
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 1

SPACE COMPLEXITY RESEARCH OF CLOUD

DATA SECURITY: ELLIPTICAL CURVE AND

POLYNOMIAL CRYPTOGRAPHY

1D.Pharkkavi, 2Dr. D. Maruthanayagam
1Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu, India

2 Head/Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of Arts & Science,

Dharmapuri, Tamilnadu, India

Abstract: Encryption has come up as a solution and different encryption algorithms play an important role in data security on

cloud. Encryption algorithms is used to ensure the security of data in cloud computing. Due to some limitations of existing

algorithms, there is need for more efficient methods in implementation for public key cryptosystems. Elliptic Curve Cryptography

(ECC) is based on elliptic curves defined over a finite field. Elliptic Curve Cryptography has many features that distinguish it

from other cryptosystems, one of which is that it is still relatively new cryptosystem. As such, many improvements in performance
have been discovered during the last few years for Galois Field operations both in Polynomial Basis and in Normal Basis. .

However, there is still some confusion to the relative performance of these new algorithms and very little examples of practical

implementations of these new algorithms. Efficient implementations of the basic arithmetic operations in finite fields GF(2m) are

desired for the applications of cryptography and coding theory. The elements in GF(2m) can be represented in various bases. The

choice of basis used to represent field elements has a significant impact on the performance of the field arithmetic. The

multiplication methods that use polynomial basis representations are very efficient in comparison to the best methods for

multiplication using the other basis representations. This paper focuses on user confidentiality protection in cloud computing

using enhanced elliptic curve cryptography (ECC) algorithm over Galois Field GF(2m). The Strength of the proposed ECPC

algorithm depends on the complexity of computing discrete logarithm in a large prime modulus, and the Galois Field allows

mathematical operations to mix up data easily and effectively. The methodology used involves encrypting and decrypting data to

ensure user confidentiality protection and security in the cloud. Results show that the performance of ECPC over Galois Field, in
two area of evaluation, is better than the other algorithm which is used for comparison purpose.

Keywords: Cloud Computing, Data Security, ECC, ECDH, ECDSA and ECPC.

I. INTRODUCTION

Security in cloud computing involves concepts such as

network security, equipment and control strategies deployed

to protect data, applications and infrastructure associated

with cloud computing [1]. An important aspect of cloud is

the notion of interconnection with various materials which

makes it difficult and necessary securing these

environments. Security issues in a cloud platform can lead

to economic loss, also a bad reputation if the platform is

oriented large public and are the cause behind the massive

adoption of this new solution. The data stored in the cloud

for customers represents vital information. This is why the
infringement of such data by an unauthorized third party is

unacceptable. There are two ways to attack data in Cloud

[2]. One is outsider attack and the other is insider attack.

The insider is an administrator who can have the possibility

to hack the user’s data. The insider attack is very difficult to

be identified. So the users should be very careful while

storing their data in cloud storage. Hence, the need to think

of methods that impede the use of data even though the data

is accessed by the third party, he shouldn’t get the actual

data. So, all the data must be encrypted before it is

transmitted to the cloud storage [3]. Security allows the

confidentiality, integrity, authenticity and availability of
information. The development of technologies and their

standardization makes available a set of algorithms and

protocols for responding to these issues [4]. Many

encryption algorithms have been developed and

implemented in order to provide more secured data

transmission process in cloud computing environment, such

as, DES, AES, RC4, Blowfish, and 3DES for symmetric

category and RSA, DH for asymmetric category [5, 6].

This paper focuses on user confidentiality protection in

cloud computing using enhanced elliptic curve cryptography

(ECC) algorithm over Galois Field GF(2m) [7]. The

Strength of the proposed ECC algorithm depends on the

complexity of computing discrete logarithm in a large prime

modulus, and the Galois Field allows mathematical

operations to mix up data easily and effectively. Elliptic
Curve Cryptography Algorithm provides secure message

integrity and message authentication, along with non-

repudiation of message and data confidentiality. Elliptical

curve cryptography (ECC) is a public key encryption

technique based on elliptic curve theory that can be used to

create faster, smaller, and more efficient cryptographic keys

[8]. ECC generates keys through the properties of the

elliptic curve equation instead of the traditional method of

generation as the product of very large prime numbers.

Because ECC helps to establish equivalent security with

lower computing power and battery resource usage, it is
becoming widely used for cloud applications.

Efficient finite field arithmetic is essential for fast

implementation of Elliptic Curve Cryptography (ECC) in

software environments. Finite field squaring is an important

arithmetic operation in the binary finite field GF(2m).

Squaring is required for many cryptographic techniques

based on the Discrete Logarithm Problem (DLP) in the

multiplicative group of a finite field or additive group of
points on an Elliptic Curve defined over a finite field [9]. In

this paper we present a new method for performing binary

finite field squaring in Polynomial Basis.

