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Abstract: Embedded systems that are employed in safety-critical applications require highest reliability. 

External watchdog timers are used in such systems to automatically handle and recover from operation time 

related failures. Most of the available external watchdog timers use additional circuitry to adjust their 

timeout periods and provide only limited features in terms of their functionality. This paper describes the 

architecture and design of an improved configurable watchdog timer that can be employed in safety-critical 

applications. Several fault detection mechanisms are built into the watchdog, which adds to its robustness. 

The functionality and operations are rather general and it can be used to monitor the operations of any 

processor based real-time system. This paper also discusses the implementation of the proposed watchdog 

timer in a Field Programmable Gate Array (FPGA). This allows the design to be easily adaptable to different 

applications, while reducing the overall system cost. The effectiveness of the proposed watchdog timer to 

detect and respond to faults is first studied by analyzing the simulation results.  

Keywords: FPGA, Watch Dog Timer (WDT), Hardware Description Language (HDL), Input and Output 

Interface, Verilog and VHDL. 

I. INTRODUCTION 

For applications where a system crash could lead to human injury, highest reliability is required. 

Such systems should have fault tolerance mechanisms that account for the unexpected to ensure proper 

safety of operation. These systems should also be able to recover from a crash without any human assistance. 

These fault tolerance mechanisms detect when a fault occurs in order to handle the fault and to limit the 

system downtime [1]. One way to achieve fault tolerance is by implementing system redundancy. By using 

multiple copies of the critical components of the system, the overall system reliability is enhanced [2]. 

However, this improved system reliability is achieved through increased hardware and software complexity, 

depending on the type of architecture used. When developing a fault-tolerant system, one of the most cost 

effective ways of detecting and handling operation time related failures is the watchdog [3]. A watchdog 

timer (WDT) is a hardware subsystem that monitors the operations of the system and takes certain actions in 

the event of detecting a fault [4]. It typically consists of a timer circuit and the processor is required to 
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periodically reset the timer. If the WDT expires, it is a secondary indication of some problem with the 

system under observation [5]. When the processor fails to reset the watchdog, a decision is made to restart 

the system or put the system into a known state from which it can recover, thus preventing further damages. 

A watchdog can be internal (on-chip) or external to the processor. Internal watchdog reduces the hardware 

complexity and cost, however, is not a robust solution. The software has control over it during runtime and a 

runaway code can disable the watchdog timer [3]. Moreover, since it is connected to the processor clock, a 

crystal failure will make the watchdog incapable of monitoring the hardware for faults [6]. When the 

reliability of an embedded system is crucial, external watchdogs become unavoidable. An external watchdog 

runs independent of the processor and does not share its clock with the processor. This overcomes the 

limitations of internal watchdogs and leads to much more robust fault-tolerant system architectures [7].A 

class of standalone watchdog timer microchips offer only fixed timeout periods, which make them less 

generic. Other set of devices allow adjusting the timeout periods by using additional external circuitry. 

Though useful, this method adds to the complexity of the hardware and increases the overall system cost. 

The increased cost and complexity of external watchdogs can be managed to a certain extend by realizing 

the watchdog functionality within a Field Programmable Gate Array (FPGA). Many of the modern 

embedded systems in corporate one or more FPGA devices to accomplish the desired system functionality 

[8]. Accommodating the watchdog timer within a FPGA can yield an efficient and robust solution. The work 

done by Giaconia et al. [9] considered the implementation of a custom concurrent watchdog processor in 

