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Abstract :  In this paper we introduce and study a new class of function called αDδg continuous and αDδg 

irresolute and obtain a decomposition of continuity, α − semi continuity and αδgˆ continuity in topological 

spaces. 

 
I. INTRODUCTION 

Levine [15], Noiri [22], Balachandran et al [4], Dontchev.J and Ganster [5] in- troduced generalised closed sets,δ-continuity, 

generalised continuous function and δ- generalised continuous (beiefly δg-contineous) & δ-generalised irresolute functions 

respectively. Devi et al [4] and Veerakumar [26] introduced semi-generalised conti- nuity and ˆg-continuity in topological spaces. 

Ganster and Reilly [9] introduced and studied the notion of LC-continuous functions. Dontchev [7] presented a new notion of 

continuous function called contra-continuity. This notion is a stronger form of LC-continuity. Dontchev and Noiri [6] introduced a 

weaker form of contra-continuity called contra-semi-continuity. The purpose of this present chapter is to define a new class of 

generalised continuous functions called αDδg-continuous functions and in- vestigate their relationships to other generalised 
continuous functions. We further introduce and study a new class of functions namely αDδg-irresolute. Also we define a new class 

of generalized continuous functions called contra-αDδg-continuous func- tions and investigate their relationships to other functions. 

We further introduce and study two new spaces called αDδg-Hausdorff spaces and αDδg-normal spaces and obtain some new 

results. 

 

1.1. Preliminaries. Throughout this thesis (X,τ ) (or simply X) represent topolog- ical spaces on which no separation axioms are 

assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and Ac denote the closure of A, the interior of A and the 

complement of A respectively. Let us recall the following definitions, which are useful in the sequel. 

 

 Definition 1.1. A subset A of a space (X,τ ) is called a  

(i) semi-open set [14] if A ⊆ cl(int(A)). 

(ii)  pre-open set [17] if A ⊆ int(cl(A)).  

(iii) α-open set [21] if A ⊆ int(cl(int(A))).  

The complement of a semi-open (resp. pre-open, α-open) set is called semi-closed (resp. pre-closed,α-closed).  

 

Definition 1.2. The δ-interior [27] of a subset A of X is the union of all regular open set of X contained in A and is denoted by 

intδ(A). The subset A is called δ- open [27] if A =intδ(A), i.e. a set is δ-open if it is the union of regular open sets. The 

complement of a δ-open set is called δ-closed. Alternatively, a set A⊆ (X,τ ) is called δ-closed [27] if A=clδ(A), where clδ(A)={ 

x∈X: int(cl(U))∩A6= φ,U∈ τ and x∈ U}.  
 

Definition 1.3. A subset A of (X,τ ) is called 

(i) generalized closed (briefly g-closed) [15] if cl(A)⊆U whenever A ⊆U and U is open in (X,τ ). 

(ii) generalized alpha-semi-closed (briefly αgs-closed) [2] if scl(A)⊆ U whenever A ⊆ U and U is  

      αopen in  (X,τ ). 

(iii) α- generalized closed (briefly αg-closed) [16] if αcl(A)⊆ U whenever A ⊆ U and U is open in (X,τ ).  

(iv) αδ-generalized closed (briefly αδg-closed) [5] if clδ(A) ⊆ U whenever A ⊆ U and U is α open in   

        (X,τ ).  

(v)  ˆg-closed [26] if cl(A)⊆U whenever A ⊆U and U is semi-open in (X, τ ). The complement of gˆ-   
      closed set is called gˆ-open.  

(vi) α-δ-gˆ-closed (briefly αδgˆ-closed) [11] if αclδ(A) ⊆U whenever A ⊆U and U is gˆ- open in (X,τ ).  

The complement of a g-closed (resp. gs-closed, αg-closed, δg-closed, gˆ-closed and δgˆ-closed) set is called g-open (resp. gs-

open,αg-open, δg-open, gˆ-open and δgˆ-open). 

 

Definition 1.4. [8] A subset A of a space (X, τ ) is called a αB-set if A = G ∩ F where G is α open and F is t-  set in X.  

 

Definition 1.5. A space (X,τ ) is called (i) T1/2-space [15] if every g-closed set in it is closed. (ii) T3/4-space [5] if every δg-closed 

set in it is δ-closed. (iii) Tˆ 3/4-space [11] if every δgˆ-closed set in it is δ- closed.  

 
Definition 1.6. A function f : (X, τ ) → (Y, σ) is called  

(i) α semi-continuous [14] if f −1 (V ) is α semi-closed in (X, τ ) for every closed set V of (Y, σ). 

(ii) g-continuous [4] if f −1 (V ) is g-closed in (X, τ ) for every closed set V of (Y, σ).  
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(iii) αgs-continuous [3] if f −1 (V ) is αgs-closed in (X, τ ) for every closed set V of (Y, σ).  

(iv)  αg-continuous [4] if f −1 (V ) is αg-closed in (X, τ ) for every closed set V of (Y, σ).  

(v)  Super continuous [22] if f −1 (V ) is δ-open in (X, τ ) for every open set V of (Y, σ).  
(vi) ˆg-continuous [26] if f −1 (V ) is gˆ-closed in (X, τ ) for every gˆ-closed set V of (Y, σ).  

(vii)  δ-continuous [22] if f −1 (V ) is δ-open in (X, τ ) for every δ-open set V of (Y, σ).  

(viii)  δ-closed [22] if f(V ) is δ-closed in (Y, σ) for every δ-closed set V of (X, τ ).  

(ix)  αδg-continuous [5] if f −1 (V ) is αδg-closed in (X, τ ) for every closed set V of (Y, σ). (x) αδgˆ- continuous [11] if f −1 (V ) is  

       αδgˆ-closed in (X, τ ) for every closed set V of (Y, σ).  

 

Definition 1.7. A function f : (X, τ ) → (Y, σ) is called  

(i) contra-continuous [7] if f −1 (V ) is closed in (X, τ ) for every open set V in (Y, σ).  