Elliptic Curve

Elliptic curve [10] has a unique property that makes it

suitable for use in cryptography i.e. it’s ability to take any

two points on a specific curve, add them together and get a

third point on the same curve. The main operation involved

in ECC is point multiplication, i.e. multiplication of a scalar

K with any point P on the curve to obtain another point Q on

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 2

the same curve. An elliptic curve is defined by an equation,

is of two variables, with coefficients. For the purpose of

cryptography, the variable and coefficients are limited to a

special kind of set called a FINITE FIELD. The general

equation for an elliptic curve is:

y2 + axy + by = x3 + cx2 + dx + e

where a, b, c, d and e are real numbers and x and y also take

their values from real number. A simplified elliptic curve

equation is given as:

y2 – x8 + dx + e

In Elliptical Curve Cryptography, the Elliptic Curve is

used to define the members of the set over which the group

is calculated i.e. an operation on any two elements of the set

will give a result that is the member of the same set as well

as operations between them which defines how math work

in the group. In real time situation the ECC is implemented

over a finite prime field and in hardware, where binary

number are used, the field is GF (2m). The GF is a finite
field namely Galois Field. The field of finite primes

provides the ECC that allows encipher to encrypt the data

very easily but for the cryptologist the process of beginning

to attack the encrypted message is very difficult. The GF (p)

is the field of integers module p, and consists of all the

integers from 0 to p-1 in case of square graph, p*p in size,

where p is a very large prime number. To implement the

ECC in software to handle prime numbers as well as other

number, ECC allows the development of potable chips that

can be deployed over the mobile devices and provide a

suitable and processor friendly encryption . Like every other
design consists of ECC that is implicated on hardware over

binary finite fields, point adding and doubling on elliptic

curve and scalar multiplication.

1.1 Polynomial Basis Representation

Galois fields are fields with a finite field order q which is

also the number of elements in the field [11]. A Galois field

of order q is here denoted as GF(q). The order q of the field

is always a prime p or a power of a prime pm [12]. Galois

fields are commonly used for cryptography purposes but

there are many applications using Galois fields also e.g. in

the study of error-correcting codes. Field orders (field sizes)
used for cryptography are usually huge (e.g. m > 150) in

order to make crypto analysis harder. The security offered

by the cryptosystem usually increases exponentially when m

becomes larger. For cryptography applications m in GF(2m)

should be a prime, in order to avoid a crypto analysis attack.

Galois fields with a polynomial basis are most commonly

used in elliptic curve cryptography and therefore they are

presented here in detail. The other commonly used basis is

called optimal normal basis (ONB), Polynomial basis has

proven to be faster and easier to implement than optimal

normal basis and it is therefore usually preferred to ONB.

Galois field with a polynomial basis is generated with an
irreducible polynomial over GF (2N).

For the polynomial basis representation, each element of the

field represents a polynomial, f(x) of the form:

f(x) = a0 + a1x + a2 x2 + a3x3 + aixi

All coefficients, ai, of the polynomial are either zero or one.

Therefore each operation, such as addition, subtraction, and

multiplication are defined using polynomial arithmetic with

the coefficients reduced modulo 2. For example, the bit

sequence 01100101 would represent the polynomial:

x6 + x5 + x2 + 1

Since operations such as multiplication and squaring take
inputs of size m bits and result in values 2m-1 bits, there

must be a method for reducing the result of these operations

into elements of the Galois field. As a result, these values

are reduced by a reduction polynomial of order m for an m

bit field. Therefore taking the reduction polynomial raised to

any power of x and adding it to a field element will result in

a value congruent to the original field element modulo the

reduction polynomial.

Field operations [13]: the following arithmetic operations

are defined on the elements of GF(2m) when using a

polynomial basis representation with reduction polynomial

p(x):

Addition Operation

It can be done only using one n-bit XOR operation (equal to

bit wise addition module 2). The sum of two elements A, B

∈ GF(2m) is given by below equation.

𝐶(𝑥) = 𝐴(𝑥) 𝑋𝑜𝑟 𝐵(𝑥) = ∑ (𝑎𝑖 𝑋𝑜𝑟 𝑏𝑖)𝑥𝑖

𝑚−1

𝑖=0

Square Operation

The binary representation of element’s square is done by

inserting a 0 bit between consecutive bits of the binary

representation. The square of A ∈ GF(2m) is given by below

equation.

𝐴2(𝑥) = ∑ 𝑎𝑖𝑥
2𝑖

𝑚−1

𝑖=0

Multiplication Operation

Assume we have two elements A(x), B(x) belongs to binary

field GF(2m) with irreducible polynomial P(x). Field

multiplication done by two steps [14]:

1. Polynomial multiplication of A(x) and B(x)

C’(x) = A(x). B(x)

2. Reduction using irreducible polynomial p(x)

C(x) = C’(x) mod P(x)

Reduction Operation
Multiplication and square operations need as mention above

a reduction process which is the process to reduce the order

of resulting values from larger than m to less or equal to m.

C(x) = C’(x) mod P(x)

Inversion Operation

Inversion is the most time-consuming process when

computing the scalar multiplication in elliptic curve

cryptography using Montgomery method. Inversion in

binary finite field is the process of getting a-1 for a nonzero

element a є GF(2m) such that:

(A. A-1) = 1 mod f(x)

II.SECURITY ALGORTIHMS

A. Elliptic Curve Cryptography (ECC)

Elliptical curve cryptography (ECC) is one of the public key

encryption techniques that generate best cryptographic keys

according to the elliptic curve theory. It creates smaller keys
within a short period. Rather than using large prime

numbers for key generation, ECC uses the properties of

elliptic curves to generate keys. Elliptic curve is a

nonsingular cubic curve with two variables in a certain field

and an infinite rational point [15, 16]. Each user generates a

public- private key pair, where the public key is applied for

encryption and signature verification and the private key is

applied for decryption and signature generation. The high

level of security can be achieved in ECC using a 164 bit

key, where the traditional techniques need 1024 bit key.

