algorithms. Both parties exchange some public 

information to each other. Using this public data and their 

own private data these parties calculates the shared secret. 

Any third party, who doesn‟t have access to the private 
details of each device, will not be able to calculate the 

shared secret from the available public information. An 

overview of ECDH process is defined below. For generating 

a shared secret between A and B using ECDH, both have to 

agree up on Elliptic Curve domain parameters. The domain 

parameters are defined in above section. Both end have a 

key pair consisting of a private key d (a randomly selected 

integer less than n, where n is the order of the curve, an 

elliptic curve domain parameter) and a public key = d * G 

(G is the generator point, an elliptic curve domain 

parameter) [19]. 

Algorithm: Elliptical Curve Diffie-Hellman  

 Alice and Bob agree on the elliptic curve E and 

base point G(x1,y1)  

 Alice generates a random integer a ∈
  { 1, … … … . , 𝑛 − 1} where n is the order of the 

group and number a is called private key of the 

Alice.   

 Alice sends to Bob her public key 

Qa=aG=a(x1,y1)=(xa,ya) 

 Bob generates the random integer b ∈
  { 1, … … … . , 𝑛 − 1} and b number is called private 

key of the Bob 

 Bob sends to Alice his public key . 

Qa=bG=B(x1,y1)=(xb,yb) 

 Alice can then compute (xk,yk)=aQb=a(bG)=abG. 

 Likewise, Bob can compute 

(xk,yk)=bQa=b(aG)=abG. 

 The shared session key is xk which is the x –

coordinate of the point. 

EXAMPLE 

Step 1: Set public parameters 

Curve type: F (p), Curve Size: Small, Domain parameters: 

a=1,b=1,p=23, generator G=(5,4) 
Step 2: Choose Secrets 

Alice= 10 

Bob=9 

Step 3: Generate shared keys 

Secret key (d): Q=d*G , 

Alice=(5,4) 

Bob=(13,7) 

Step 4: Exchange shared keys 

Step 5: Generate common key 

Key = sA*QB and key=sB*QA 

S= (13,7) 

Exchange shared keys: 
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D. Proposed ECPC (Elliptical Curve and Polynomial 

Cryptography) 

Polynomial basis multiplication is based on two main 

arithmetic operations over the binary polynomials: 

polynomial multiplication and reduction modulo an 

irreducible polynomial. In this work, the so-called 

Mastrovito matrix is constructed from the coefficients of the 
first multiplicand and the irreducible polynomial defining 

the field. Then, the polynomial multiplication and modulo 

reduction steps are performed together using matrix.  

Irreducible polynomials with special structures and low 

hamming weights have been used in many papers to design 

efficient finite field multipliers. 

In this section, illustrate the representation and 

multiplication of GF(2m) elements in the polynomial basis. 

The finite field GF(2m) is an extension field of GF(2) and 

constitutes a dimension m vector space over it. The finite 

field GF(2) has only the elements 0 and 1. In this binary 

field, the addition and the subtraction are defined as XOR 

operation while the multiplication is defined as AND 

operation.  

Step 1: 

Let x ∈ GF(2m) and be a root of the degree m irreducible 

polynomial over GF(2) 

w(x) =  xm + wm−1xm−1 + ⋯ w1x +  w0 = 0 

Then, the following set constitutes the polynomial basis in 

GF(2m): 

{1, 𝑥, … … … . . , 𝑥𝑚−1} 

With polynomial basis, GF(2m) elements can be represented 

as degree m-1 polynomials as follows: 

GF(2m) =  {a(x)|a(x) =  am−1xm−1 + ⋯ . +a1x +  a0,    ai  

∈ GF(2)},  

Where the coefficients 𝑎𝑖  are the polynomial basis 
coordinates in GF(2). When the elements of  GF(2m) are 

represented as polynomials over GF(2), their addition and 

subtraction are equivalent to the coefficient-wise XOR, 

denoted dy “+” in this paper. Also, because of the above 

equation, all arithmetic operations in GF(2m) are performed 

modulo the irreducible polynomial w(x) chosen to construct 

the field. Let a(x) and b(x) be two field elements and c(x) be 

their product. Then, 

𝑐(𝑥) =  𝑎(𝑥)𝑏(𝑥)𝑚𝑜𝑑 𝑤(𝑥). 