(ii)  contra-αgs-continuous [6] if f −1 (V ) is αgs-closed in (X, τ ) for every open set V of (Y, σ). 

(iii)  contra-αδgˆ-continuous [13] if f −1 (V ) is αδgˆ-closed in (X, τ ) for every open set V in (Y, σ). 

 

Definition 1.8. A map f : (X, τ ) → (Y, σ) is called  
(i) generalized closed (briefly g-closed) (resp. g-open) [18] if the image of every closed (resp. open) set in (X, τ ) is g-closed  

    (resp. g-open) in (Y, σ). 

(ii) α generalized semi-closed (briefly αgs-closed) (resp. αgs-open) [?] if the image of every closed (resp. open) set in (X, τ ) is  

     αgs-closed (resp. αgs-open) in (Y, σ). 

(iii) ˆg-open [26] if f(V ) is gˆ-open in (Y, σ) for every open set V of (X, τ ). 

(iv) δ-closed [22] if f(V ) is δ-closed in (Y, σ) for every δ-closed set V of (X, τ ). 

(v) αδgˆ-closed [11] if the image of every closed set in (X, τ ) is αδgˆ-closed in (Y, σ). 

 

Definition 1.9. A Topological Space is said to be Ultra normal [25] if each pair of nonempty disjoint closed sets can be separated 

by disjoint clopen sets. 

 
Proposition 1.10. Every αDδg-closed set is αδg-closed (resp.g-closed, αg-closed, 

αgs-closed). 

 

2. αDδg-continuous 
 

Definition 2.1. A function f : (X, τ ) → (Y, σ) is called αDδg-continuous if f−1(V )is αDδg-closed in (X, τ ) for every closed set V 

of (Y, σ). 
 

Example 2.2. Let X = {a, b, c} and Y= {p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, X} and σ = {φ, {q}, {p, q}, Y}. 

Define a function f : (X, τ ) → (Y, σ)by f(a) = p, f(b) = q and f(c) = r. Clearly f is αDδg-continuous. 

 

Definition 2.3. A function f : (X, τ ) → (Y, σ) is called αDδg-irresolute if f−1(V ) is αDδg-closed in (X, τ ) for every αDδg- 

closed set V of (Y, σ). 

 

Example 2.4. Let X = {a, b, c}, Y= {p, q, r} with the topologies τ={φ, {a}, X}and σ = {φ, {q}, {q, r}, Y}. Define f : (X, τ ) → 

(Y, σ) by f(a) = p, f(b) = r andf(c) = q. Clearly f is αDδg-irresolute. 

 

Proposition 2.5. If f : (X, τ ) → (Y, σ) is αDδg-continuous then f is g-continuous,αg-continuous, αgs-continuous and αδg-
continuous maps. 

 

Proof It is true that every αDδg-closed set is g-closed, αg-closed, αgs-closed and αδg-closed. 

 

Remark 2.6. The converse of the above proposition is not true as seen from the following examples. 

Example 2.7. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ={φ, {c},{b,c}, X} and σ={φ, {q, r}, Y}. Define the map 

f : (X, τ ) → (Y, σ) by f(a) = q,f(b) = p and f(c) = r. Clearly f is not αDδg-continuous because {p} is closed in(Y, σ) but 

f−1({p}) = {b} is not αDδg-closed in (X, τ ). However f is g-continuous. 

 

Example 2.8. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {c},X} and, σ = {φ, {p}, {p, q}, {p, r}, Y}. Let f : 

(X, τ ) → (Y, σ) be a function definedby f(a) = p, f(b) = q and f(a) = r. Then f is αg-continuous and sg-continuous. But f is not 

αDδg-continuous. Since for the closed set {q} of (Y, σ), f−1({q}) = {b} is not αDδg-closed in (X, τ ). 

 

Example 2.9. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ,{c}, {b, c}, X} and σ = {φ, {p}, {q}, {p, q}, Y}. 

Define f : (X, τ ) → (Y, σ) byf(a) = r, f(b) = r and f(c) = p. Then f is not αDδg-continuous because {r} isclosed in (Y, σ) but 

f−1({r}) = {a, b} is not αDδg-closed in (X, τ ). However f is δg-continuous functions. 

 

Theorem 2.10. Every super continuous is αDδg-continuous. 

Proof It is true that every δ-closed set is αDδg-closed. 

 
Remark 2.11. The converse of Theorem 2.10 need not be true as shown in the 

following example. 
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Example 2.12. Let X = {a, b, c, d} and Y = {p, q, r} with the topologies τ = {φ,{d}, {a, c}, {a, c, d}, X} and σ = {φ, {p, q}, 

Y}. Define f : (X, τ ) → (Y, σ) be afunction defined by f(a) = p, f(b) = r and f(c) = q. Then f is αDδg-continuous. But f is not 

super continuous because {r} is closed in (Y, σ) but f−1({r}) = {b} is not δ-closed in (X, τ ). 

 

Remark 2.13. The following examples show that αDδg-continuity is independent of continuity, α − semi-continuous and αδgˆ-

continuity. 
 

Example 2.14. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {a},{b, c}, X} and σ = {φ, {p, q}, Y}. Let f : (X, 

τ ) → (Y, σ) be a function defined by f(a) = q, f(b) = r and f(c) = p. Then f is neither continuous nor α-semi-continuous also not 

αδgˆ-continuous but αDδg-continuous. 

 

Example 2.15. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {c},{b, c} X} and σ = {φ, {q}, Y}. Define a 

function f : (X, τ ) → (Y, σ) by f(a) = p,f(b) = r and f(c) = q. Then f is continuous, α-semi-continuous and αδgˆ-continuous 

but not αDδg-continuous. 

 

3. Properties and Characterizations 

 
Theorem 3.1. A function f : (X, τ ) → (Y, σ) is αDδg-continuous iff f−1(U) is αDδg-open in (X, τ ) for every open set U in 

(Y, σ). 