Data security using ECC algorithm

Key generation

 A selects random integer dA, which is A’s private

key

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3

 A generates a public key PA = dA * B

 B selects a private key dB and generates a public

key PB = dB * B

 A generates the security key Key = dA * PB

 B generates the security key Key = dB * PA

Signature Generation

 For signing a message m by sender of cloud A,

using A’s private key dA

 Calculate e = HASH(m), where HASH is a

cryptographic hash function, such as SHA-1

 Select a random integer k from [1, n-1]

 Calculate r = x1 (mod n), where (x1, y1) = k * B. If

r = 0, go to step III

 Calculate s = k-1(e + dA * r) (mod n). If s = 0, go to

step III

 The signature is the pair (r, s)

 Finally, send signature (r, s) to B

Encryption algorithm
Assume A sends an encrypted message to B

 A takes plaintext message m, and encodes it onto a

point, pm,

 from the elliptic group

 A chooses another random integer, k from interval

[1, p-1]

 The cipher text is a pair of points pc = [(kB), (pm +

k * PB)]

 Send cipher text pc to B

Decryption algorithm

B will decrypt cipher text pc

 B computes the product of the first point from pc

and its private key dB, which is kB * dB

 B takes this product and subtracts it from the
second point from pc, (pm + k * PB) – kB * dB,

since PB = dB * B, so the difference is pm

 Finally, B decodes pm to get the message m

Signature Verification

If B wants to authenticate A’s signature, B must have A’s

public key pA

 Verify that r and s are integers in [1, n-1]

 Calculate e = HASH(m), where HASH is the same

function used in the signature generation

 Calculate w = (s – 1) % n

 Calculate u1 = e*w % n and u2 = r*w % n

 Calculate (x1,y1) = u1 * B + u2 * PA

 The signature is valid if x1 = r % n, otherwise

invalid

EXAMPLE

1. Curve Size: Small, Curve Type: Real number,

Curve attributes: a=5, b=17, Curve: y² = x³ + 5x +

17, Point P = (0.97|4.77), Point Q = (-1.7|1.89),
Point R = P + Q = (1.88|-5.75)

Encryption Chart:

2. Curve Size: Large, Curve Type: F(p), Select curve

attributes: ANSI X9.62,Curve: prime192v1, Radix: 16

hexadecimal, Curve attributes: y2 = x3 + 5x + 17, where

a = fffffffffffffffffffffffffffffffefffffffffffffffc

b =

64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1

 p = fffffffffffffffffffffffffffffffeffffffffffffffff

Base point G: Point P
x =

f2cf5cf93ee95d8748114264ae71b15ca8160d8b777a2e23

y=

8fc23224426e91604820b16640a917d0ca5dfd6ad77abc28

Base point G: point Q

x =

f6cc36cbfedacbbb246b8e964095a35f95649b5fd52a6d4b

 y=997afb853b3d846f0382fd51b96578e52f625f118e3cd4b7

Point R : R = P + Q

x=

28f240764a3a9bd72bc28dbf29be9174d5952671163c2e5a
 y=

dab81b6b5b17e7e3d96c23f3831ab1f88465c60cd1ba7c75d

3. Curve Size: Large, Curve Type: F(2^m), Select curve

attributes : ANSI X9.62, Curve: c2pnb163v1, Radix : 16

hexadecimal

a = 72546b5435234a422e0789675f432c89435de5242

b = c9517d06d5240d3cff38c74b20b6cd4d6f9dd4d9

m = 163

Base Point P:
x = 00000002 72d6f150 ded9a40e e782567b 93a50953

ea4bf931

y= 00000004 c7884023 97d60585 f8ac1958 14c2120b

3a75ffb3

Base point Q:

X=00000003 a8299d26 75107724 2bcb451a b9f01903

dd1a1c24

Y= 00000003 a1e44106 4c3aa00e 572c7132 e2323827

9eeac2b2

Point R : R = P + Q

X= 00000000 99f7d988 80557118 7fb939c7 009beb7d
57405f8e

Y= 00000004 d5e68ee4 e9d6f508 774a7d6a f83bdc3c

e78dfc47

4. Curve Size: Small, Curve Type: F(2^m), curve attributes :

m=5, f = x^5+x+1,a=1,b=1,Curve: y² + xy = x³ + x² + 1 ,

Point P = (g3|g15), Point Q = (g28|g1), Point R = P + Q =

(0|1)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 4

Decryption Chart:

B. ECDSA (Elliptic Curve Digital Signature Algorithm)

Signature algorithm is used for authenticating a device or a

message sent by the device. For example consider two

devices A and B. To authenticate a message sent by A, the

device A signs the message using its private key. The device

A sends the message and the signature to the device B. This

signature can be verified only by using the public key of

device A. Since the device B knows A‟s public key, it can

verify whether the message is indeed send by A or not.

ECDSA is a variant of the Digital Signature Algorithm
(DSA) that operates on elliptic curve groups. For sending a

signed message from A to B, both have to agree up on

Elliptic Curve domain parameters. The domain parameters

are defined in above section. Sender „A‟

have a key pair consisting of a private key dA (a randomly

selected integer less than n, where n is the order of the

curve, an elliptic curve domain parameter) and a public key

QA = dA * G (G is the generator point, an elliptic curve

domain parameter) [17]. An overview of ECDSA process is

defined below:

Signature Generation
For signing a message m by sender A, using A‟s private key

dA

 Calculate e = HASH (m), where HASH is a

cryptographic hash function, such as SHA-1

 Select a random integer k from [1,n − 1]

 Calculate r = x1 (mod n), where (x1, y1) = k *

 If r = 0, go to step 2

 Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to

step 2

 The signature is the pair (r, s)

Signature Verification
For B to authenticate A's signature, B must have A‟s public

key QA

 Verify that r and s are integers in [1,n − 1]. If not,

the signature is invalid

 Calculate e = HASH (m), where HASH is the same

function used in the signature generation

 Calculate w = s −1 (mod n)