FPGA for real-time control systems. The design did not provide a timer for the processor; rather, it 

performed a reasonableness check on some variables and a basic program flow check. El-Attar et al. [10] 

proposed a sequenced watchdog timer that used time registers to determine whether or not fault has 

occurred. However, it did not offer much configuration options and the fault detection features implemented 

were limited. In [11] the authors addressed the basic concepts of a multiple hardware watchdog timer system 

in FPGA, but kept the design of the watchdog simple. In this paper, we propose the design of an improved 

windowed watchdog timer and its implementation in FPGA. Realizing the design in FPGA means that the 

same watch-dog hardware can be interfaced to different processors and systems, with only minor 

modifications of the associated hardware description language (HDL) code [8]. It also allows for 

accommodating multiple watchdog timers for multicore architectures. The proposed watchdog timer is well 

suited for safety-critical embedded systems, where redundant channels are employed to enhance the system 

reliability. Designing the WDT as a reusable IP core also addresses the component obsolescence issues faced 

by many embedded systems, especially those in the aerospace and military applications [12].The paper 

describes the architecture of the proposed watchdog timer, the fault detection features, and its 

implementation in FPGA.The remainder of this paper is organized as follows. The following section 

introduces the architecture of the proposed watchdog timer. The fault detection mechanisms built into the 

watchdog is discussed in III. Section IV describes the implementation of the watchdog timer in FPGA. 
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Simulation results and evaluation of the design in hardware are detailed in section V. Finally, section VI 

concludes this paper. 

II.LITERATURE SURVEY 

The Design of a Fault-Tolerant COTS-Based Bus Architecture 

In this paper, we report our experiences and findings on the design of a fault-tolerant avionics bus 

architecture comprised of two COTS buses, the IEEE 1394 and the I2C, for the X2000 program at the Jet 

Propulsion Laboratory. The X2000 design team is judicious about ensuring the fault tolerance provisions 

will not cause the bus design to deviate from commercial standard specifications, so that the economic 

attractiveness of using COTS will not be diminished. The hardware and software designs of the X2000 fault-

tolerant bus are being implemented and flight hardware will be delivered to the Europa Orbiter missions. 

This effort provides an example of how to construct a highly reliable system with low cost COTS buses. 

Fault-Tolerant Platforms for Automotive Safety-Critical 

Fault-tolerant electronic sub-systems are becoming a standard requirement in the automotive 

industrial sector as electronics becomes pervasive in present cars. We address the issue of fault tolerant chip 

architectures for automotive applications. We begin by reviewing fault-tolerant architectures commonly used 

in other industrial domains where fault tolerant electronics has been a must for a number of years, e.g., the 

aircraft manufacturing industrial sector. We then proceed to investigate how this architecture could be 

implemented on a single chip and we compare them with a metric that combines traditional terms such as 

cost, performance and fault coverage with flexibility, i.e. the ability of adapting to changing requirements 

and capturing a wide range of applications, an emerging criterion for platform design. Finally, we describe in 

some details a cost effective dual lockstep platform that can be used as a single fail-operational unit or as 

two fail-silent channels trading fault-tolerance for performance. 

A Review of Watchdog Architectures and their Application to Cubesats 

The push towards”faster, better, cheaper” missions with an emphasis on design reuse has led to the 

popularity of COTS products that have traditionally relied upon custom software and hardware. The 

motivation for moving towards COTS hardware is faster, cheaper and more powerful processors with lower 

power consumption compared to those available in hard versions. While moving towards COTS components 

has many advantages, it also requires developing mechanisms to protect the components from radiation 

harsh environments which high altitude and space systems are subject to 
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Concurrent Error Detection Using Watchdog Processors-A Survey 

This is a survey of concurrent system-level error detection techniques using a watchdog processor. A 

watchdog processor is a small and simple coprocessor that detects errors by monitoring the behavior of a 

system. Like replication it does not depend on any fault model for error detection. However, it requires less 

hardware as compared to replication. It is shown that a large number of errors can be detected by monitoring 

the control flow and memory access behavior. Two techniques of control flow checking are discussed and 

compared to the current error detection techniques. A scheme for memory access checking based on 

capability-based addressing is described. The design of a watchdog for performing reasonableness checks on 

the output of a main processor, by executing assertions, is also discussed. 