 

Proof Let f : (X, τ ) → (Y, σ) be an αDδg-continuous function and U be an open set in (Y, σ). Then f−1(Uc) is αDδg-closed 

set in (X, τ ). But f−1(Uc) = [f−1(U)]cand hence f−1(U) is αDδg-open in (X, τ ). Conversely f−1(U) is αDδg-open in (X, τ )for 

every open set U in (Y, σ). Then Ucis closed set in (Y, σ) and [f−1(U)]c is αDδg-closed in (X, τ ). But [f−1(U)]c = f−1(Uc), so 

f−1(Uc) is αDδg-closed set in (X, τ ).Hence f is αDδg-continuous. 

 

Theorem 3.2. Let f : (X, τ ) → (Y, σ) be a αDδg-irresolute and g : (Y, σ) → (Z, η) a αDδg-irresolute. Then their 

composition is g ◦f : (X, τ ) → (Z, η) is αDδg-irresolute. 

 

Proof Let F be αDδg-closed set in (Z, η). Then g−1(F) is αDδg-closed in (Y, σ).Since f is αDδg-irresolute, (g ◦ f)−1(F) = 

f−1(g−1(F)) is αDδg-closed set of (X, τ )and so g ◦ f is αDδg-irresolute function. 

 
Remark 3.3. The composition of two αDδg-continuous functions need not be αDδg-continuous as the following examples shows. 

 

Example 3.4. Let X = {a, b, c} = Y = Z with the topologies τ ={φ, {b}, {c}, {a,b}, {b, c}, X} and σ = {φ, {b}, {a, c}, Y} and η = 

{φ, {a}, {b}, {a, b}, Z}. Letf : (X, τ ) → (Y, σ) be the identity function. and define a function g : (Y, σ) → (Z, η)by g(a) = 

a,g(b) = c and g(c) = b . Clearly f and g are αDδg-continuous. But g ◦f : (X, τ ) → (Z, η) is not an αDδg-continuous function 

because (g ◦f)−1({b, c}) =f−1(g−1({b, c})) = f−1({b, c}) = {c} is not an αDδg-closed in (X, τ ) where {b, c} is a closed set of (Z, 

η). 

 

Theorem 3.5. Let f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) be two functions.Then 

(i) g ◦ f : (X, τ ) → (Z, η) is αDδg-continuous, if g is continuous and f is αDδg continuous. 

(ii) g ◦ f : (X, τ ) → (Z, η) is αDδg-continuous, if g is αDδg-continuous and f isαDδg-irresolute. 

 

Proof (i) Let F be closed set in (Z, η). Since g is continuous, g−1(F) is closedin (Y, σ). But f is αDδg-continuous, (g ◦ f)−1(F) = 

f−1(g−1(F)) is αDδg-closed set of (X, τ ) and hence g ◦ f is αDδg-continuous function. (ii) Let G be any closed set in (Z, η). Then 

g−1(G) is αDδg-closed in (Y, σ). Since f is αDδg-irresolute,(g ◦ f)−1(G) = f−1(g−1(G)) is αDδg-closed set of (X, τ ) and so g ◦ f is 

αDδg-continuous functions. 

 

Theorem 3.6. Let f : (X, τ ) → (Y, σ) be continuous and δ-closed map. Then for every αDδg-closed subset A of (X, τ ), f(A) 

is αDδg-closed in (Y, σ). 

 

Proof Let A be αDδg-closed in (X, τ ). Let f(A) ⊆ O where O is open in (Y, σ).Since A⊆ f−1(O) is open in (X, τ ), f−1(O) is αB-

set in (X, τ ). Since A is αDδg-closed and since f−1(O) is αB-set in (X, τ ), then clδ(A) ⊆ f−1(O). Thus f(clδ(A)) ⊆ O.Hence 

clδ(f(A)) ⊆ clδ(f(clδ(A)) = f(clδ(A)) ⊆ O, since f is δ-closed. Hence f(A) is αDδg-closed in (Y, σ). 

 

Remark 3.7. αDδg-continuity and αDδg-irresoluteness are independent notions as seen in the following examples. 

 

Example 3.8. Let X = {a, b, c}, Y = {a, b, c} with the topologies τ = {φ, {c}, {a,b}, {b, c}, X} and σ = {φ, {b}, {a, c}, Y}. 

Define a function f : (X, τ ) → (Y, σ) by f(a) = a, f(b) = c and f(c) = b. Then f is αDδg-continuous but it is not αDδg-irresolute 

function because f−1({c}) = {b} is not αDδg-closed in (X, τ ), where {c} is αDδg-closed in (Y, σ). 

 

Example 3.9. Let X = {a, b, c}, Y = {p, q, r} with the topologies τ = {φ, {a}, {b},{a, b}, {a, c}, X} and σ = {φ, {r}, {q, r}, Y}. 

Define a function f : (X, τ ) → (Y, σ)by f(a) = p, f(b) = q and f(c) = r. Then f is αDδg-irresolute but it is not αDδg-continuity 

function because f−1({p}) = {a} is not αDδg-closed in (X, τ ), where {p}is closed in (Y, σ). 

 

Proposition 3.10. The product of two αDδg-open sets of two spaces is αDδg-openset in the product space. 
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Proof Let A and B be two αDδg-open sets of two spaces (X, τ ) and (Y, σ) respectively and V = A×B ⊆ X ×Y. Let F⊆ V be a 

complement of αB-set in X ×Y, then there exists two complement of αB-sets F1 ⊆ A and F2 ⊆ B. So, F1 ⊆ intδ(A) andF2 ⊆ 

intδ(B). Hence F1×F2 ⊆ A×B and F1×F2 ⊆ intδ(A)×intδ(B) = intδ(A×B).Therefore A × B is αDδg-open subset of the space X × Y. 

 

Theorem 3.11. Let fi: Xi → Yi be αDδg-continuous functions for each i ∈ {1, 2}and let f : X1 × X2 → Y1 × Y2 be defined by 

f((x1, x2)) = (f(x1), f(x2)). Then f is αDδg-continuous. 