 Calculate u1 = ew (mod n) and u2 = rw (mod n)

 Calculate (x1, y1) = u1G + u2QA

 The signature is valid if x1 = r(mod n), invalid

otherwise

EXAMPLE

Signature originator: PARKAVI PARKAVI

Domain parameters to be used 'EC-prime239v1':

Chosen signature algorithm: ECSP-DSA with hash function

SHA-1

Size of message M to be signed: 349 bytes

Bit length of c + bit length of d = 473 bits

Message = “Elliptic Curve Cryptography Algorithm

provides secure message integrity and message

authentication, along with non-repudiation of message and

data confidentiality. Elliptical curve cryptography (ECC) is

a public key encryption technique based on elliptic curve

theory that can be used to create faster, smaller, and more

efficient cryptographic keys”

Encrypted Data:

45 6C 6C 69 70 74 69 63 20 43 75 72 76 65 20 43 72 79 70

74 6F 67 72 61 70 68 79 20 41 6C 67 6F 72 69 74 68 6D 20

70 72 6F 76 69 64 65 73 20 73 65 63 75 72 65 20 6D 65 73
73 61 67 65 20 69 6E 74 65 67 72 69 74 79 20 61 6E 64 20

6D 65 73 73 61 67 65 20 61 75 74 68 65 6E 74 69 63 61 74

69 6F 6E 2C 20 61 6C 6F 6E 67 20 77 69 74 68 20 6E 6F

6E 2D 72 65 70 75 64 69 61 74 69 6F 6E 20 6F 66 20 6D 65

73 73 61 67 65 20 61 6E 64 20 64 61 74 61 20 63 6F 6E 66

69 64 65 6E 74 69 61 6C 69 74 79 2E 20 45 6C 6C 69 70 74

69 63 61 6C 20 63 75 72 76 65 20 63 72 79 70 74 6F 67 72

61 70 68 79 20 28 45 43 43 29 20 69 73 20 61 20 70 75 62

6C 69 63 20 6B 65 79 20 65 6E 63 72 79 70 74 69 6F 6E 20

74 65 63 68 6E 69 71 75 65 20 62 61 73 65 64 20 6F 6E 20

65 6C 6C 69 70 74 69 63 20 63 75 72 76 65 20 74 68 65 6F
72 79 20 74 68 61 74 20 63 61 6E 20 62 65 20 75 73 65 64

20 74 6F 20 63 72 65 61 74 65 20 66 61 73 74 65 72 2C 20

73 6D 61 6C 6C 65 72 2C 20 61 6E 64 20 6D 6F 72 65 20

65 66 66 69 63 69 65 6E 74 20 63 72 79 70 74 6F 67 72 61

70 68 69 63 20 6B 65 79 73

Elliptic curve E described through the curve equation: y^2 =

x^3 + ax + b (mod p) :

a =

883423532389192164791648750360308885314476597252

960362792450860609699836

b =

738525217406992417348596088038781724164860971797
098971891240423363193866

Private key = 1555396496

Public key W=(Wx,Wy) (W is a point on the elliptic curve)

of the signature originator:

W =

498983585649476684779866001437955898822619169124

900114917067219042145728

Wx =

257713192384992372601894948053528538433271784776

80636228439122380858358

Wy =
590689380461104336768855452018992077095972376197

849521427225501160565422

Calculate a 'hash value' f (message representative) from

message M, using the chosen hash function SHA-1.

f =

688647667391257344464700168711587982973589536722

 ECDSA SIGNATURE as follows:

G has the prime order r and the cofactor k (r*k is the number

of points on E):

k = 1

Point G on curve E (described through its (x,y) coordinates):

Gx =
589075071874896415819042058021272878589931382652

794723051500724702204335

Gy =

262156637887296030273498439906415542995025924302

19030584717324687640726

r =

883423532389192164791648750360308884807550341691

627752275345424702807307

The secret key s is the solution of the EC discrete log

problem W=x*G(x unknown)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 5

S=

984798318739053275805434320259199826309687696686

34286404736321250868508

Signature:

Convert the group element Vx (x co-ordinates of point V on

elliptic curve) to the number i:

 i =

257713192384992372601894948053528538433271784776

80636228439122380858358

Calculate the number c = i mod r (c not equal to 0):

c =
257713192384992372601894948053528538433271784776

80636228439122380858358

Calculate the number d = u^(-1)*(f + s*c) mod r (d not equal

to 0):

d =

857619492440415404493030721946871188013339908769

645505946566222067422866

ECDSA VERIFICATION as follows:

If c or d does not fall within the interval [1, r-1] then the

signature is invalid:

c and d fall within the required interval [1, r-1].
Calculate the number h = d^(-1) mod r:

h =

301425859988941933382400436834981756621918815251

59628439407884297263008

Calculate the number h1 = f*h mod r:

h1 =

100526286692619263037459460844101930192281458563

226921221632012545629751

Calculate the elliptic curve point P = h1 G + h2 W

Calculate the number h2 = c*h mod r:

h2 =

716186784840960678243349953702295630776402814580
900960233630220398403170 (If P = (Px, Py) = (inf, inf)

then the signature is invalid):

 Px =

257713192384992372601894948053528538433271784776

80636228439122380858358 Py =

590689380461104336768855452018992077095972376197

849521427225501160565422

Convert the group element Px (x co-ordinates of point P on

elliptic curve) to the number i:

 i =

257713192384992372601894948053528538433271784776
80636228439122380858358

Calculate the number c' = i mod r:

c' =

257713192384992372601894948053528538433271784776

80636228439122380858358

If c' = c then the signature is correct; otherwise the signature

is invalid:

C. ECDH (Elliptic Curve Diffie-Hellman Algorithm)

ECDH [18] is a key agreement protocol that allows two

parties to establish a shared secret key that can be used for

private key algorithms. Both parties exchange some public

information to each other. Using this public data and their

own private data these parties calculates the shared secret.