III.FPGAS 

This paper will describe the use of digital Field Programmable Gate Arrays (FPGA) to contribute to 

advancing the state-of-the-art in software defined radio (SDR) transponder design for the emerging Small 

Sat and Cube Sat industry and to provide advances for NASA as described in the TAO5 Communication and 

Navigation Roadmap (Ref 4). The use of software defined radios (SDR) has been around for a long time. A 

typical implementation of the SDR is to use a processor and write software to implement all the functions of 

filtering, carrier recovery, error correction, framing etc. Even with modern high speed and low power digital 

signal processors, high speed memories, and efficient coding, the compute intensive nature of digital filters, 

error correcting and other algorithms is too much for modern processors to get efficient use of the available 

bandwidth to the ground. By using FPGAs, these compute intensive tasks can be done in parallel, pipelined 

fashion and more efficiently use every clock cycle to significantly increase throughput while maintaining 

low power. These methods will implement digital radios with significant data rates in the X and Ka bands. 

Using these state-of-the-art technologies, unprecedented uplink and downlink capabilities can be achieved in 

a 1/2 U sized telemetry system[15]. Additionally, modern FPGAs have embedded processing systems, such 

as ARM cores, integrated inside the FPGA allowing mundane tasks such as parameter commanding to occur 

easily and flexibly. Potential partners include other NASA centers, industry and the DOD. These assets are 

associated with small satellite demonstration flights, LEO and deep space applications. MSFC currently has 

an SDR transponder test-bed using Hardware-in-the-Loop techniques to evaluate and improve SDR 

technologies. 

FPGA Implementation of an Improved Watchdog Timer for Safety-Critical Applications 

Embedded systems that are employed in safety critical applications require highest reliability. 

External watchdog timers are used in such systems to automatically handle and recover from operation time 

related failures. Most of the available external watchdog timers use additional circuitry to adjust their  

timeout periods and provide only limited features in terms of their functionality [13]. This paper describes 
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the architecture and design of an improved configurable watchdog timer that can be employed in safety-

critical applications. Several fault detection mechanisms are built into the watchdog, which adds to its 

robustness. The functionality and operations are rather general and it can be used to monitor the operations 

of any processor based real-time system. This paper also discusses the implementation of the proposed 

watchdog timer in a Field Programmable Gate Array (FPGA). This allows the design to be easily adaptable 

to different applications, while reducing the overall system cost. The effectiveness of the proposed watchdog 

timer to detect and respond to faults is first studied by analyzing the simulation results [16]. Thus after 

designing the watchdog it is implemented in ATM and verified. The design is validated in a real-time 

hardware by injecting faults through the software while the processor is executing. 

“Comparison of internal and external watchdog timer’s application note” 

This article compares the benefits and drawbacks of internal (integrated with the microprocessor) and 

external (hardware-based) watchdog timers (WDTs). It explains that internal watchdog timers are easy to 

implement, but subject to failure. The MAXQ2000 microcontroller's WDT serves as an example of an 

internal watchdog. Hardware-based watchdog timers require additional board space, but are indispensable 

when reliability is paramount. This article concludes with a comparison matrix that highlights the main 

advantages and disadvantages of each WDT solution.  

III. PROPOSED SYSTEM 

An effective watchdog should be able to detect all abnormal software modes and bring the system 

back to a known state. It should have its own clock and should be capable of providing a hardware reset on 

timeout to all the peripherals [3]. The watch-dog timer proposed in this paper operates independently of the 

processor and uses a dedicated clock for its functions. The architecture follows a windowed watchdog 

implementation, where the window periods can be configured by the software during initialization. A fail 

flag is raised when the watchdog timer expires and after a fixed amount of time from raising the flag, a reset 

is triggered. The time in-between can be used by the software to store valuable debugging information to 

anon-volatile medium.A standard watchdog timer can catch problems in the system such as hanging because 

of endless loops in code execution. However, the main disadvantage of this watchdog is that if the system 

enters a fault state in which it continually resets the timer, the error state will never be detected. In other 

words, a standard watchdog timer can detect slow faults, but cannot detect fast faults which occur within the 

watchdog timer period [13]. However, a windowed architecture can handle this properly. Here the watchdog 

defines a small time window within which the watchdog must be reset in order to avoid a timeout. This 

provides protection against systems from running too fast and too slow [14], thus increasing the error 