 

Proof Let V1 and V2 be two open sets in Y1 and Y2 respectively. Since fi: Xi → Yi are αDδg-continuous functions, for each 

i∈ {1,2}, f1
−1(V1) and f2

−1(V2) are αDδg-open sets in X1 and X2 respectively. By the Proposition 4.5, f1
−1 (V1) × f2

−1(V2) is αDδg-

open set in X1 × X2. Therefore f is αDδg-continuous. 

 

Theorem 3.12. Let f : (X, τ ) → (Y, σ) be a function. Then the following statements are equivalent. 

(i) f is αDδg-irresolute. 

(ii) For x ∈ (X, τ ) and any αDδg-closed set V of (Y, σ) containing f(x) there exists an αDδg-closed set U such that x ∈ U   

      and f(U) ⊂ V. 

(iii) Inverse image of every αDδg-open set of (Y, σ) is αDδg-open in (X, τ ). 

 

Proof (i) ⇒ (ii). Let V be an αDδg-closed set of (Y, σ) and f(x) ∈ V . Since f isαDδg-irresolute, f−1(V ) is αDδg-closed in 

(X,τ ) and x ∈ f−1(V ). Put U = f−1(V ).Then x ∈ U and f(U) ⊆ V . (ii) ⇒ (i). Let V be an αDδg-closed set of (Y, σ) andx ∈ 

f−1(V ). Then f(x) ∈ V. Therefore by (ii) there exists an αDδg-closed set Uxsuch that x ∈ Ux and f(Ux) ⊆ V. Hence x ∈ Ux⊆ 

f−1(V ). This implies that f−1(V ) is a union of αDδg-closed sets of (X, τ ), f−1(V ) is αDδg-closed set. This shows thatf is αDδg-

irresolute. (i) ⇔ (iii). It is true that f−1(Y − V ) = X−f−1(V ). 
 

4. Properties and Characterizations 
We introduce the following definitions. 

 

Definition 4.1. A function f : (X, τ ) → (Y, σ) is called contra-αDδg-continuous if f−1(V ) is αDδg-closed in (X, τ ) for every 

open set V in (Y, σ). 

 

Example 4.2. Let X = {a, b, c}, Y = {p, q, r} with the topologies τ = {φ, {a}, {b},{a, b}, {a, c}, X} and σ = {φ, {q}, {p, r}, Y}. 

Define a function f : (X, τ ) → (Y, σ) by f(a) = p, f(b) = q and f(c) = r. Clearly f is contra-αDδg-continuous function. 

 

Definition 4.3. A map f : (X, τ ) → (Y, σ) is said to be contra-αDδg-irresolute iff−1(V ) is αDδg-closed in (X, τ ) for every 

αDδg-open set V in (Y, σ). 
 

Example 4.4. Let X = {a, b, c}, Y={p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, X} and σ = {φ, {r}, {p, r}, Y}. Define a 

function f : (X, τ ) → (Y, σ)by f(a) = r, f(b) = q and f(c) = p. The family of all αDδg-open sets of (X, τ ) is denoted by 

αDδgO(X). The set αDδg − O(X, x) = {V ∈ αDδg − O(X)/x ∈ V } for x ∈ X. 

 

Proposition 4.5. The product of two αDδg-open sets of two spaces is αDδg-openset in the product space. 

 

Proof Let A and B be two αDδg-open sets of two spaces (X, τ ) and (Y, σ) respectively and V = A×B ⊆ X ×Y. Let F⊆ V be a 

complement of αD-set in X ×Y, then there exists two complement of αD-sets F1 ⊆ A and F2 ⊆ B. So, F1 ⊆ intδ(A) and F2 ⊆  

 

intδ(B). Hence F1×F2 ⊆ A×B and F1×F2 ⊆ intδ(A)×intδ(B) = intδ(A×B).Therefore A × B is αDδg-open subset of the space X × Y. 

 

Theorem 4.6. Let f : (X, τ ) → (Y, σ) be a map. Then the followings are equivalent. 

(i) f is contra-αDδg-continuous. 

(ii) The inverse image of each closed set in (Y, σ) is αDδg-open in (X, τ ). 

(iii) For each x ∈X and each F ∈ C(Y, f(x)), there exists U ∈ αDδgO(X, x) suchthat f(U) ⊆ F. 

 

Proof (i) ⇒ (ii), (ii) ⇒ (i) and (ii) ⇒ (iii) are obvious. (iii) ⇒ (ii) Let F be any closed set of (Y, σ) and x ∈ f−1 (F). Then f(x) ∈ F 

and there exists Ux ∈ αDδgO(X, x) such that f(Ux) ⊆ F. Hence we obtain f−1(F) = U{Ux/x ∈f−1(F)} ∈ αDδgO(X). Thus the 

inverse of each closed set in (Y, σ) is αDδg-open in(X, τ ). 

 

Remark 4.7. The concepts of αDδg-continuity and contra-αDδg-continuity are independent as shown in the following examples. 

 

Example 4.8. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, X} and σ = {φ, {r}, {p, r}, Y}. 

Define the map f : (X, τ ) → (Y, σ) by f(a) = r, f(b) = p and f(c) = q. Clearly f is αDδg-continuous function, but f is not contra-

αDδg-continuous because f−1({r}) = {a} is not αDδg-closed in (X, τ ) where{r} is open in (Y, σ). 

 

Example 4.9. Let X = {a, b, c} and Y={p, q, r} with the topologies τ = {φ, {a},X} and σ = {φ, {p, q}, Y}. Define a function f : 

(Y, σ) → (X, τ ) by f(p) = b,f(q) = c, f(r) = a. Then f is contra-αDδg-continuous function, but f is not αDδg-continuous because 
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f−1({b c}) = {p, q} is not αDδg-closed in (X, τ ) where {r} is closed in (Y, σ).A map f : (X, τ ) → (Y, σ) is said to be contra-

αDδg-irresolute iff−1(V ) is αDδg-closed in (X, τ ) for every αDδg-open set V in (Y, σ). 

