NEW CLASSES OF TOPOLOGICAL MAPPINGS

¹A. PARVEEN BANU AND ²DR. M. MOHAMED SHERIFF

 ¹ Assistant Professor, ² Principal
 ¹Department of Mathematics, Lady Doak College,
 Madurai - 625 014, Tamil Nadu, India.
 ²The Quaide Milleth College for Men, Principal, Channel: Tamil Nadu, India

Chennai, Tamil Nadu, India

Abstract : In this paper we introduce and study a new class of function called $\alpha D\delta g$ continuous and $\alpha D\delta g$ irresolute and obtain a decomposition of continuity, α – semi continuity and $\alpha\delta g^{2}$ continuity in topological spaces.

I. INTRODUCTION

Levine [15], Noiri [22], Balachandran et al [4], Dontchev.J and Ganster [5] in- troduced generalised closed sets, δ -continuity, generalised continuous function and δ - generalised continuous (beiefly δ g-contineous) & δ -generalised irresolute functions respectively. Devi et al [4] and Veerakumar [26] introduced semi-generalised conti- nuity and \hat{g} -continuity in topological spaces. Ganster and Reilly [9] introduced and studied the notion of LC-continuous functions. Dontchev [7] presented a new notion of continuous function called contra-continuity. This notion is a stronger form of LC-continuity. Dontchev and Noiri [6] introduced a weaker form of contra-continuity called contra-semi-continuity. The purpose of this present chapter is to define a new class of generalised continuous functions called $\alpha D\delta g$ -continuous functions namely $\alpha D\delta g$ -irresolute. Also we define a new class of generalized continuous functions called contra- $\alpha D\delta g$ -continuous functions and investigate their relationships to other functions. We further introduce and study a new class of functions and investigate their relationships to other functions. We further introduce and study a $\alpha D\delta g$ -continuous functions and investigate their relationships to other functions. We further introduce and study a $\alpha D\delta g$ -continuous functions and $\alpha D\delta g$ -normal spaces and obtain some new results.

1.1. Preliminaries. Throughout this thesis (X, τ) (or simply X) represent topolog- ical spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called a

(i) semi-open set [14] if $A \subseteq cl(int(A))$.

(ii) pre-open set [17] if $A \subseteq int(cl(A))$.

(iii) α -open set [21] if A \subseteq int(cl(int(A))).

The complement of a semi-open (resp. pre-open, α -open) set is called semi-closed (resp. pre-closed, α -closed).

Definition 1.2. The δ -interior [27] of a subset A of X is the union of all regular open set of X contained in A and is denoted by int $\delta(A)$. The subset A is called δ - open [27] if A =int $\delta(A)$, i.e. a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed. Alternatively, a set A \subseteq (X, τ) is called δ -closed [27] if A=cl $\delta(A)$, where cl $\delta(A)$ ={ $x \in X$: int(cl(U)) $\cap A6 = \varphi, U \in \tau$ and $x \in U$ }.

Definition 1.3. A subset A of (X, τ) is called

- (i) generalized closed (briefly g-closed) [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) generalized alpha-semi-closed (briefly α gs-closed) [2] if scl(A) \subseteq U whenever A \subseteq U and U is α open in (X, τ).
- (iii) α -generalized closed (briefly α g-closed) [16] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (iv) $\alpha\delta$ -generalized closed (briefly $\alpha\delta$ g-closed) [5] if $cl\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in
- (X,t).
- (v) [^]g-closed [26] if cl(A)⊆U whenever A ⊆U and U is semi-open in (X, τ). The complement of g[^]-closed set is called g[^]-open.

(vi) α - δ -g^-closed (briefly $\alpha\delta$ g^-closed) [11] if α cl δ (A) \subseteq U whenever A \subseteq U and U is g^- open in (X, τ).

The complement of a g-closed (resp. gs-closed, α g-closed, δ g-closed, g⁻closed and δ g⁻closed) set is called g-open (resp. gs-open, α g-open, δ g-open, g⁻open and δ g⁻open).

Definition 1.4. [8] A subset A of a space (X, τ) is called a αB -set if $A = G \cap F$ where G is α open and F is t- set in X.

Definition 1.5. A space (X,τ) is called (i) T1/2-space [15] if every g-closed set in it is closed. (ii) T3/4-space [5] if every δ g-closed set in it is δ -closed. (iii) T^ 3/4-space [11] if every δ g-closed set in it is δ -closed.

Definition 1.6. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) α semi-continuous [14] if $f^{-1}(V)$ is α semi-closed in (X, τ) for every closed set V of (Y, σ) .

(ii) g-continuous [4] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .

- (iii) ags-continuous [3] if $f^{-1}(V)$ is ags-closed in (X, τ) for every closed set V of (Y, σ) .
- (iv) ag-continuous [4] if $f^{-1}(V)$ is ag-closed in (X, τ) for every closed set V of (Y, σ) .
- (v) Super continuous [22] if $f^{-1}(V)$ is δ -open in (X, τ) for every open set V of (Y, σ) .
- (vi) \hat{g} -continuous [26] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every \hat{g} -closed set V of (Y, σ) .
- (vii) δ -continuous [22] if f⁻¹ (V) is δ -open in (X, τ) for every δ -open set V of (Y, σ).
- (viii) δ -closed [22] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ) .
- (ix) $\alpha\delta g$ -continuous [5] if $f^{-1}(V)$ is $\alpha\delta g$ -closed in (X, τ) for every closed set V of (Y, σ) . (x) $\alpha\delta g$ continuous [11] if $f^{-1}(V)$ is $\alpha\delta g$ -closed in (X, τ) for every closed set V of (Y, σ) .

Definition 1.7. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- (i) contra-continuous [7] if f 1 (V) is closed in (X, τ) for every open set V in (Y, σ) .
- (ii) contra-ags-continuous [6] if f = 1 (V) is ags-closed in (X, τ) for every open set V of (Y, σ).
- (iii) contra- $\alpha\delta g$ -continuous [13] if f -1 (V) is $\alpha\delta g$ -closed in (X, τ) for every open set V in (Y, σ).