Thus polynomial basis multiplication has two steps: 

polynomial multiplication and reduction modulo an 

irreducible polynomial. 

Step 2: Polynomial multiplication 

Let d(x)=a(x)b(x) be the product of the polynomials 

representing the field elements. D(x) is the degree 2m-2 

polynomial 

𝑑(𝑥) = 𝑎(𝑥)𝑏(𝑥) = (∑ 𝑎𝑖𝑥
𝑖

𝑚−1

𝑖=0
) (∑ 𝑏𝑗𝑥𝑗

𝑚−1

𝑖=0
)

=   ∑ 𝑑𝑘𝑥𝑘
2𝑚−2

𝑘=0
 

Where 

𝑑𝑘 =  ∑ 𝑎𝑖𝑏𝑗 ,      0 ≤ 𝑖, 𝑗, ≤ 𝑚 − 1, 0 ≤ 𝑘 ≤ 2𝑚 − 2.
𝑖+𝑗=𝑘

 

Step 3: Modular Reduction 

In the modular reduction c(x)=d(x) mod w(x), the degree 

2m-2 polynomial d(x) is reduced by the degree m 

irreducible polynomial w(x) iteratively. The partial 

remainder after each reduction can be computed by the 
following iteration: 

d(2m−2) (x) =  d(x), d(k−1)(x)

=  d(k)(x) +  w(x)dk
(k)

xk−m, m ≤ k

≤ 2m − 2, 

 

Here, d(k)(x)   is a partial remainder of degree k and 

dm−1(x) =c(x).  the iteration in above equation reduces 

d(k)(x)   from degree k to k-1, since adding (coefficientwise 

XORing) d(k)(x)  with polynomial 

w(x)dk
(k)

xk−m =   (xm +  ∑ wix
i

m−1

i=0

) dk
(k)

xk−m

=  dk
(k)

xk

+ ∑ dk
(k)

wix
i+k−m

m−1

i=0

=  dk
(k)

xk + ∑ dk
(k)

wi−(k−m)xi

k−1

i=k−m

  

Cancels its term with the order k. 

Step 4: 
The choice of the irreducible polynomial w(x) may ease the 
modular reduction. Sparse irreducible polynomials having 

fewer nonzero terms are usually preferred for efficiency. A 

degree m irreducible polynomial over GF(2) which has r 

nonzero terms are in the form 

𝑥𝑚 +  𝑥𝑚1+ 𝑥𝑚2 +  … . . +𝑥𝑚𝑟−3 +  𝑥𝑚𝑟−2 +  1. 
Step 5: 
Here, r > 1 must be an odd number such as 3 and 5. The 

sparse polynomials with three or five nonzero terms as 

shown below are called trinomial and pentanomial 

respectively: 

𝑥𝑚 +  𝑥𝑚1+ 1, 𝑥𝑚 + 𝑥𝑚1 + 𝑥𝑚2 + 𝑥𝑚3 + 1. 
Step 6: 
Equally spaced irreducible polynomials are another choice 

for efficient modular reduction. An equally spaced 

polynomial is in the form 

𝑥𝑛𝑠 + 𝑥(𝑛−1)𝑠 + ⋯ . . 𝑥𝑠 + 1, 
Where ns=m. 

Step 7: The proposed polynomial interpolation method 

in the elliptic curve ElGamal cryptosystem: Now, we are 

going to discuss the algorithm of the modified elliptic curve 

ElGamal cryptosystem. This modified cryptosystem will 

send the set of encrypted points as 

two polynomials which are constructed using Lagrange 

polynomial interpolation method. The first polynomial will 

be encrypted as well to ensure the additional steps in this 
modified algorithm is meaningful for implementation. Here 

the algorithm: 

 Alice chooses her secret key, kA such that1≤kA<n. The 

gcd (kA, n) = 1. She publishes her public key as kAP 
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 Bob chooses kB such that1≤kB<n. The gcd (kB, n) = 1. 

He encrypts each points such that (xE, yE) = Pm + kB 

(kAP). 