 

Example 4.4. Let X = {a, b, c}, Y={p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, X} and σ = {φ, {r}, {p, r}, Y}. Define a 

function f : (X, τ ) → (Y, σ)by f(a) = r, f(b) = q and f(c) = p. The family of all αDδg-open sets of (X, τ ) isdenoted by 

αDδgO(X). The set αDδg − O(X, x) = {V ∈ αDδg − O(X)/x ∈ V } forx ∈ X. 

 

Proposition 4.5. The product of two αDδg-open sets of two spaces is αDδg-openset in the product space. 

 

Proof Let A and B be two αDδg-open sets of two spaces (X, τ ) and (Y, σ) respectively and V = A×B ⊆ X ×Y. Let F⊆ V be a 

complement of αD-set in X ×Y, then there exists two complement of αD-sets F1 ⊆ A and F2 ⊆ B. So, F1 ⊆ intδ(A) andF2 ⊆ 

intδ(B). Hence F1×F2 ⊆ A×B and F1×F2 ⊆ intδ(A)×intδ(B) = intδ(A×B).Therefore A × B is αDδg-open subset of the space X × Y. 

 

Theorem 4.6. Let f : (X, τ ) → (Y, σ) be a map. Then the followings are equivalent. 

(i) f is contra-αDδg-continuous. 

(ii) The inverse image of each closed set in (Y, σ) is αDδg-open in (X, τ ). 

(iv) For each x ∈X and each F ∈ C(Y, f(x)), there exists U ∈ αDδgO(X, x) such that f(U) ⊆ F. 

(v)  
Proof (i) ⇒ (ii), (ii) ⇒ (i) and (ii) ⇒ (iii) are obvious. (iii) ⇒ (ii) LetF be any closed set of (Y, σ) and x ∈ f−1(F). Then f(x) ∈ F 

and there exists Ux ∈ αDδgO(X, x) such that f(Ux) ⊆ F. Hence we obtain f−1(F) = U{Ux/x ∈f−1(F)} ∈ αDδgO(X). Thus the 

inverse of each closed set in (Y, σ) is αDδg-open in(X, τ ). 

 

Remark 4.7. The concepts of αDδg-continuity and contra-αDδg-continuity are independent as shown in the following examples. 

 

Example 4.8. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, X} and σ = {φ, {r}, {p, r}, Y}. 

Define the map f : (X, τ ) → (Y, σ) byf(a) = r, f(b) = p and f(c) = q. Clearly f is αDδg-continuous function, but f is not contra-

αDδg-continuous because f−1({r}) = {a} is not αDδg-closed in (X, τ ) where{r} is open in (Y, σ). 
 

Example 4.9. Let X = {a, b, c} and Y={p, q, r} with the topologies τ = {φ, {a},X} and σ = {φ, {p, q}, Y}. Define a function f : 

(Y, σ) → (X, τ ) by f(p) = b,f(q) = c, f(r) = a. Then f is contra-αDδg-continuous function, but f is not αDδg-continuous because 

f−1({b c}) = {p, q} is not αDδg-closed in (X, τ ) where {r} is closed in (Y, σ). 

 

Remark 4.10. A function f : (X, τ ) → (Y, σ) is αDδg-continuous if for each x ∈ X and each open set V of Y containing 

f(x), there exists U ∈ αDδgO(X, x) such that f(U) ⊂ V . 

 

Theorem 4.11. If a function f : (X, τ ) → (Y, σ) is contra-αDδg-continuous and (Y, σ) is regular then f is αDδg-continuous. 

Proof Let x be an arbitrary point of (X, τ ) and V be any open set of (Y, σ)containing f(x). Since (Y, σ) is regular, there exists an 

open set W of (Y, σ) containingf(x) such that cl(W) ⊆ V . Since f is contra-αDδg-continuous, by Theorem 4.6 there exists U ∈ 

αDδgO(X, x) such that f(U) ⊆ cl(W). Then f(U) ⊆ cl(W) ⊆ V . Hence by Remark 4.10 f is αDδg-continuous. 
 

Remark 4.12. The concepts of contra-continuous and contra-αDδg-continuous are independent as shown in the following 

examples. 

 

Example 4.13. X = {a, b, c} and Y={p, q, r} with the topologies τ = {φ, {b}, {a,c}, X} and σ = {φ, {p}, {r}, {p, r}, {q, r}, 

Y}.Define a function f : (X, τ ) → (Y, σ)by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra-αDδg-continuous but f is not 

contra-continuous because f−1({q, r})={b,c} is not closed in (X, τ ) where {q, r} is open in (Y, σ). 

 

Example 4.14. X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {b},{a, b}, {b, c}, X} and σ = {φ, {p}, {p, r}, Y}. 

Define a map f : (X, τ ) → (Y, σ)by f(a) = r, f(b) = q, f(c) = p. Then clearly f is contra-continuous. But f is not contra-αDδg-

continuous because f−1({p, r}) = {a, b} is not αDδg-closed in (X, τ ) where {a, b} is open in (Y, σ). 
 

Remark 4.15. The concept of contra-αDδg-continuous and contra-δgˆ-continuous are independent of each other as shown in the 

following examples. 

 

Example 4.16. X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {a},{b}, {a, b}, {a, c}, X} and σ = {φ, {r}, {q, r} 

,Y}. Define a map f : (X, τ ) → (Y, σ)by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra-δgˆ-continuous but f isnot contra-

αDδg-continuous because f−1({q, r}) = {b, c} is not αDδg-closed in (X, τ ) where {q, r} is open in (Y, σ). 
 

Example 4.17. X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {c}, {a,b}, X} and σ ={φ, {q}, {r}, {p, q}, {q, r}, Y}. 

Define a map f : (X, τ ) → (Y, σ) byf(a) = r, f(b) = p, f(c) = q. Then clearly f is contra-αDδg-continuous but f is not contra-

αδgˆ-continuous because f−1({r}) = {a} is not αδgˆ-closed in (X, τ ) where {r} is open in (Y, σ). 
 