recognition coverage. A. I/O Interface and Configuration Fig. 1 shows the input-output (I/O) interface of the 

pro-posed watchdog timer. The watchdog has two outputs, namely the watchdog fail output (WDFAIL) and 

the reset output (RSTOUT). When the SYSRESET input is low, the WDFAIL output remains asserted and 
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the RSTOUT output stays de-asserted. The design also consists of a configuration register with bit fields 

defined as in the figure. The register enables adjustments to the watchdog parameters and also provides 

status information. The WDRST and WDSRVC fields are used respectively for resetting and servicing the 

watchdog. The state of the INIT input and the WDFAIL output are automatically updated in the 

configuration register. The SWSTAT field holds the state of the service window and the FLSTAT field logs 

the watchdog failure mode, if any. The control inputs to the watchdog timer, ENABLE and RD/WR, permit 

thread and write to the configuration register. The ABUS and DBUS signals in the figure indicate address 

bus and data bus, respectively. 

 

Figure 1: windowed watchdog design 

Watchdog Timer Initialization 

On power-up or reset the watchdog wakes up in a failed state,i.e., the WDFAIL output will be 

asserted high. It is the responsibility of the software to initialize the watchdog and keep it running. Fig. 2 

illustrates the waveform for watchdog reset initialization and general operation. In order to bring the 

watchdog to a working state, first the watchdog reset (WDRST) field in the configuration register must be 

toggled from low-to-high [19]. This, followed by servicing the watchdog inside the service window, will de-

assert the WDFAIL flag and make it operational. Since the frame window is kept larger than the system 

frame time, another service window will start before the current frame window expires. When the watchdog 

is again properly serviced, the frame window will be reinitialized. As long as the frame window counters 

keep running, no failures will be flagged by the watchdog 
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particularly suitable for embedded systems that schedule their tasks in frames. 

IV. FAULT DETECTION FEATURES 

Several fault detection mechanisms are built into the pro-posed watchdog timer in order to improve 

its effectiveness in capturing erratic software modes. When the software fails to service the watchdog inside 

the service window, the window expires and sets a fail flag internally [12]. In this case, the frame window 

does not reinitialize and expires upon reaching its terminal value. On the expiry of the frame window the 

watchdog asserts its WDFAIL signal, indicating a failure. This failure mode is depicted in Fig. 3 

                    

 

A watchdog fail will occur when the software services the watchdog outside the service window, as 

shown in Fig.4. It can be seen that the invalid service operation instantly terminates the frame window and 

asserts the WDFAIL signal.A favorable consequence of this feature is that two successive service operations 

will also lead to a watchdog fail. Here, the first service operation will immediately close the service window 
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and the next one will invariably occur outside the window [15]. This becomes equivalent to servicing the 

watchdog outside the service window and leads to a watchdog failure 

 

Fig. 2 illustrates a scenario where the WDSRVC falling edge is occurring inside the service window. 

This is also considered as an illegal service operation and the watchdog fails signal is asserted. This implies 

that, after servicing the watchdog, the software is required to de-assert the WDSRVC signal before the start 

of the next service window [17]. All of these fault detection mechanisms ensure that a software running 

haywire will not go undetected by the proposed watchdog timer. 

 

The WDFAIL output from the watchdog timer can be used to activate a fail-safe state, or warn the 

processor of the fault by issuing a non-maskable interrupt (NMI) signal. After a predefined amount of time 

from asserting the WDFAIL output the watchdog will assert its RSTOUT output. This signal canbe tied to 

the reset pin of the processor, causing it to reset the embedded system automatically [16]. The intervening 

time will give the software an opportunity to save information that can be valuable for debugging. In the 

event of a failure, the corresponding failure mode will be logged in the FLSTAT field in the watchdog 

configuration register. The software can attempt to save this information also to a non-volatile memory for 

debugging purposes. 
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V. WATCHDOG TIMER IMPLEMENTATION IN FPGA 

This section details the realization of the proposed watchdog timer in FPGA. The high-level diagram 

of the watchdog hardware is shown in Fig. 6. The design is clocked by its SYSCLK input, which is 

independent of the processor clock.The possible sets of window lengths are arrived based on the application 

and hard-coded in the design. These values can be selected by writing to the appropriate bits in the 

configuration register - SWLEN for the service window and FWLEN for the frame window - after power-on. 