Definition 1.8. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

- (i) generalized closed (briefly g-closed) (resp. g-open) [18] if the image of every closed (resp. open) set in (X, τ) is g-closed (resp. g-open) in (Y, σ).
- (ii) α generalized semi-closed (briefly α gs-closed) (resp. α gs-open) [?] if the image of every closed (resp. open) set in (X, τ) is α gs-closed (resp. α gs-open) in (Y, σ).
- (iii) \hat{g} -open [26] if f(V) is \hat{g} -open in (Y, σ) for every open set V of (X, τ) .
- (iv) $\delta\text{-closed}$ [22] if f(V) is $\delta\text{-closed}$ in (Y, $\sigma)$ for every $\delta\text{-closed}$ set V of (X, τ).
- (v) $\alpha\delta g^{-closed}$ [11] if the image of every closed set in (X, τ) is $\alpha\delta g^{-closed}$ in (Y, σ).

Definition 1.9. A Topological Space is said to be Ultra normal [25] if each pair of nonempty disjoint closed sets can be separated by disjoint clopen sets.

Proposition 1.10. Every αDδg-closed set is αδg-closed (resp.g-closed, αg-closed, αgs-closed).

2. αDδg-continuous

Definition 2.1. A function $f: (X, \tau) \to (Y, \sigma)$ is called $\alpha D\delta g$ -continuous if f-1(V) is $\alpha D\delta g$ -closed in (X, τ) for every closed set V of (Y, σ) .

Example 2.2. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, q\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is α Ddg-continuous.

Definition 2.3. A function $f: (X, \tau) \to (Y, \sigma)$ is called $\alpha D\delta g$ -irresolute if f-1(V) is $\alpha D\delta g$ -closed in (X, τ) for every $\alpha D\delta g$ -closed set V of (Y, σ) .

Example 2.4. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, \{q, r\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Clearly f is $\alpha D\delta g$ -irresolute.

Proposition 2.5. If $f : (X, \tau) \to (Y, \sigma)$ is aDdg-continuous then f is g-continuous, ag-continuous and adgcontinuous maps.

Proof It is true that every $\alpha D\delta g$ -closed set is g-closed, αg -closed, αg -closed and $\alpha \delta g$ -closed.

Remark 2.6. The converse of the above proposition is not true as seen from the following examples.

Example 2.7. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{q, r\}, Y\}$. Define the map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Clearly f is not $\alpha D\delta g$ -continuous because $\{p\}$ is closed in (Y, σ) but $f^{-1}(\{p\}) = \{b\}$ is not $\alpha D\delta g$ -closed in (X, τ) . However f is g-continuous.

Example 2.8. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, X\}$ and, $\sigma = \{\phi, \{p\}, \{p, q\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = p, f(b) = q and f(a) = r. Then f is αg -continuous and g-continuous. But f is not $\alpha D\delta g$ -continuous. Since for the closed set $\{q\}$ of (Y, σ) , $f-1(\{q\}) = \{b\}$ is not $\alpha D\delta g$ -closed in (X, τ) .

Example 2.9. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = r and f(c) = p. Then f is not $\alpha D\delta g$ -continuous because $\{r\}$ is closed in (Y, σ) but $f^{-1}(\{r\}) = \{a, b\}$ is not $\alpha D\delta g$ -closed in (X, τ) . However f is δg -continuous functions.

Theorem 2.10. Every super continuous is $\alpha D\delta g$ -continuous. **Proof** It is true that every δ -closed set is $\alpha D\delta g$ -closed.

Remark 2.11. The converse of Theorem 2.10 need not be true as shown in the following example.

www.jetir.org (ISSN-2349-5162)

Example 2.12. Let $X = \{a, b, c, d\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\sigma = \{\phi, \{p, q\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ be afunction defined by f(a) = p, f(b) = r and f(c) = q. Then f is $\alpha D\delta g$ -continuous. But f is not super continuous because $\{r\}$ is closed in (Y, σ) but $f-1(\{r\}) = \{b\}$ is not δ -closed in (X, τ) .

Remark 2.13. The following examples show that $\alpha D\delta g$ -continuity is independent of continuity, α – semi-continuous and $\alpha\delta g^{-}$ continuity.

Example 2.14. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{p, q\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function defined by f(a) = q, f(b) = r and f(c) = p. Then f is neither continuous nor α -semi-continuous also not $\alpha\delta g$ -continuous but $\alpha D\delta g$ -continuous.

Example 2.15. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, \{b, c\} X\}$ and $\sigma = \{\phi, \{q\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Then f is continuous, α -semi-continuous and $\alpha\delta g^{-1}$ -continuous but not $\alpha D\delta g$ -continuous.

3. Properties and Characterizations

Theorem 3.1. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is $\alpha D \delta$ g-continuous iff f-1(U) is $\alpha D\delta$ g-open in (X, τ) for every open set U in (Y, σ) .

Proof Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an $\alpha D \delta$ g-continuous function and U be an open set in (Y, σ) . Then $f-1(U^c)$ is $\alpha D\delta g$ -closed set in (X, τ) . But $f-1(U^c) = [f-1(U)]$ cand hence f-1(U) is $\alpha D\delta g$ -open in (X, τ) . Conversely f-1(U) is $\alpha D\delta g$ -open in (X, τ) for every open set U in (Y, σ) . Then Ucis closed set in (Y, σ) and $[f-1(U)]^c$ is $\alpha D\delta g$ -closed in (X, τ) . But $[f-1(U)]^c = f-1(U^c)$, so $f-1(U^c)$ is $\alpha D\delta g$ -closed set in (X, τ) . Hence f is $\alpha D\delta g$ -continuous.

Theorem 3.2. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a $\alpha D \delta$ g-irresolute and $g : (Y, \sigma) \rightarrow (Z, \eta)$ a $\alpha D\delta$ g-irresolute. Then their composition is $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is $\alpha D\delta$ g-irresolute.

Proof Let F be $\alpha D\delta g$ -closed set in (Z, η). Then g-1(F) is $\alpha D\delta g$ -closed in (Y, σ). Since f is $\alpha D\delta g$ -irresolute, $(g \circ f)-1(F) = f-1(g-1(F))$ is $\alpha D\delta g$ -closed set of (X, τ) and so $g \circ f$ is $\alpha D\delta g$ -irresolute function.

Remark 3.3. The composition of two α D δ g-continuous functions need not be α D δ g-continuous as the following examples shows.