Remark 4.18. The composition of two contra-αDδg-continuous functions need not be contra-αDδg-continuous as the following 

example shows. 
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Example 4.19. Let X ={a, b, c} = Y = Z; τ = {φ, {a}, {b}, {a, b}, {a, c} ,X}, σ ={φ, {b}, {a, c}, Y} and η = {φ, {a}, {c}, {a, 

b}, {a, c}, Z}. Let f : (X, τ ) → (Y, σ)and g : (Y, σ) → (Z, η) be two identity functions. Then both f and g are contra-αDδg-

continuous but g ◦ f : (X, τ ) → (Z, η) is not contra-αDδg-continuous because(g ◦ f)−1({a, b})= {a,b} is not αDδg-closed in (X, τ ) 

where {a, b} is open in (Z, η). 

 

Theorem 4.20. If f : (X, τ ) → (Y, σ) is contra-αDδg-continuous function and g : (Y, σ) → (Z, η) is a continuous function. 

Then g ◦ f : (X, τ ) → (Z, η) is contra-αDδg-continuous. 

 

Proof Let V be open set in (Z, η). Since g is continuous, g−1(V ) is open in (Y, σ).Since f is contra-αDδg-continuous, f−1(g−1(V )) 

is αDδg-closed in (X, τ ). That is(g ◦ f)−1(V ) is αDδg-closed in (X, τ ). Hence (g ◦ f) is contra-αDδg-continuous. 
 

Theorem 4.21. If f : (X, τ ) → (Y, σ) is αDδg-irresolute and g : (Y, σ) → (Z, η) is contra-αDδg-continuous function. Then 

g ◦ f : (X, τ ) → (Z, η) is contra-αDδg-continuous. 

 

Proof Let V be open in (Z, η). Since g is contra-αDδg-continuous, g−1(V ) isαDδg-closed in (Y, σ). Since f is αDδg-irresolute, 

f−1(g−1(V )) is αDδg-closed in (X, τ ). That is (g ◦ f)−1(V ) is αDδg-closed in (X, τ ). Hence (g ◦ f) is contra-αDδg-continuous. 

 

Theorem 4.22. Let f : (X, τ ) → (Y, σ) be a map then the followings are equivalent. 

(i) f is contra-αDδg-irresolute. 

(ii) For x ∈ X and any αDδg-open set V of (Y, σ) containing f(x) there exists an αDδg-closed set U such that x ∈ U and  

     f(U)⊂ V . 

(iii) Inverse image of every αDδg-closed set in (Y, σ) is αDδg-open in (X, τ ). 

 

Proof (i) ⇒ (ii). Let V be a αDδg-open set in (Y, σ) and f(x) ∈ V. Since f is contra-αDδg-irresolute, f−1(V ) is αDδg-closed in 

(X, τ ) and x ∈ f−1(V ). Put U = f−1(V ). Then x ∈ U and f(U) ⊂ V . (ii) ⇒ (i). Let V be a αDδg-open set in(Y, σ) and x ∈ 

f−1(V ). Then f(x) ∈ V . Hence by (ii), there exists an αDδg-closed set Ux such that x ∈ Ux and f(Ux) ⊂ V . Thus x ∈ Ux ⊂ 

f−1(V ). This implies that f−1(V ) is a union of αDδg-closed sets of (X, τ ).  f−1(V ) is αDδg-closed set of (X, τ ). This shows that f 

is contra-αDδg-irresolute. (i) ⇔ (iii). Let V be a αDδg-closed in (Y, σ). Then Y − V is αDδg-open in (Y, σ). Since f is contra-

αDδg-irresolute, f−1(Y −V ) is αDδg-closed in (X, τ ). Also f−1(Y −V ) = X−f−1(V ).Therefore X−f−1(V ) is αDδg-closed in (X, τ ). 

Hence f−1(V ) is αDδg-open in (X, τ ). 

 

Remark 4.23. Contra-αDδg-irresolute map and contra-αDδg-continuous are independent notions as shown below. 

Example 4.24. Let X = {a, b, c}, Y = {p, q, r} with the topologies τ = {φ, {a}, {b},{a, b}, {a, c}, X} and σ = {φ, {p, q}, Y}. 

Define the function f : (X, τ ) → (Y, σ)by f(a) = p, f(b) = r, f(c) = q. Then clearly f is contra-αDδg-continuous but itis not 

contra-αDδg-irresolute because f−1({p}) = {a} is not αDδg-closed in (X, τ )where {p} is αDδg-open in (Y, σ). 

 

Example 4.25. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ, {a},{a, b}, X} and σ = {φ, {r}, {p, r}, {q, r}, Y}. 

Define a map f : (X, τ ) → (Y, σ)by f(a) = r, f(b) = p,f(c) = q. Clearly f is contra-αDδg-irresolute but not contra-αDδg-

continuous because f−1({p, r}) = {a, b} is not αDδg-closed in (X, τ ) where{p, r} is open in (Y, σ). 
 

Remark 4.26. αDδg-irresoluteness and contra-αDδg-irresoluteness are independentnotions as shown in the following examples. 

 

Example 4.27. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ,{b}, {a, c}, X} and σ = {φ, {p}, {q}, {p, q}, Y}. 

Define a map f : (X, τ ) → (Y, σ)by f(a) = q, f(b) = r and f(c) = p. Then clearly f is contra-αDδg-irresolute but notαDδg 

irresolute because f−1({r}) = {b} is not αDδg-closed in (X, τ ) where {r} isαDδg-closed in (Y, σ). 

 

Example 4.28. Let X = {a, b, c} and Y = {p, q, r} with the topologies τ = {φ,{a}, X} and σ = {φ, {q}, {q, r}, Y}. Define a 

mapf : (X, τ ) → (Y, σ) by f(a) = p,f(b) = r and f(c) = q. Then clearly f is αDδg-irresolute but not contra-αDδg-irresolute 

because f−1({r}) = {c} is not αDδg-closed in (X, τ ) where {r} is αDδg-open in (Y, σ). 