Any third party, who doesn‟t have access to the private
details of each device, will not be able to calculate the

shared secret from the available public information. An

overview of ECDH process is defined below. For generating

a shared secret between A and B using ECDH, both have to

agree up on Elliptic Curve domain parameters. The domain

parameters are defined in above section. Both end have a

key pair consisting of a private key d (a randomly selected

integer less than n, where n is the order of the curve, an

elliptic curve domain parameter) and a public key = d * G

(G is the generator point, an elliptic curve domain

parameter) [19].

Algorithm: Elliptical Curve Diffie-Hellman

 Alice and Bob agree on the elliptic curve E and

base point G(x1,y1)

 Alice generates a random integer a ∈
 { 1, … … … . , 𝑛 − 1} where n is the order of the

group and number a is called private key of the

Alice.

 Alice sends to Bob her public key

Qa=aG=a(x1,y1)=(xa,ya)

 Bob generates the random integer b ∈
 { 1, … … … . , 𝑛 − 1} and b number is called private

key of the Bob

 Bob sends to Alice his public key .

Qa=bG=B(x1,y1)=(xb,yb)

 Alice can then compute (xk,yk)=aQb=a(bG)=abG.

 Likewise, Bob can compute

(xk,yk)=bQa=b(aG)=abG.

 The shared session key is xk which is the x –

coordinate of the point.

EXAMPLE

Step 1: Set public parameters

Curve type: F (p), Curve Size: Small, Domain parameters:

a=1,b=1,p=23, generator G=(5,4)
Step 2: Choose Secrets

Alice= 10

Bob=9

Step 3: Generate shared keys

Secret key (d): Q=d*G ,

Alice=(5,4)

Bob=(13,7)

Step 4: Exchange shared keys

Step 5: Generate common key

Key = sA*QB and key=sB*QA

S= (13,7)

Exchange shared keys:

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 6

D. Proposed ECPC (Elliptical Curve and Polynomial

Cryptography)

Polynomial basis multiplication is based on two main

arithmetic operations over the binary polynomials:

polynomial multiplication and reduction modulo an

irreducible polynomial. In this work, the so-called

Mastrovito matrix is constructed from the coefficients of the
first multiplicand and the irreducible polynomial defining

the field. Then, the polynomial multiplication and modulo

reduction steps are performed together using matrix.

Irreducible polynomials with special structures and low

hamming weights have been used in many papers to design

efficient finite field multipliers.

In this section, illustrate the representation and

multiplication of GF(2m) elements in the polynomial basis.

The finite field GF(2m) is an extension field of GF(2) and

constitutes a dimension m vector space over it. The finite

field GF(2) has only the elements 0 and 1. In this binary

field, the addition and the subtraction are defined as XOR

operation while the multiplication is defined as AND

operation.

Step 1:

Let x ∈ GF(2m) and be a root of the degree m irreducible

polynomial over GF(2)

w(x) = xm + wm−1xm−1 + ⋯ w1x + w0 = 0

Then, the following set constitutes the polynomial basis in

GF(2m):

{1, 𝑥, … … … . . , 𝑥𝑚−1}

With polynomial basis, GF(2m) elements can be represented

as degree m-1 polynomials as follows:

GF(2m) = {a(x)|a(x) = am−1xm−1 + ⋯ . +a1x + a0, ai

∈ GF(2)},

Where the coefficients 𝑎𝑖 are the polynomial basis
coordinates in GF(2). When the elements of GF(2m) are

represented as polynomials over GF(2), their addition and

subtraction are equivalent to the coefficient-wise XOR,

denoted dy “+” in this paper. Also, because of the above

equation, all arithmetic operations in GF(2m) are performed

modulo the irreducible polynomial w(x) chosen to construct

the field. Let a(x) and b(x) be two field elements and c(x) be

their product. Then,

𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥)𝑚𝑜𝑑 𝑤(𝑥).

Thus polynomial basis multiplication has two steps:

polynomial multiplication and reduction modulo an

irreducible polynomial.

Step 2: Polynomial multiplication

Let d(x)=a(x)b(x) be the product of the polynomials

representing the field elements. D(x) is the degree 2m-2

polynomial

𝑑(𝑥) = 𝑎(𝑥)𝑏(𝑥) = (∑ 𝑎𝑖𝑥
𝑖

𝑚−1

𝑖=0
) (∑ 𝑏𝑗𝑥𝑗

𝑚−1

𝑖=0
)

= ∑ 𝑑𝑘𝑥𝑘
2𝑚−2

𝑘=0

Where

𝑑𝑘 = ∑ 𝑎𝑖𝑏𝑗 , 0 ≤ 𝑖, 𝑗, ≤ 𝑚 − 1, 0 ≤ 𝑘 ≤ 2𝑚 − 2.
𝑖+𝑗=𝑘

Step 3: Modular Reduction

In the modular reduction c(x)=d(x) mod w(x), the degree

2m-2 polynomial d(x) is reduced by the degree m

irreducible polynomial w(x) iteratively. The partial

remainder after each reduction can be computed by the
following iteration:

d(2m−2) (x) = d(x), d(k−1)(x)

= d(k)(x) + w(x)dk
(k)

xk−m, m ≤ k

≤ 2m − 2,

Here, d(k)(x) is a partial remainder of degree k and

dm−1(x) =c(x). the iteration in above equation reduces

d(k)(x) from degree k to k-1, since adding (coefficientwise

XORing) d(k)(x) with polynomial

w(x)dk
(k)

xk−m = (xm + ∑ wix
i

m−1

i=0

) dk
(k)

xk−m

= dk
(k)

xk

+ ∑ dk
(k)

wix
i+k−m

m−1

i=0

= dk
(k)

xk + ∑ dk
(k)

wi−(k−m)xi

k−1

i=k−m

Cancels its term with the order k.