Example 3.4. Let $X = \{a, b, c\} = Y = Z$ with the topologies $\tau = \{\varphi, \{b\}, \{c\}, \{a,b\}, \{b,c\}, X\}$ and $\sigma = \{\varphi, \{b\}, \{a,c\}, Y\}$ and $\eta = \{\varphi, \{a\}, \{b\}, \{a,b\}, Z\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. and define a function $g: (Y, \sigma) \rightarrow (Z, \eta)$ by g(a) = a, g(b) = c and g(c) = b. Clearly f and g are $\alpha D\delta g$ -continuous. But $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is not an $\alpha D\delta g$ -continuous function because $(g \circ f)-1(\{b,c\})=f-1(g-1(\{b,c\}))=f-1(\{b,c\})=\{c\}$ is not an $\alpha D\delta g$ -closed in (X, τ) where $\{b,c\}$ is a closed set of (Z, η) .

Theorem 3.5. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two functions. Then (i) $g \circ f: (X, \tau) \to (Z, \eta)$ is $\alpha D\delta g$ -continuous, if g is continuous and f is $\alpha D\delta g$ continuous. (ii) $g \circ f: (X, \tau) \to (Z, \eta)$ is $\alpha D\delta g$ -continuous, if g is $\alpha D\delta g$ -continuous and f is $\alpha D\delta g$ -irresolute.

Proof (i) Let F be closed set in (Z, η) . Since g is continuous, $g^{-1}(F)$ is closed in (Y, σ) . But f is $\alpha D\delta g$ -continuous, $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\alpha D\delta g$ -closed set of (X, τ) and hence $g \circ f$ is $\alpha D\delta g$ -continuous function. (ii) Let G be any closed set in (Z, η) . Then $g^{-1}(G)$ is $\alpha D\delta g$ -closed in (Y, σ) . Since f is $\alpha D\delta g$ -irresolute, $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(G))$ is $\alpha D\delta g$ -closed set of (X, τ) and so $g \circ f$ is $\alpha D\delta g$ -continuous functions.

Theorem 3.6. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be continuous and δ -closed map. Then for every $\alpha D\delta g$ -closed subset A of (X, τ) , f(A) is $\alpha D\delta g$ -closed in (Y, σ) .

Proof Let A be $\alpha D\delta g$ -closed in (X, τ) . Let $f(A) \subseteq O$ where O is open in (Y, σ) . Since $A \subseteq f-1(O)$ is open in (X, τ) , f-1(O) is αB -set in (X, τ) . Since A is $\alpha D\delta g$ -closed and since f-1(O) is αB -set in (X, τ) , then $cl\delta(A) \subseteq f-1(O)$. Thus $f(cl\delta(A)) \subseteq O$. Hence $cl\delta(f(A)) \subseteq cl\delta(f(cl\delta(A)) = f(cl\delta(A)) \subseteq O$, since f is δ -closed. Hence f(A) is $\alpha D\delta g$ -closed in (Y, σ) .

Remark 3.7. aDδg-continuity and aDδg-irresoluteness are independent notions as seen in the following examples.

Example 3.8. Let $X = \{a, b, c\}$, $Y = \{a, b, c\}$ with the topologies $\tau = \{\phi, \{c\}, \{a,b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, c\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is $\alpha D\delta g$ -continuous but it is not $\alpha D\delta g$ -irresolute function because $f-1(\{c\}) = \{b\}$ is not $\alpha D\delta g$ -closed in (X, τ) , where $\{c\}$ is $\alpha D\delta g$ -closed in (Y, σ) .

Example 3.9. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{q, r\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then f is $\alpha D\delta g$ -irresolute but it is not $\alpha D\delta g$ -continuity function because $f-1(\{p\}) = \{a\}$ is not $\alpha D\delta g$ -closed in (X, τ) , where $\{p\}$ is closed in (Y, σ) .

Proposition 3.10. The product of two α D δ g-open sets of two spaces is α D δ g-openset in the product space.

JETIR1906P08 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 47

Proof Let A and B be two α D δ g-open sets of two spaces (X, τ) and (Y, σ) respectively and $V = A \times B \subseteq X \times Y$. Let $F \subseteq V$ be a complement of α B-set in $X \times Y$, then there exists two complement of α B-sets F1 \subseteq A and F2 \subseteq B. So, F₁ \subseteq int $\delta(A)$ and F₂ \subseteq int $\delta(B)$. Hence $F_1 \times F_2 \subseteq A \times B$ and $F_1 \times F_2 \subseteq$ int $\delta(A) \times$ int $\delta(B) =$ int $\delta(A \times B)$. Therefore $A \times B$ is α D δ g-open subset of the space $X \times Y$.

Theorem 3.11. Let $f_i: X_i \rightarrow Y_i$ be α D δ g-continuous functions for each $i \in \{1, 2\}$ and let $f: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ be defined by $f((x_1, x_2)) = (f(x_1), f(x_2))$. Then f is α D δ g-continuous.

Proof Let V1 and V2 be two open sets in Y1 and Y2 respectively. Since $f_i: X_i \rightarrow Y_i$ are α D δ g-continuous functions, for each $i \in \{1,2\}, f_1^{-1}(V_1)$ and $f_2^{-1}(V_2)$ are α D δ g-open sets in X1 and X2 respectively. By the Proposition 4.5, $f_1^{-1}(V_1) \times f_2^{-1}(V_2)$ is α D δ g-open set in X1 × X2. Therefore f is α D δ g-continuous.

Theorem 3.12. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent.

(i) f is αDδg-irresolute.

(ii) For $x \in (X, \tau)$ and any $\alpha D \delta$ g-closed set V of (Y, σ) containing f(x) there exists an $\alpha D\delta$ g-closed set U such that $x \in U$ and $f(U) \subset V$.

(iii) Inverse image of every $\alpha D\delta g$ -open set of (Y, σ) is $\alpha D\delta g$ -open in (X, τ) .

Proof (i) \Rightarrow (ii). Let V be an $\alpha D\delta g$ -closed set of (Y, σ) and $f(x) \in V$. Since f is $\alpha D\delta g$ -irresolute, f-1(V) is $\alpha D\delta g$ -closed in (X, τ) and $x \in f-1(V)$. Put U = f-1(V). Then $x \in U$ and $f(U) \subseteq V$. (ii) \Rightarrow (i). Let V be an $\alpha D\delta g$ -closed set of (Y, σ) and $x \in f-1(V)$. Therefore by (ii) there exists an $\alpha D\delta g$ -closed set Uxsuch that $x \in U_x$ and $f(U_x) \subseteq V$. Hence $x \in U_x \subseteq f-1(V)$. This implies that f-1(V) is a union of $\alpha D\delta g$ -closed sets of (X, τ) , f-1(V) is $\alpha D\delta g$ -closed set. This shows that f is $\alpha D\delta g$ -irresolute. (i) \Leftrightarrow (iii). It is true that f-1(Y-V) = X-f-1(V).