 Bob constructs polynomial A(x) based on the points (1, 

xE1), (2, xE2), (3, xE3), (I, xEI) where l denotes the 

number of encrypted points. Another polynomial B(x) 

is constructed based on the encrypted points (xE1, yE1), 

(xE2, yE2), (xE3, yE3),…, (xEI, yEI). Both polynomials are 

constructed using Lagrange polynomial interpolation.  

 Bob adds the x-coordinate of kB (kAP) to each of the 

coefficients modulo p of the polynomial A(x) whereas 
the coefficients of polynomial B(x) remain unchanged. 

The encrypted polynomial A(x) denoted as A’ (x). Bob 

sends (kBP, A’(x), B(x)) to Alice.  

 Alice decrypts by multiplying her secret key such that 

kA(kBP). Polynomial A(x) is obtained from A’(x) by 

deducting each coefficients using the x coordinate of 

kA(kBP).  

 Alice obtains x-coordinate of encrypted points by 

substituting x = 1, 2,…,I into A(x). Then x coordinate 

of encrypted points obtained is substituting into B(x) to 

get the y-coordinate of encrypted points.  

 Alice obtains Pm such that Pm + kB (kAP) - kA (kBP) 

Example 

The exponent can be indicated by preceding it by the 

character E or e, as you can see in the example. Data must 

consist of two columns, x and y, to get the polynomial 

regression y=anxn+an-1xn-1+...+a2x2+a1x+a0.  

 

Number of Data Points : 3 

Polynomial Degree: 2 

 
 

Result:  y = 4.666666667 x2 - 9.333333333 x + 1 

Residual Sum of Squares: rss = 0 

Coefficient of Determination: R2 = 1 

 

 

Chart: 

 
 

Result 

Mode: normal x, y analysis 

Polynomial degree 2, 3 x, y data pairs. 

Correlation coefficient (r^2) = 1 

Standard error = 1.2186183381512667e-14 

Coefficient output form: mathematical function: 

 

f(x) =  1.0000000000000111e+000 * x^0 

     + -9.3333333333333481e+000 * x^1 

     +  4.6666666666666705e+000 * x^2 

 

Table 

x, y ,% 

0.00, 1.00, 0.00 

0.15, -0.29, 5.00 

0.30, -1.38, 10.00 

0.45, -2.25, 15.00 

0.60, -2.92, 20.00 

0.75, -3.37, 25.00 

0.90, -3.62, 30.00 

1.05, -3.66, 35.00 
1.20, -3.48, 40.00 

1.35, -3.10, 45.00 

1.50, -2.50, 50.00 

1.65, -1.70, 55.00 

1.80, -0.68, 60.00 

1.95, 0.54, 65.00 

2.10, 1.98, 70.00 

2.25, 3.62, 75.00 

2.40, 5.48, 80.00 

2.55, 7.54, 85.00 

2.70, 9.82, 90.00 
2.85, 12.30, 95.00 

3.00, 15.00, 100.00 

III. RESULTS AND DISCUSSIONS (Based on Space 

Complexity and Throughput) 

In this experimental performance analysis of the given 

algorithms on the basis of the following parameters on cloud 

system at different input size. In this section describes the 

experimental parameters, platforms and key management of 

experimental algorithms.  

Evaluation Parameters Performance of encryption algorithm 

is evaluated considering the following parameters.  

 Key Generation time: The Key Generation Time 
considered the time that a key generation takes to 

produce a key. 

 Encryption Time: The encryption time considered 

the time that an encryption algorithm takes to 

produces a cipher text from a plain text.  

 Decryption Time: The decryption time considered 

the time that a decryption algorithm takes to 

produces a plain text from a cipher text.  

Evaluation Platforms Performance of encryption algorithm 

is evaluated considering the following system configuration.  

 Software Speciation: Experimental evaluation on 
Eclipse Jee Mars with Java Development Kit 8 

Update 65, Matlab version 2014, Windows 8.1 Pro 

64 bit Operating System.  

 Hardware Speciation: All the algorithms are 

tested on Intel Core i5 (2.40 GHz) fourth 

generation processor with 4GB of RAM with 1 TB-

HDD. 