Step 4:
The choice of the irreducible polynomial w(x) may ease the
modular reduction. Sparse irreducible polynomials having

fewer nonzero terms are usually preferred for efficiency. A

degree m irreducible polynomial over GF(2) which has r

nonzero terms are in the form

𝑥𝑚 + 𝑥𝑚1+ 𝑥𝑚2 + … . . +𝑥𝑚𝑟−3 + 𝑥𝑚𝑟−2 + 1.
Step 5:
Here, r > 1 must be an odd number such as 3 and 5. The

sparse polynomials with three or five nonzero terms as

shown below are called trinomial and pentanomial

respectively:

𝑥𝑚 + 𝑥𝑚1+ 1, 𝑥𝑚 + 𝑥𝑚1 + 𝑥𝑚2 + 𝑥𝑚3 + 1.
Step 6:
Equally spaced irreducible polynomials are another choice

for efficient modular reduction. An equally spaced

polynomial is in the form

𝑥𝑛𝑠 + 𝑥(𝑛−1)𝑠 + ⋯ . . 𝑥𝑠 + 1,
Where ns=m.

Step 7: The proposed polynomial interpolation method

in the elliptic curve ElGamal cryptosystem: Now, we are

going to discuss the algorithm of the modified elliptic curve

ElGamal cryptosystem. This modified cryptosystem will

send the set of encrypted points as

two polynomials which are constructed using Lagrange

polynomial interpolation method. The first polynomial will

be encrypted as well to ensure the additional steps in this
modified algorithm is meaningful for implementation. Here

the algorithm:

 Alice chooses her secret key, kA such that1≤kA<n. The

gcd (kA, n) = 1. She publishes her public key as kAP

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 7

 Bob chooses kB such that1≤kB<n. The gcd (kB, n) = 1.

He encrypts each points such that (xE, yE) = Pm + kB

(kAP).

 Bob constructs polynomial A(x) based on the points (1,

xE1), (2, xE2), (3, xE3), (I, xEI) where l denotes the

number of encrypted points. Another polynomial B(x)

is constructed based on the encrypted points (xE1, yE1),

(xE2, yE2), (xE3, yE3),…, (xEI, yEI). Both polynomials are

constructed using Lagrange polynomial interpolation.

 Bob adds the x-coordinate of kB (kAP) to each of the

coefficients modulo p of the polynomial A(x) whereas
the coefficients of polynomial B(x) remain unchanged.

The encrypted polynomial A(x) denoted as A’ (x). Bob

sends (kBP, A’(x), B(x)) to Alice.

 Alice decrypts by multiplying her secret key such that

kA(kBP). Polynomial A(x) is obtained from A’(x) by

deducting each coefficients using the x coordinate of

kA(kBP).

 Alice obtains x-coordinate of encrypted points by

substituting x = 1, 2,…,I into A(x). Then x coordinate

of encrypted points obtained is substituting into B(x) to

get the y-coordinate of encrypted points.

 Alice obtains Pm such that Pm + kB (kAP) - kA (kBP)

Example

The exponent can be indicated by preceding it by the

character E or e, as you can see in the example. Data must

consist of two columns, x and y, to get the polynomial

regression y=anxn+an-1xn-1+...+a2x2+a1x+a0.

Number of Data Points : 3

Polynomial Degree: 2

Result: y = 4.666666667 x2 - 9.333333333 x + 1

Residual Sum of Squares: rss = 0

Coefficient of Determination: R2 = 1

Chart:

Result

Mode: normal x, y analysis

Polynomial degree 2, 3 x, y data pairs.

Correlation coefficient (r^2) = 1

Standard error = 1.2186183381512667e-14

Coefficient output form: mathematical function:

f(x) = 1.0000000000000111e+000 * x^0

 + -9.3333333333333481e+000 * x^1

 + 4.6666666666666705e+000 * x^2

Table

x, y ,%

0.00, 1.00, 0.00

0.15, -0.29, 5.00

0.30, -1.38, 10.00

0.45, -2.25, 15.00

0.60, -2.92, 20.00

0.75, -3.37, 25.00

0.90, -3.62, 30.00

1.05, -3.66, 35.00
1.20, -3.48, 40.00

1.35, -3.10, 45.00

1.50, -2.50, 50.00

1.65, -1.70, 55.00

1.80, -0.68, 60.00

1.95, 0.54, 65.00

2.10, 1.98, 70.00

2.25, 3.62, 75.00

2.40, 5.48, 80.00

2.55, 7.54, 85.00

2.70, 9.82, 90.00
2.85, 12.30, 95.00

3.00, 15.00, 100.00

III. RESULTS AND DISCUSSIONS (Based on Space

Complexity and Throughput)

In this experimental performance analysis of the given

algorithms on the basis of the following parameters on cloud

system at different input size. In this section describes the

experimental parameters, platforms and key management of

experimental algorithms.