4. Properties and Characterizations

We introduce the following definitions.

Definition 4.1. A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called contra- α D δ g-continuous if $f^{-1}(V)$ is α D δ g-closed in (X, τ) for every open set V in (Y, σ) .

Example 4.2. Let X = {a, b, c}, Y = {p, q, r} with the topologies $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\varphi, \{q\}, \{p, r\}, Y\}$. Define a function f : (X, τ) \rightarrow (Y, σ) by f(a) = p, f(b) = q and f(c) = r. Clearly f is contra- α Dδg-continuous function.

Definition 4.3. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be contra- α D δ g-irresolute iff-1(V) is α D δ g-closed in (X, τ) for every α D δ g-open set V in (Y, σ).

Example 4.4. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = q and f(c) = p. The family of all $\alpha D\delta g$ -open sets of (X, τ) is denoted by $\alpha D\delta gO(X)$. The set $\alpha D\delta g - O(X, x) = \{V \in \alpha D\delta g - O(X) | x \in V\}$ for $x \in X$.

Proposition 4.5. The product of two $\alpha D\delta g$ -open sets of two spaces is $\alpha D\delta g$ -openset in the product space.

Proof Let A and B be two $\alpha D\delta g$ -open sets of two spaces (X, τ) and (Y, σ) respectively and $V = A \times B \subseteq X \times Y$. Let $F \subseteq V$ be a complement of αD -set in $X \times Y$, then there exists two complement of αD -sets $F_1 \subseteq A$ and $F_2 \subseteq B$. So, $F_1 \subseteq int\delta(A)$ and $F_2 \subseteq A$

 $int\delta(B)$. Hence $F_1 \times F_2 \subseteq A \times B$ and $F_1 \times F_2 \subseteq int\delta(A) \times int\delta(B) = int\delta(A \times B)$. Therefore $A \times B$ is $\alpha D\delta g$ -open subset of the space $X \times Y$.

Theorem 4.6. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the followings are equivalent.

(i) f is contra-αDδg-continuous.

(ii) The inverse image of each closed set in (Y,σ) is aDdg-open in $(X,\tau$).

(iii) For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \alpha D \delta gO(X, x)$ such that $f(U) \subseteq F$.

Proof (i) \Rightarrow (ii), (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) are obvious. (iii) \Rightarrow (ii) Let F be any closed set of (Y, σ) and $x \in f^{-1}$ (F). Then $f(x) \in F$ and there exists $U_x \in \alpha D\delta gO(X, x)$ such that $f(U_x) \subseteq F$. Hence we obtain $f^{-1}(F) = U\{U_x/x \in f^{-1}(F)\} \in \alpha D \delta gO(X)$. Thus the inverse of each closed set in (Y, σ) is $\alpha D \delta$ g-open in(X, τ).

Remark 4.7. The concepts of aDδg-continuity and contra-aDδg-continuity are independent as shown in the following examples.

Example 4.8. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, Y\}$. Define the map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = p and f(c) = q. Clearly f is $\alpha D\delta g$ -continuous function, but f is not contra- $\alpha D\delta g$ -continuous because $f^{-1}(\{r\}) = \{a\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{r\}$ is open in (Y, σ) .

Example 4.9. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{p, q\}, Y\}$. Define a function $f : (Y, \sigma) \rightarrow (X, \tau)$ by f(p) = b, f(q) = c, f(r) = a. Then f is contra- $\alpha D\delta g$ -continuous function, but f is not $\alpha D\delta g$ -continuous because

 $f^{-1}(\{b \ c\}) = \{p, q\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{r\}$ is closed in (Y, σ) . A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be contra- $\alpha D \delta g$ -irresolute if $f^{-1}(V)$ is $\alpha D\delta g$ -closed in (X, τ) for every $\alpha D\delta g$ -open set V in (Y, σ) .

Example 4.4. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = q and f(c) = p. The family of all α D δ g-open sets of (X, τ) isdenoted by α D δ gO(X). The set α D δ g – O(X, x) = {V $\in \alpha$ D δ g – O(X)/x $\in V$ } forx $\in X$.

Proposition 4.5. The product of two $\alpha D\delta g$ -open sets of two spaces is $\alpha D\delta g$ -openset in the product space.

Proof Let A and B be two α D δ g-open sets of two spaces (X, τ) and (Y, σ) respectively and V = A×B \subseteq X ×Y. Let F \subseteq V be a complement of α D-set in X ×Y, then there exists two complement of α D-sets F₁ \subseteq A and F₂ \subseteq B. So, F1 \subseteq int δ (A) and F₂ \subseteq int δ (B). Hence F₁×F₂ \subseteq A×B and F₁×F₂ \subseteq int δ (A)×int δ (B) = int δ (A×B). Therefore A × B is α D δ g-open subset of the space X × Y.

Theorem 4.6. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the followings are equivalent.

(i) f is contra- α D δ g-continuous.

- (ii) The inverse image of each closed set in (Y, σ) is $\alpha D\delta g$ -open in (X, τ) .
 - (iv)For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in \alpha D\delta gO(X, x)$ such that $f(U) \subseteq F$.

Proof (i) \Rightarrow (ii), (ii) \Rightarrow (i) and (ii) \Rightarrow (iii) are obvious. (iii) \Rightarrow (ii) LetF be any closed set of (Y, σ) and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in \alpha D\delta gO(X, x)$ such that $f(U_x) \subseteq F$. Hence we obtain $f^{-1}(F) = U\{Ux/x \in f^{-1}(F)\} \in \alpha D \delta gO(X)$. Thus the inverse of each closed set in (Y, σ) is $\alpha D \delta$ g-open in(X, τ).

Remark 4.7. The concepts of aDbg-continuity and contra-aDbg-continuity are independent as shown in the following examples.

Example 4.8. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, Y\}$. Define the map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = p and f(c) = q. Clearly f is $\alpha D\delta g$ -continuous function, but f is not contra- $\alpha D\delta g$ -continuous because $f^{-1}(\{r\}) = \{a\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{r\}$ is open in (Y, σ) .