Once the values are selected, the window length configuration fields get locked automatically; i.e., writes to 

these bits are disabled. For the cases where the window lengths have to be modified again, a 16-bit unlock 

register is provided in the design [10]. In order to change the window lengths, the software will have to 

perform two successive writes to this register with data 0xAAAA and 0x5555. Subsequent to writing the 

first pattern the second one must be written within 10μs, after which the software gets a 10μs period to 

modify the length configuration fields. If these timings are not strictly met, writes to these bits will remain 

disabled. The service window is started when a high-to-low transition is detected on the INIT signal. The 

service window uses a derived clock (SWCLK) that is much slower than the SYSCLK. The slower clock 

helps in reducing the number of comparators required, thus minimizing the resource utilization in FPGA. 

The service windows have an offset up/down counterthat are clocked by the SYSCLK, and a main counter 

that runs at SWCLK. The offset up counter finds the offset (Toffset) between the INIT input and the next 

rising edge of the SWCLK. This is necessary as the INIT signal may be asynchronously driven and can 

come at any time within the SWCLK period, Tswclk. The offset value is saved and the main counter is 

started, which then runs for (SWLEN - 1) times. Once the main counter expires, the offset down counter 

runs for a durationTswclk−Toffset [18]. This counting procedure allows for a precise control over the 

window length. The running status of the service window is also updated in the watchdog configuration 

register periodically. When the watchdog is correctly serviced, the counters in the service window stop 

immediately and the frame window starts. The frame window also uses a derived slower clock (FWCLK) for 

its operations. It has an offset up/down counter and a main counter with functionalities similar to that of the 

service window. The offset up counter here finds the offset between the termination of the service window 

and the next rising edge of 
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the FWCLK. The main counter counts for (FWLEN - 1) times which is then followed by the offset down 

counter. The frame window counters reset when a watchdog service operation occurs within the next service 

window duration, before the frame window expires. A. Reset Initialization and Fault Detection the diagram 

in Fig. 7 shows the finite state machine (FSM) implementation of watchdog reset initialization and fault 

detection logics. On power-up the WDFAIL output is asserted, indicating a watchdog failure [19]. A rising 

edge on the WDRST bit prepares the watchdog timer for initialization. When the service window opens, a 

rising edge on the WDSRVC bit de-asserts the WDFAIL output and the window counters start running. 

However, if the watchdog is serviced incorrectly, the whole initialization process is discarded and the 

software will have to repeat the entire procedure. The WDFAIL signal gets de-asserted only when the 

watchdog is properly initialized. While the watchdog is up and running if any of the failure modes described 

in section III occurs, the WDFAIL output is again asserted [11]. The configuration register is updated with 

the failed status and the nature of the failure. Assertion of the watchdog fail also triggers a reset counter that 

runs for redefined amount of time. The duration of the counter can be determined by considering the amount 

of debug information that needs to be stored. On the expiry of the counter, the WDT asserts its RSTOUT 

output high. The reset counter will be non-functional during power-up and the RSTOUT output will be set to 

low at this point. When the watchdog is initialized for the first time, the counter gets automatically enabled. 
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VI. SIMULATION RESULTS 

Project Navigator 

 

Simulation Output 
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Timing Summary 

 

VII. CONCLUSION 

 

 This paper presented in detail the architecture and design of an improved windowed watchdog timer 

and its implementation in FPGA. The watchdog timer runs completely independent of the processor and 

permits adjusting the timer parameters according to the application. Several fault detection techniques are 

built into the watchdog for the early detection of erratic software modes. It has the capability to identify the 

failure type and log it, which can become valuable while debugging. Upon detecting a failure, the watchdog 

timer also allows the software sufficient time for saving the debug information, before initiating a reset. 
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