 

Theorem 4.29. Let f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) be any two maps such that g ◦ f : (X, τ ) → (Z, η). 

(i) If f is contra-αDδg-irresolute and g is αDδg-continuous then g ◦ f is contra-αDδg-continuous. 

(ii) If f is αDδg-irresolute and g is contra-αDδg-irresolute then g ◦ f is contra-αDδg-irresolute. 

 

Proof (i). Let V be an open set in (Z, η). Since g is αDδg-continuous, g−1(V ) isαDδg-open in (Y, σ). Since f is contra-αDδg 

irresolute, f−1(g−1(V )) is αDδg-closedin (X, τ ). That is (g ◦ f)−1(V ) is αDδg-closed in (X, τ ). Hence g ◦ f is contra-αDδg-

continuous. (ii). Let U be an αDδg-open in (Z, η). Since g is contra-αDδg-irresolute,g−1(U) is αDδg-closed in (Y, σ). Since f is 

αDδg-irresolute, f−1(g−1(U)) is αDδg-closed in (X, τ ). This implies that (g ◦ f)−1(U) is αDδg-closed in (X, τ ). Hence g ◦ f is contra-

αDδg-irresolute. 
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5. Applications 

 
Theorem 5.1. Let f : (X, τ ) → (Y, σ) be αDδg-irresolute. Then f is δ-continuous if (X, τ ) is αDTδg-space. 

Proof Let V be a δ-closed subset of (Y, σ). Every δ-closed is αDδg-closed and hence V is αDδg-closed in (Y, σ). Since f is αDδg-

irresolute, f−1(V ) is αDδg-closedin (X, σ). Since X is αDTδg-space, f−1(V ) is δ-closed in (X, τ ). Thus f is δ-continuous. 

 

Theorem 5.2. Let f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) be two functions. Let(Y, σ) be αDTδg-space. Then g ◦ f is 

αDδg-continuous if g is αDδg-continuous and fis αDδg-continuous. 
 

Proof Let G be any closed set in (Z, η). Then g−1(G) is αDδg-closed in (Y, σ).Since (Y, σ) is αDTδg-space, g−1(G) is closed in (Y, 

σ). Since f is αDδg-continuous,(g ◦ f)−1(G) = f−1(g−1(G)) is αDδg-closed in (X, τ ). Hence g ◦ f is αDδg-continuous function. 

 

Theorem 5.3. Let f : (X, τ ) → (Y, σ) be onto, αDδg-irresolute and δ-closed. If(X, τ ) is a αDTδg-space, then (Y, σ) is also 

a αDTδg-space. 

 

Proof Let B be a αDδg-closed subset of (Y, σ). Since f is αDδg-irresolute, thenf−1(B) is αDδg-closed set in (X, τ ). Since (X, τ ) is 

αDTδg-space, f−1(B) is δ-closed in(X, τ ). Also since f is surjective, B is δ-closed in (Y, σ). Hence (Y, σ) is αDTδg-space. 

 

Theorem 5.4. If f : (X, τ ) → (Y, σ) is bijection, open and αDδg-continuous, then f is αDδg-irresolute. 

 

Proof Let V be αDδg-closed in (Y, σ) and let f−1(V ) ⊆ U where U is open in(X, τ ). Since f is open, f(U) is open in (Y, σ). Every 

open set is αB-set and hencef(U) is αB-set. Clearly V ⊆ f(U). Then clδ(V ) ⊆ f(U) and hence f−1(clδ(V )) ⊆U. Since f is αDδg-

continuous and since clδ(V ) is a closed subset of (Y, σ), thenclδ(f−1(V )) ⊆ clδ(f−1(clδ(V )) = f−1(clδ(V )) ⊆ U. U is open and 

hence αB-set in (X, τ ). Thus we have clδ(f−1(V )) ⊆ U whenever f−1(V ) ⊆ U and U is D-set set in(X, τ ). This shows that f−1(V ) 

is αDδg-closed in (X, τ ). Hence f is αDδg-irresolute. 

 

Theorem 5.5. If (Y, σ) is αDTδg-space. Then every contra-αDδg-continuous map is contra-αDδg-irresolute. 

 

Proof Let f : (X, τ ) → (Y, σ) be a contra-αDδg-continuous map. Let V be a αDδg-open in (Y, σ). Since (Y, σ) is αDTδg-

space, V is open in (Y, σ). By hypothesis,f−1(V ) is αDδg-closed in (X, τ ). Hence f is contra-αDδg-irresolute. 

 

Theorem 5.6. Let f : (X, τ ) → (Y, σ) be surjective αDδg-irresolute and weakly-αDδg-closed function where (X, τ ) is 

αDTδg-space and g : (Y, σ) → (Z, η) be func-tion. Then g ◦ f : (X, τ ) → (Z, η) is contra-αDδg-continuous iff g is contra-

αDδg-continuous. 

 
Proof Let V be a open in (Z, η) and g be contra-αDδg-continuous function. Then g−1(V ) is αDδg-closed in (Y, σ). Since f is 

αDδg-irresolute, f−1(g−1(V )) is αDδg-closed in (X, τ ). That is (g ◦ f)−1(V ) is αDδg-closed in (X, τ ). Hence (g ◦ f) is contra-αDδg-

continuous. Conversely, assume that g ◦ f : (X, τ ) → (Z, η) is contra-αDδg-continuous function. Let U be a open set in (Z, η). 

Then (g ◦ f)−1(U) isαDδg-closed in (X, τ ). That is f−1(g−1(U)) is αDδg-closed in (X, τ ). Since (X, τ ) is DTδg-space, f−1(g−1(U)) is 

δ-closed in (X, τ ). Also since f is weakly-αDδg-closed,f(f−1(g−1(U))) is αDδg-closed in (Y, σ). Since f is surjective, g−1(U) is 

αDδg-closed in (Y, σ). Hence g is contra-αDδg-continuous. 