Example 4.9. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{p, q\}, Y\}$. Define a function $f : (Y, \sigma) \rightarrow (X, \tau)$ by f(p) = b, f(q) = c, f(r) = a. Then f is contra- $\alpha D\delta g$ -continuous function, but f is not $\alpha D\delta g$ -continuous because $f^{-1}(\{b c\}) = \{p, q\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{r\}$ is closed in (Y, σ) .

Remark 4.10. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is a D δ g-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \alpha D \delta$ gO(X, x) such that $f(U) \subset V$.

Theorem 4.11. If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra- a D δ g-continuous and (Y, σ) is regular then f is aD δ g-continuous. **Proof** Let x be an arbitrary point of (X, τ) and V be any open set of (Y, σ) containing f(x). Since (Y, σ) is regular, there exists an open set W of (Y, σ) containing f(x) such that $cl(W) \subseteq V$. Since f is contra-aD δ g-continuous, by Theorem 4.6 there exists $U \in aD\delta$ gO(X, x) such that $f(U) \subseteq cl(W)$. Then $f(U) \subseteq cl(W) \subseteq V$. Hence by Remark 4.10 f is aD δ g-continuous.

Remark 4.12. The concepts of contra-continuous and contra- $\alpha D\delta g$ -continuous are independent as shown in the following examples.

Example 4.13. $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{b\}, \{a,c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{r\}, \{p, r\}, \{q, r\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra- α D δ g-continuous but f is not contra-continuous because $f^{-1}(\{q, r\}) = \{b, c\}$ is not closed in (X, τ) where $\{q, r\}$ is open in (Y, σ) .

Example 4.14. X = {a, b, c} and Y = {p, q, r} with the topologies $\tau = \{\varphi, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\varphi, \{p\}, \{p, r\}, Y\}$. Define a map f : (X, τ) \rightarrow (Y, σ)by f(a) = r, f(b) = q, f(c) = p. Then clearly f is contra-continuous. But f is not contra- α Dδg-continuous because f⁻¹({p, r}) = {a, b} is not α Dδg-closed in (X, τ) where {a, b} is open in (Y, σ).

Remark 4.15. The concept of contra- α D δ g-continuous and contra- δ g[^]-continuous are independent of each other as shown in the following examples.

Example 4.16. $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra- δg -continuous but f isnot contra- $\alpha D\delta g$ -continuous because $f^{-1}(\{q, r\}) = \{b, c\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{q, r\}$ is open in (Y, σ) .

Example 4.17. $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{q\}, \{r\}, \{p, q\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = p, f(c) = q. Then clearly f is contra- α D δ g-continuous but f is not contra- $\alpha\delta$ g²-continuous because $f^{-1}(\{r\}) = \{a\}$ is not $\alpha\delta$ g²-closed in (X, τ) where $\{r\}$ is open in (Y, σ) .

Remark 4.18. The composition of two contra- α D δ g-continuous functions need not be contra- α D δ g-continuous as the following example shows.

www.jetir.org (ISSN-2349-5162)

Example 4.19. Let $X = \{a, b, c\} = Y = Z$; $\tau = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$, $\sigma = \{\phi, \{b\}, \{a, c\}, Y\}$ and $\eta = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, Z\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be two identity functions. Then both f and g are contra- α Dδg-continuous but $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is not contra- α Dδg-continuous because $(g \circ f)^{-1}(\{a, b\}) = \{a, b\}$ is not α Dδg-closed in (X, τ) where $\{a, b\}$ is open in (Z, η) .

Theorem 4.20. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra- α D δ g-continuous function and $g : (Y, \sigma) \rightarrow (Z, \eta)$ is a continuous function. Then $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is contra- α D δ g-continuous.

Proof Let V be open set in (Z, η) . Since g is continuous, $g^{-1}(V)$ is open in (Y, σ) . Since f is contra- α D δ g-continuous, $f^{-1}(g^{-1}(V))$ is α D δ g-closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is α D δ g-closed in (X, τ) . Hence $(g \circ f)$ is contra- α D δ g-continuous.

Theorem 4.21. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is $\alpha D \delta$ g-irresolute and $g: (Y, \sigma) \rightarrow (Z, \eta)$ is contra- $\alpha D\delta$ g-continuous function. Then $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is contra- $\alpha D\delta$ g-continuous.

Proof Let V be open in (Z, η) . Since g is contra- α D δ g-continuous, $g^{-1}(V)$ is α D δ g-closed in (Y, σ) . Since f is α D δ g-irresolute, $f^{-1}(g^{-1}(V))$ is α D δ g-closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is α D δ g-closed in (X, τ) . Hence $(g \circ f)$ is contra- α D δ g-continuous.

Theorem 4.22. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map then the followings are equivalent.

(i) f is contra- α D δ g-irresolute.

(ii) For $x \in X$ and any $\alpha D \delta$ g-open set V of (Y, σ) containing f(x) there exists an $\alpha D\delta$ g-closed set U such that $x \in U$ and $f(U) \subset V$.

(iii) Inverse image of every $\alpha D\delta g$ -closed set in (Y, σ) is $\alpha D\delta g$ -open in (X, τ) .

Proof (i) \Rightarrow (ii). Let V be a α D δ g-open set in (Y, σ) and f(x) \in V. Since f is contra- α D δ g-irresolute, f⁻¹(V) is α D δ g-closed in (X, τ) and x \in f⁻¹(V). Put U = f⁻¹(V). Then x \in U and f(U) \subset V. (ii) \Rightarrow (i). Let V be a α D δ g-open set in(Y, σ) and x \in f⁻¹(V). Then f(x) \in V. Hence by (ii), there exists an α D δ g-closed set U_x such that x \in U_x and f(U_x) \subset V. Thus x \in U_x \subset f⁻¹(V). This implies that f⁻¹(V) is a union of α D δ g-closed sets of (X, τ). f⁻¹(V) is α D δ g-closed set of (X, τ). This shows that f is contra- α D δ g-irresolute. (i) \Leftrightarrow (iii). Let V be a α D δ g-closed in (Y, σ). Then Y – V is α D δ g-open in (Y, σ). Since f is contra- α D δ g-irresolute, f⁻¹(Y – V) is α D δ g-closed in (X, τ). Also f⁻¹(Y – V) = X-f⁻¹(V). Therefore X-f⁻¹(V) is α D δ g-closed in (X, τ). Hence f⁻¹(V) is α D δ g-closed in (X, τ).