Experimental result for encryption algorithm ECC, ECDH, 

ECDSA, and ECPC are shown in table-1 which has been 

implemented several input file sizes: 435 bytes, 869 bytes 

and 3259 bytes. Key size of each algorithm that is used in 
this experiment is also mentioned in the below table. All the 

results are obtained with due care, for achieving higher 

accuracy hundred (150) samples of total execution time 

were taken then an average of hundred samples were taken 

for the measurement and comparative analysis among 

algorithms and for the graph plotting as well. Encryption 

and Decryption time is calculated in millisecond and the 

input size is taken in kilobytes. All the respective 

observation readings and graph are shown for all the 

analyzed algorithms on single system. 

Apart from Time complexity, space complexity is also an 

important measure to judge the performance of an 
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algorithm. It is the amount of memory which the algorithm 

needs for performing its computations.  A good algorithm 

keeps the amount of memory as small as possible. The way 

in which the amount of storage space required by an 

algorithm varies with the size of the problem it is solving. 

Space complexity is normally expressed as an order of 

magnitude, e.g. O(N^2) means that if the size of the problem 

(n) doubles then four times as much working storage will be 

needed. We have analyzed the space complexity between 

private key length which is in bits and run time memory 

consumed by system. The space complexity of an algorithm 
is a measure of how much storage is required for a 

computation. For different input size, there will be different 

amount of space. Here, we give the storage requirements in 

bytes of ECC with a 521-bit modulus and an elliptic curve 

cryptosystem over GF(p) where p is 160 bits in length when 

making a rough comparison between the below four 

systems. Figure 1 and Table 1 showed Space complexity 

Comparisons. 

 

Table 1: Comparison Space Complexity (Run Time 

Memory)  

Key Size 

ECC:ECDH:ECDSA:ECPC 

Space complexity 

521:384:25:163 ECC ECDH ECDSA ECPC 

521:384:25:163 248040 241795 235137 227152 

521:384:25:163 248608 241808 234668 225510 

521:384:25:163 249465 242053 234401 224823 

521:384:25:163 258454 250500 242513 232525 

521:384:25:163 268845 260743 252285 242162 

 

 

 

 

Figure1: Space Complexity (Run Time Memory) 

Comparison 

 

Throughput 

Calculate the throughput of the algorithm by dividing the 

total data in bytes by encryption time. Higher the throughput 
higher is the efficiency of the system. Figure 2 and Table 2 

given below gives us the comparison between the ECC, 

ECDH, ECDSA, and ECPC algorithm using throughput. In 

any cryptographic algorithm, it is essential to understand the 

size of the input and the size of output as this is one of the 

important property of an avalanche effect. Figure 2 

illustrates the throughput (throughput (Kb/Ms) / time); the 

corresponding precise measurements are given in figure 2. 

Our ECPC algorithm differ from others, the proposed 

algorithm using polynomial based simple and effective 

operations in elliptic curve. So the throughput of the 

proposed algorithm is higher than others, the below graph 

show that proposed algorithm outperforms than others.   

 

 
 

 

Table 2: Comparison using Throughput 

Simulated 

Time/Throughput 

(Kb/Ms) 

ECC ECDH ECDSA ECPC 

0 0.000 0.000 0.000 0.000 

2 50.000 100.000 150.000 185.000 

4 100.000 170.000 190.000 200.000 

6 170.000 190.000 220.000 240.000 

8 175.000 230.000 250.000 280.000 

10 210.000 245.000 265.000 280.000 

12 225.000 260.000 280.000 320.000 

14 270.000 295.000 320.000 345.000 

16 280.000 320.000 340.000 360.000 

18 300.000 355.000 375.000 390.000 

20 325.000 375.000 410.000 435.000 

 
Figure 2: Throughput Comparison 

 

IV. CONCLUSION 

Encryption algorithm keeps very important contribution in 

communication security. This research paper emphasizes on 

the security of cloud user’s information confidentiality 
protection using enhanced elliptic curve cryptography 

(ECC) algorithm over Galois Field 𝐺𝐹 (2𝑚). The Galois 

Field allows mathematical operations to mix up data easily 

and effectively. Our research work showed the performance 

of widely used encryption techniques like ECC, ECDH, 

ECDSA and ECPC proposed algorithms. Based on the text 

files used and the experimental result it has decided that 

ECPC algorithm consumes least run time memory and 

maximize the throughput and ECC(ECC, ECDH, ECDSA) 

based algorithms consume longest run time memory as well 

as minimize the throughput .  
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