 

Theorem 5.7. Let f : (X, τ ) → (Y, σ) be function and g : X → X × Y be the graph function, given by g(x) = (x, f(x)) for every 

x ∈ X. Then f is contra-αDδg-continuous iff g is contra-αDδg–continuous. 

 

Proof Necessity: Let x ∈ X and let V be a closed subset of X × Y such that x ∈ g−1(V ). That is g(x) = (x, f(x)) ∈ V. Then V∩ 

({x} × Y ) is closed in {x} × Ycontaining g(x). Also {x} × Y is homeomorphic to Y, hence {y ∈ Y/(x, y) ∈ V } isa closed 

subset of Y. Since f is contra-αDδg-continuous, ∪{f−1(y)/(x, y) ∈ V } is anαDδg-open subset of X. Further x ∈ 

∪{f−1(y)/(x, y) ∈ V } ⊆ g−1(V ). Hence g−1(V ) is αDδg-open. Thus g is contra-αDδg-continuous. 

Sufficiency: Let U be a closed subset of Y. Then X×U is a closed subset of X × Y. Since g is contra-αDδg-continuous, g−1 

(X × U) is αDδg-open subset of X. Alsog−1(X × U) = f−1(U). Hence f is contra-αDδg-continuous. 

 

We introduce the following definition. 

Definition 5.8. A topological space (X, τ ) is said to be αDδg-Hausdorff space if for each pair of distinct points x and y in X there 

exists U ∈ αDδgO(X, x) and V ∈ αDδgO(X, y) such that U ∩ V = φ. 

 

Example 5.9. Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, {b, c}, X}. Let a and b be two distinct points of X, there exists an αDδg-

open neighbourhood of a and b respectively such that {a} ∩ {b, c} = φ. Hence (X, τ ) is αDδg-Hausdroff space. 

 

Theorem 5.10. If X is a topological space and for each pair of distinct points x1 and x2 in X, there exists a function f of X into 

Uryshon topological space Y such that f(x1) 6= f(x2) and f is contra-αDδg-continuous at x1 and x2, then X is αDδg-Hausdroff 
space. 

 

Proof Let x1 and x2 be any distinct points in X. Then by hypothesis, there isa Uryshon space Y and a function f : X → Y such that 

f(x1) 6= f(x2) and f is contra-αDδg-continuous at x1 and x2. Let yi = f(xi) for i = 1, 2 then y1 6= y2. Since Y is Uryshon, there exists 

an open sets Uy1 and Uy2 containing y1 and y2 respectively in Y such that cl(Uy1) ∩ cl(Uy2) = φ. Since f is contra-αDδg-
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continuous at x1 and x2, there exists an αDδg-open sets Vx1 and Vx2 containing x1 and x2 respectively in X such that f(Vxi ) ⊆ 

cl(Uyi) for i = 1, 2. Therefore we get Vx1 ∩ Vx2 = φ. Hence X is αDδg-Hausdroff. 

 

Corollary 5.11. If f is contra-αDδg-continuous injective of a topological space X into a Uryshon space Y, then X is αDδg-
Hausdroff. 

 

Proof Let x1 and x2 be distinct points in X. Then by hypothesis, f is a contra-αDδg-continuous function of X into a Uryshon 

space Y such that f(x1) 6= f(x2) because f is injective. Hence by Theorem 5.10 X is αDδg-Hausdroff. 

 

Theorem 5.12. Let f1 : X1 → Y and f2 : X2 → Y be two contra-αDδg-continuous functions. If Y is a Uryshon space then {(x1, 

x2)/f1(x1) = f2(x2)} is αDδg-closed in the product space X1 × X2. 

 

Proof Let A denote the set {(x1, x2)/f1(x1) = f2(x2)}. We have to prove that A is αDδg-closed in the product space X1 × X2, we   

show that (X1 × X2) − A isαDδg-open. Let (x1, x2) ∈/ A. Thenf1(x1) 6= f2(x2). Since Y is Uryshon space, there exists an 

open sets V1 and V2 containing f1(x1) and f2(x2) respectively such that cl(V1) ∩ cl(V2) = φ. Since f1 and f2 are contra-

αDδg-continuous, f1
−11(cl(V1)) and f2

−1(cl(V2)) are αDδg-open sets containing x1 in X1 and x2 in X2 

respectively.f1
−1(cl(V1))×f2

−1(cl(V2)) is αDδg-open in X1×X2. Further,(x1, x2) ∈ f1
−1(cl(V1))×f2

−1(cl(V2)) ⊂ (X1×X2)−A. This 

implies that (X1×X2)−A is αDδg-open in (X1 × X2). Hence A is αDδg-closed in X1 × X2. 

 

Definition 5.13. A topological space (X, τ ) is said to be αDδg-normal if each pair of nonempty disjoint closed sets in (X, τ ) can 

be separated by disjoint αDδg-open sets in (X, τ ). 

 

Example 5.14. Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, {a, c}, X}. Then{b} and {c} are nonempty disjoint closed sets in 

(X, τ ). Then there exists two αDδg-open sets {b} and {a, c} such that {b} ⊆{b},{c}⊆ {a, c} and {b} ∩ {a, c} = φ. Thus (X, τ ) 

is a αDδg-normal space. 
 

Theorem 5.15. If f : X → Y is a contra-αDδg-continuous, closed, injective and Y is Ultra normal, then X is a αDδg-normal. 

 

Proof Let U and V be disjoint closed subsets of X. Since f is closed and injective,f(A) and f(B) are disjoint closed subsets of Y. 

Since Y is Ultra-normal, there exists disjoint closed sets A and B such that f(U) ⊂ A and f(V ) ⊂ B. Hence U ⊆f−1(A) and V ⊆ 

f−1(B). Since f is contra-αDδg-continuous and injective, f−1(A)and f−1(B) are disjoint αDδg-open sets in X. Hence X is αDδg-

normal. 
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