Remark 4.23. Contra- α D δ g-irresolute map and contra- α D δ g-continuous are independent notions as shown below. **Example 4.24.** Let X = {a, b, c}, Y = {p, q, r} with the topologies $\tau = \{\varphi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\varphi, \{p, q\}, Y\}$. Define the function f : (X, τ) \rightarrow (Y, σ) by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra- α D δ g-continuous but it is not contra- α D δ g-irresolute because f⁻¹({p}) = {a} is not α D δ g-closed in (X, τ) where {p} is α D δ g-open in (Y, σ).

Example 4.25. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, \{p, r\}, \{q, r\}, Y\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = r, f(b) = p, f(c) = q. Clearly f is contra- α D δ g-irresolute but not contra- α D δ g-continuous because $f^{-1}(\{p, r\}) = \{a, b\}$ is not α D δ g-closed in (X, τ) where $\{p, r\}$ is open in (Y, σ) .

Remark 4.26. aDbg-irresoluteness and contra-aDbg-irresoluteness are independent notions as shown in the following examples.

Example 4.27. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, Y\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = q, f(b) = r and f(c) = p. Then clearly f is contra- α D δ g-irresolute but not α D δ g irresolute because $f^{-1}(\{r\}) = \{b\}$ is not α D δ g-closed in (X, τ) where $\{r\}$ is α D δ g-closed in (Y, σ) .

Example 4.28. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, \{q, r\}, Y\}$. Define a mapf : $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Then clearly f is $\alpha D\delta g$ -irresolute but not contra- $\alpha D\delta g$ -irresolute because $f^{-1}(\{r\}) = \{c\}$ is not $\alpha D\delta g$ -closed in (X, τ) where $\{r\}$ is $\alpha D\delta g$ -open in (Y, σ) .

Theorem 4.29. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two maps such that $g \circ f: (X, \tau) \rightarrow (Z, \eta)$. (i) If f is contra- α D δ g-irresolute and g is α D δ g-continuous then $g \circ f$ is contra- α D δ g-continuous. (ii) If f is α D δ g-irresolute and g is contra- α D δ g-irresolute then $g \circ f$ is contra- α D δ g-irresolute.

Proof (i). Let V be an open set in (Z, η). Since g is $\alpha D\delta g$ -continuous, $g^{-1}(V)$ is $\alpha D\delta g$ -open in (Y, σ). Since f is contra- $\alpha D\delta g$ irresolute, $f^{-1}(g^{-1}(V))$ is $\alpha D\delta g$ -closed in (X, τ). That is $(g \circ f)^{-1}(V)$ is $\alpha D\delta g$ -closed in (X, τ). Hence $g \circ f$ is contra- $\alpha D\delta g$ -continuous. (ii). Let U be an $\alpha D\delta g$ -open in (Z, η). Since g is contra- $\alpha D\delta g$ -irresolute, $g^{-1}(U)$ is $\alpha D\delta g$ -closed in (Y, σ). Since f is $\alpha D\delta g$ -irresolute, $f^{-1}(g^{-1}(U))$ is $\alpha D\delta g$ -closed in (X, τ). This implies that $(g \circ f)^{-1}(U)$ is $\alpha D\delta g$ -closed in (X, τ). Hence $g \circ f$ is contra- $\alpha D\delta g$ -irresolute.

5. Applications

Theorem 5.1. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be $\alpha D \delta$ g-irresolute. Then f is δ -continuous if (X, τ) is $\alpha DT\delta g$ -space. **Proof** Let V be a δ -closed subset of (Y, σ) . Every δ -closed is $\alpha D\delta g$ -closed and hence V is $\alpha D\delta g$ -closed in (Y, σ) . Since f is $\alpha D\delta g$ -irresolute, $f^{-1}(V)$ is $\alpha D\delta g$ -closed in (X, σ) . Since X is $\alpha DT\delta g$ -space, $f^{-1}(V)$ is δ -closed in (X, τ) . Thus f is δ -continuous.

Theorem 5.2. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be two functions. Let (Y, σ) be $\alpha DT\delta g$ -space. Then $g \circ f$ is $\alpha D\delta g$ -continuous if g is $\alpha D\delta g$ -continuous and fis $\alpha D\delta g$ -continuous.

Proof Let G be any closed set in (Z, η) . Then $g^{-1}(G)$ is $\alpha D\delta g$ -closed in (Y, σ) . Since (Y, σ) is $\alpha DT\delta g$ -space, $g^{-1}(G)$ is closed in (Y, σ) . Since f is $\alpha D\delta g$ -continuous, $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(G))$ is $\alpha D\delta g$ -closed in (X, τ) . Hence $g \circ f$ is $\alpha D\delta g$ -continuous function.

Theorem 5.3. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be onto, $\alpha D \delta$ g-irresolute and δ -closed. If (X, τ) is a $\alpha DT\delta$ g-space, then (Y, σ) is also a $\alpha DT\delta$ g-space.

Proof Let B be a α D δ g-closed subset of (Y, σ). Since f is α D δ g-irresolute, thenf⁻¹(B) is α D δ g-closed set in (X, τ). Since (X, τ) is α DT δ g-space, f⁻¹(B) is δ -closed in(X, τ). Also since f is surjective, B is δ -closed in (Y, σ). Hence (Y, σ) is α DT δ g-space.

Theorem 5.4. If $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijection, open and $\alpha D \delta$ g-continuous, then f is $\alpha D \delta g$ -irresolute.

Proof Let V be $\alpha D\delta g$ -closed in (Y, σ) and let $f^{-1}(V) \subseteq U$ where U is open in (X, τ) . Since f is open, f(U) is open in (Y, σ) . Every open set is αB -set and hence f(U) is αB -set. Clearly $V \subseteq f(U)$. Then $cl\delta(V) \subseteq f(U)$ and hence $f^{-1}(cl\delta(V)) \subseteq U$. Since f is $\alpha D\delta g$ -continuous and since $cl\delta(V)$ is a closed subset of (Y, σ) , then $cl\delta(f^{-1}(V)) \subseteq cl\delta(f^{-1}(cl\delta(V)) = f^{-1}(cl\delta(V)) \subseteq U$. U is open and hence αB -set in (X, τ) . Thus we have $cl\delta(f^{-1}(V)) \subseteq U$ whenever $f^{-1}(V) \subseteq U$ and U is D-set set in (X, τ) . This shows that $f^{-1}(V)$ is $\alpha D\delta g$ -closed in (X, τ) . Hence f is $\alpha D\delta g$ -irresolute.