Evaluation Parameters Performance of encryption algorithm

is evaluated considering the following parameters.

 Key Generation time: The Key Generation Time
considered the time that a key generation takes to

produce a key.

 Encryption Time: The encryption time considered

the time that an encryption algorithm takes to

produces a cipher text from a plain text.

 Decryption Time: The decryption time considered

the time that a decryption algorithm takes to

produces a plain text from a cipher text.

Evaluation Platforms Performance of encryption algorithm

is evaluated considering the following system configuration.

 Software Speciation: Experimental evaluation on
Eclipse Jee Mars with Java Development Kit 8

Update 65, Matlab version 2014, Windows 8.1 Pro

64 bit Operating System.

 Hardware Speciation: All the algorithms are

tested on Intel Core i5 (2.40 GHz) fourth

generation processor with 4GB of RAM with 1 TB-

HDD.

Experimental result for encryption algorithm ECC, ECDH,

ECDSA, and ECPC are shown in table-1 which has been

implemented several input file sizes: 435 bytes, 869 bytes

and 3259 bytes. Key size of each algorithm that is used in
this experiment is also mentioned in the below table. All the

results are obtained with due care, for achieving higher

accuracy hundred (150) samples of total execution time

were taken then an average of hundred samples were taken

for the measurement and comparative analysis among

algorithms and for the graph plotting as well. Encryption

and Decryption time is calculated in millisecond and the

input size is taken in kilobytes. All the respective

observation readings and graph are shown for all the

analyzed algorithms on single system.

Apart from Time complexity, space complexity is also an

important measure to judge the performance of an

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 8

algorithm. It is the amount of memory which the algorithm

needs for performing its computations. A good algorithm

keeps the amount of memory as small as possible. The way

in which the amount of storage space required by an

algorithm varies with the size of the problem it is solving.

Space complexity is normally expressed as an order of

magnitude, e.g. O(N^2) means that if the size of the problem

(n) doubles then four times as much working storage will be

needed. We have analyzed the space complexity between

private key length which is in bits and run time memory

consumed by system. The space complexity of an algorithm
is a measure of how much storage is required for a

computation. For different input size, there will be different

amount of space. Here, we give the storage requirements in

bytes of ECC with a 521-bit modulus and an elliptic curve

cryptosystem over GF(p) where p is 160 bits in length when

making a rough comparison between the below four

systems. Figure 1 and Table 1 showed Space complexity

Comparisons.

Table 1: Comparison Space Complexity (Run Time

Memory)

Key Size

ECC:ECDH:ECDSA:ECPC

Space complexity

521:384:25:163 ECC ECDH ECDSA ECPC

521:384:25:163 248040 241795 235137 227152

521:384:25:163 248608 241808 234668 225510

521:384:25:163 249465 242053 234401 224823

521:384:25:163 258454 250500 242513 232525

521:384:25:163 268845 260743 252285 242162

Figure1: Space Complexity (Run Time Memory)

Comparison

Throughput

Calculate the throughput of the algorithm by dividing the

total data in bytes by encryption time. Higher the throughput
higher is the efficiency of the system. Figure 2 and Table 2

given below gives us the comparison between the ECC,

ECDH, ECDSA, and ECPC algorithm using throughput. In

any cryptographic algorithm, it is essential to understand the

size of the input and the size of output as this is one of the

important property of an avalanche effect. Figure 2

illustrates the throughput (throughput (Kb/Ms) / time); the

corresponding precise measurements are given in figure 2.

Our ECPC algorithm differ from others, the proposed

algorithm using polynomial based simple and effective

operations in elliptic curve. So the throughput of the

proposed algorithm is higher than others, the below graph

show that proposed algorithm outperforms than others.

Table 2: Comparison using Throughput

Simulated

Time/Throughput

(Kb/Ms)

ECC ECDH ECDSA ECPC

0 0.000 0.000 0.000 0.000

2 50.000 100.000 150.000 185.000

4 100.000 170.000 190.000 200.000

6 170.000 190.000 220.000 240.000

8 175.000 230.000 250.000 280.000

10 210.000 245.000 265.000 280.000

12 225.000 260.000 280.000 320.000

14 270.000 295.000 320.000 345.000

16 280.000 320.000 340.000 360.000

18 300.000 355.000 375.000 390.000

20 325.000 375.000 410.000 435.000

Figure 2: Throughput Comparison

IV. CONCLUSION

Encryption algorithm keeps very important contribution in

communication security. This research paper emphasizes on

the security of cloud user’s information confidentiality
protection using enhanced elliptic curve cryptography

(ECC) algorithm over Galois Field 𝐺𝐹 (2𝑚). The Galois

Field allows mathematical operations to mix up data easily

and effectively. Our research work showed the performance

of widely used encryption techniques like ECC, ECDH,

ECDSA and ECPC proposed algorithms. Based on the text

files used and the experimental result it has decided that

ECPC algorithm consumes least run time memory and

maximize the throughput and ECC(ECC, ECDH, ECDSA)

based algorithms consume longest run time memory as well

as minimize the throughput .

V. REFERENCES

[1]. Wolf Halton, “Security Solutions for Cloud

Computing”, July 15, 2010.

[2]. Wolf Halton, Opensource and security on “Security

Issues and Solutions in Cloud Computing”, July 25,

2010, wolf in cloud computing, Tech Security.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P01 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 9

[3]. L. Arockiam, S. Monikandan « Data Security and

Privacy in Cloud Storage using Hybrid Symmetric

Encryption Algorithm » International Journal of

Advanced Research in Computer and Communication

Engineering Vol. 2, Issue 8, August 2013

[4]. Ponemon Institute and CA “Security of cloud

computing Users: A study of Practitioners in the US

& Europe”. May 12, 2010.