Theorem 5.5. If (Y, σ) is $\alpha DT\delta g$ -space. Then every contra- $\alpha D\delta g$ -continuous map is contra- $\alpha D\delta g$ -irresolute.

Proof Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a contra- $\alpha D \delta$ g-continuous map. Let V be a $\alpha D\delta$ g-open in (Y, σ) . Since (Y, σ) is $\alpha DT\delta$ g-space, V is open in (Y, σ) . By hypothesis, $f^{-1}(V)$ is $\alpha D\delta$ g-closed in (X, τ) . Hence f is contra- $\alpha D\delta$ g-irresolute.

Theorem 5.6. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be surjective $\alpha D \delta$ g-irresolute and weakly- $\alpha D \delta$ g-closed function where (X, τ) is $\alpha DT \delta$ g-space and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be func-tion. Then $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is contra- $\alpha D\delta$ g-continuous iff g is contra- $\alpha D\delta$ g-continuous.

Proof Let V be a open in (Z, η) and g be contra- α D δ g-continuous function. Then $g^{-1}(V)$ is α D δ g-closed in (Y, σ) . Since f is α D δ g-irresolute, $f^{-1}(g^{-1}(V))$ is α D δ g-closed in (X, τ) . That is $(g \circ f)^{-1}(V)$ is α D δ g-closed in (X, τ) . Hence $(g \circ f)$ is contra- α D δ g-continuous. Conversely, assume that $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is contra- α D δ g-continuous function. Let U be a open set in (Z, η) . Then $(g \circ f)^{-1}(U)$ is α D δ g-closed in (X, τ) . That is $f^{-1}(g^{-1}(U))$ is α D δ g-closed in (X, τ) . Since f is surjective, $f^{-1}(g^{-1}(U))$ is α -closed in (X, τ) . Also since f is weakly- α D δ g-closed, $f(f^{-1}(g^{-1}(U)))$ is α D δ g-closed in (Y, σ) . Since f is surjective, $g^{-1}(U)$ is α D δ g-closed in (Y, σ) . Hence g is contra- α D δ g-continuous.

Theorem 5.7. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be function and $g: X \rightarrow X \times Y$ be the graph function, given by g(x) = (x, f(x)) for every $x \in X$. Then f is contra- α D δ g-continuous iff g is contra- α D δ g-continuous.

Proof Necessity: Let $x \in X$ and let V be a closed subset of $X \times Y$ such that $x \in g^{-1}(V)$. That is $g(x) = (x, f(x)) \in V$. Then $V \cap (\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing g(x). Also $\{x\} \times Y$ is homeomorphic to Y, hence $\{y \in Y/(x, y) \in V\}$ is a closed subset of Y. Since f is contra- α D δ g-continuous, $\cup \{f^{-1}(y)/(x, y) \in V\}$ is an α D δ g-open subset of X. Further $x \in \cup \{f^{-1}(y)/(x, y) \in V\} \subseteq g^{-1}(V)$. Hence $g^{-1}(V)$ is α D δ g-continuous.

Sufficiency: Let U be a closed subset of Y. Then X×U is a closed subset of X × Y. Since g is contra- α D δ g-continuous, g⁻¹ (X × U) is α D δ g-open subset of X. Alsog⁻¹(X × U) = f-1(U). Hence f is contra- α D δ g-continuous.

We introduce the following definition.

Definition 5.8. A topological space (X, τ) is said to be $\alpha D\delta g$ -Hausdorff space if for each pair of distinct points x and y in X there exists $U \in \alpha D \delta gO(X, x)$ and $V \in \alpha D \delta gO(X, y)$ such that $U \cap V = \phi$.

Example 5.9. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Let a and b be two distinct points of X, there exists an $\alpha D\delta g$ -open neighbourhood of a and b respectively such that $\{a\} \cap \{b, c\} = \phi$. Hence (X, τ) is $\alpha D\delta g$ -Hausdroff space.

Theorem 5.10. If X is a topological space and for each pair of distinct points x_1 and x_2 in X, there exists a function f of X into Uryshon topological space Y such that $f(x_1) = f(x_2)$ and f is contra- α D δ g-continuous at x_1 and x_2 , then X is α D δ g-Hausdroff space.

Proof Let x_1 and x_2 be any distinct points in X. Then by hypothesis, there is a Uryshon space Y and a function $f: X \rightarrow Y$ such that $f(x_1) = f(x_2)$ and f is contra- α D δ g-continuous at x_1 and x_2 . Let $y_i = f(x_i)$ for i = 1, 2 then $y_1 = y_2$. Since Y is Uryshon, there exists an open sets Uy₁ and Uy₂ containing y_1 and y_2 respectively in Y such that $cl(Uy_1) \cap cl(Uy_2) = \varphi$. Since f is contra- α D δ g-

continuous at x_1 and x_2 , there exists an $\alpha D\delta g$ -open sets Vx_1 and Vx_2 containing x_1 and x_2 respectively in X such that $f(Vx_i) \subseteq cl(Uy_i)$ for i = 1, 2. Therefore we get $Vx_1 \cap Vx_2 = \phi$. Hence X is $\alpha D\delta g$ -Hausdroff.

Corollary 5.11. If f is contra- $\alpha D\delta g$ -continuous injective of a topological space X into a Uryshon space Y, then X is $\alpha D\delta g$ -Hausdroff.

Proof Let x1 and x2 be distinct points in X. Then by hypothesis, f is a contra- α D δ g-continuous function of X into a Uryshon space Y such that f(x1) 6= f(x2) because f is injective. Hence by Theorem 5.10 X is α D δ g-Hausdroff.

Theorem 5.12. Let $f1 : X1 \rightarrow Y$ and $f2 : X2 \rightarrow Y$ be two contra- α D δ g-continuous functions. If Y is a Uryshon space then {(x₁, x₂)/f1(x₁) = f2(x₂)} is α D δ g-closed in the product space X₁ × X₂.