[5]. Ryan K L Ko, Peter Jagadpramana, Miranda

Mowbray, Siani Pearson, Markus Kirchberg ,

Qianhui Liang , Bu Sung Lee, “TrustCloud: A
Framework for Accountability and Trust in Cloud

Computing” 2011 IEEE World Congress on Services.

[6]. Muhammad Rizwan Asghar, Mihaela Ion, Bruno

Crispo, “ESPOON Enforcing Encrypted Security

Policies in Outsourced Environment”, 2011 Sixth

International Conference on Availability, Reliability

and Security.

[7]. Xu Huang, Pritam Gajkumar Shah and Dharmendra

Sharma, “Multi-Agent System Protecting from

Attacking with Elliptic Curve Cryptography,” the 2nd

International Symposium on Intelligent Decision
Technologies, Baltimore, USA, 28-30 July 2010.

[8]. Xu Huang, Pritam Shah, and Dharmendra Sharma,

“Minimizing hamming weight based on 1‟s

complement of binary numbers over GF (2m),” IEEE

12th International Conference on Advanced

Communication Technology, Phoenix Park, Korea

Feb 7-10, 2010. ISBN 978-89-5519-146-2, pp.1226-

1230.

[9]. Xu Huang, Pritam Shah, and Dharmendra Sharma,

“Fast Algorithm in ECC for Wireless Sensor

Network,” The International MultiConference of

Engineers and Computer Scientists 2010, Hong
Kong, 17-19 March 2010. Proceeding 818-822.

[10]. Pritam Gajkumar Shah, Xu Huang, Dharmendra

Sharma, “Analytical study of implementation issues

of elliptical curve cryptography for wireless sensor

networks,” The 3rd International Workshop on RFID

& WSN and its Industrial Applications, in

conjunction with IEEE AINA 2010, April 20-23,

2010, Perth, Australia.

[11]. Omura, J.K., Massey, J.L.: Computational method

and apparatus for finite field arithmetic, United States

Patent 4,587,627 (1986)
[12]. Robert, J., McEliece: Finite Fields for Computer

Scientists and Engineers. The Kluwer International

Series in engineering and computer science. Kluwer

Academic Publishers, Dordrecht (1987)

[13]. Karatsuba, A., Ofman, Y.: Multiplication of

multidigit numbers on automata. Sov. Transaction

Info. Theory 7(7), 595–596 (1963)

[14]. Rodriguez-Henriquez, F., Kog, Q.K.: On Fully

Parallel Karatsuba Multipliers for GF (2m).In:

International Conference on Computer Science and

Technology (CST), pp. 405–410 (2003)

[15]. Setiadi, I., Kistijantoro, A.I. and Miyaji, A. (2015)
Elliptic Curve Cryptography: Algorithms and

Implementation Analysis over Coordinate Systems.

2015 2nd International Conference on Advanced

Informatics: Concepts , Theory and Applications,

Chonburi, 19-22 August 2015, 1-6.

https://doi.org/10.1109/icaicta.2015.7335349

[16]. J. Krasner “Using Elliptic Curve Cryptography

(ECC) for Enhanced Embedded Security –Financial

Advantages of ECC over RSA or Diffie-Hellman

(DH)” Embedded Market Forecasters American

Technology International, Inc. November 2004

[17]. D. Hankerson, A. Menezes, S. Vanstone, “Guide to

Elliptic Curve Cryptography”Ch- , Pp 76-78

Springer, 2004.

[18]. Garg, V. and Ri, S.R. (2012) Improved Diffie-

Hellman Algorithm for Network Security

Enhancement. International Journal of Computer

Technology and Applications , 3, 1327-1331.

[19]. Setiadi, I., Kistijantoro, A.I. and Miyaji, A. (2015)

Elliptic Curve Cryptography: Algorithms and

Implementation Analysis over Coordinate Systems.

2015 2nd International Conference on Advanced
Informatics: Concepts , Theory and Applications,

Chonburi, 19-22 August 2015, 1-6.

https://doi.org/10.1109/icaicta.2015.7335349

ABOUT THE AUTHORS

D.Pharkkavi received her M.Phil

Degree from Tiruvalluvar University,

Vellore in the year 2013. She has

received her M.C.A Degree from Anna

University, Chennai in the year 2012.

She is pursuing her Ph.D (Full-Time)
Degree at Sri Vijay Vidyalaya College of Arts & Science,

Dharmapuri, Tamilnadu, India. Her areas of interest include

Cloud Computing and Mobile Computing.

 Dr.D.Maruthanayagam received his

Ph.D Degree from Manonmaniam

Sundaranar University, Tirunelveli in

the year 2014. He received his M.Phil

Degree from Bharathidasan University,

Trichy in the year 2005. He received his

M.C.A Degree from Madras University, Chennai in the year
2000. He is working as HOD Cum Professor, PG and

Research Department of Computer Science, Sri Vijay

Vidyalaya College of Arts & Science, Dharmapuri,

Tamilnadu, India. He has above 18 years of experience in

academic field. He has published 5 books, more than 35

papers in International Journals and 30 papers in National

& International Conferences so far. His areas of interest

include Computer Networks, Grid Computing, Cloud

Computing and Mobile Computing.

http://www.jetir.org/
https://doi.org/10.1109/icaicta.2015.7335349