Proof Let A denote the set {(x1, x2)/f1(x1) = f2(x2)}. We have to prove that A is $\alpha D\delta g$ -closed in the product space $X_1 \times X_2$, we show that $(X_1 \times X_2) - A$ is $\alpha D \delta g$ -open. Let (x1, x2) \in / A. Thenf1(x1) 6= f2(x2). Since Y is Uryshon space, there exists an open sets V1 and V2 containing f1(x1) and f2(x2) respectively such that $cl(V_1) \cap cl(V_2) = \Phi$. Since f1 and f2 are contra- $\alpha D \delta g$ -continuous, $f_1^{-1}l(cl(V_1))$ and $f_2^{-1}(cl(V_2))$ are $\alpha D\delta g$ -open sets containing x1 in X1 and x2 in X2 respectively. $f_1^{-1}(cl(V_1)) \times f_2^{-1}(cl(V_2))$ is $\alpha D\delta g$ -open in X1×X2. Further, (x1, x2) $\in f_1^{-1}(cl(V_1)) \times f_2^{-1}(cl(V_2)) \subset (X_1 \times X_2)$ -A. This implies that (X1×X2)–A is $\alpha D\delta g$ -open in (X1 × X2). Hence A is $\alpha D\delta g$ -closed in $X_1 \times X_2$.

Definition 5.13. A topological space (X, τ) is said to be $\alpha D\delta g$ -normal if each pair of nonempty disjoint closed sets in (X, τ) can be separated by disjoint $\alpha D\delta g$ -open sets in (X, τ) .

Example 5.14. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then $\{b\}$ and $\{c\}$ are nonempty disjoint closed sets in (X, τ) . Then there exists two α D δ g-open sets $\{b\}$ and $\{a, c\}$ such that $\{b\} \subseteq \{b\}, \{c\} \subseteq \{a, c\}$ and $\{b\} \cap \{a, c\} = \phi$. Thus (X, τ) is a α D δ g-normal space.

Theorem 5.15. If $f: X \rightarrow Y$ is a contra- $\alpha D \delta$ g-continuous, closed, injective and Y is Ultra normal, then X is a $\alpha D\delta g$ -normal.

Proof Let U and V be disjoint closed subsets of X. Since f is closed and injective, f(A) and f(B) are disjoint closed subsets of Y. Since Y is Ultra-normal, there exists disjoint closed sets A and B such that $f(U) \subset A$ and $f(V) \subset B$. Hence $U \subseteq f^{-1}(A)$ and $V \subseteq f^{-1}(B)$. Since f is contra- α D δ g-continuous and injective, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint α D δ g-open sets in X. Hence X is α D δ g-normal.

REFERENCES

- [1] Arya. S. P and Nour. T., "Characterizations of s-normal spaces", Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.
- [2] M. Rajamani and K.Vishwanathan, "On αgs-continuous maps in topological spaces", ActaCienciaIndica, Vol.XXXIM, No.1 (2004), 21-25.
- [3] M. Rajamani and K.Vishwanathan, "On αgs-continuous maps in topological spaces", Acta Ciencia Indica, Vol.XXXIM No.1 (2005), 293-303.
- [4] Devi. R, Balachandran. K and Maki. H., "On generalized α-continuous and α-generalized continuous functions", For East J. Math Sci. Special Volume, Part I(1997), 1-15.
- [5] Dontchev. J and Ganster. M., "On δ-generalized closed sets and T3/4-spaces", Mem. Fac. Sci.Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [6] Dontchev. J and Noiri. T., "Contra-semi-continuous functions", Math. Pannonica, 10(1999), 159-168.
- [7] Dontchev. J., "Contra-continuous functions and strongly S-closed spaces", Internat. J. Math. &Math. Sci., 19(1996), 303-310.
- [8] Ekici. E and Jafari. S., "On D-sets, DS-sets and decompositions of continuous, A-continuous and AB-continuous functions", Italian J. Pure and Appl. Math., 24(2008), 255-264.
- [9] Ganster. M and Reilly. I. L., "Locally closed sets and LC-continuous functions", Internat J. Math. & Math. Sci., 3(1989), 417-424.
- [10] Lellis Thivagar. M, Meera Devi. B and Hatir. E., "δg⁻-closed sets in Topological spaces", Gen. Math. Notes, Vol. 1, No. 2, (2010), 17-25.
- [11] Lellis Thivagar. M and Meera Devi. B., "Some new class of generalised continuous functions", Proceedings of the ICMCS (2011), 431-434.
- [12] Lellis Thivagar. M and Meera Devi. B., "Notes on homeomorphisms via δg[^]-sets", Journal of Advanced Studies in Topology, Vol. 2, No. 1 (2011), 34-40.
- [13] Lellis Thivagar. M and Meera Devi. B., "Notes on contra via δg⁻continuous functions", Bol. Soc. Paran. Math. Vol. 30, No. 2, (2012), 109-116.
- [14] Levine. N, "Semi-open sets and semi-continuity in topological spaces", Amer Math. Monthly, 70(1963), 36-41.
- [15] Levine. N, "Generalized closed sets in Topology", Rend. Circ. Math. Palermo, 19(2)(1970),89-96.
- [16] Maki. H, Devi. R and Balachandran. K., "Associated topologies of generalized α-closed sets and α-generalized closed sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15(1994), 57-63.
- [17] Mashhour. A. S, Abd El-Monsef, M. E and El-Deeb. S. N., "On precontinuous and weak precontinuous mappings", Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [18] Malghan. S. R., "Generalized closed maps", J. Karnatak Univ. Sci., 27(1982), 82-88.
- [19] Meera Devi. B., "Investigation of some new class of weak open sets in general Topology", Ph.D., Thesis, Madurai Kamaraj University, Madurai (2012)

- [21] Njastad. O., "On some classes of nearly open sets", Pacific. J. Math., 15(1965), 961-970.
- [22] Noiri. T., "Super-continuity and some strong forms of continuity", Indian J. Pure Appl. Math., 15(1984), 241-250.
 [23] Noiri. T., "On δ-continuous functions", J. Korean Math., Soc., 18(1980), 161-166.
- [24] Ravi. O, Lellis Thivagar. M and Balakrishnan. M., "Quotient functions related to Ekici's a-open sets", Antarctica Journal of Mathematics, 7(1)(2010), 111-121.

www.jetir.org (ISSN-2349-5162)

- [25] Staum. R., "The algebra of bounded continuous functions into a nonarchimedian field", Pacific J. Math., 50(1974), 169-185.
- [26] Veera Kumar. M. K. R. S., "g-closed sets in topological spaces", Bull. Allah. Math. Soc., 18(2003), 99-112.
- [27] Velicko. N. V., "H-closed topological spaces", Amer. Math. Soc. Transl., 78(1968), 103-118.

