
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 216

A Survey on: SQL Injection assaults in Web

Application

1Sabari Giri Murugan S,2Naman Rao,3Quraish Abbas Nagri
1Asst.Professor,2Student,3Student

1Department of CS & IT,
1Jain (Deemed-to-be University), Bangalore, India

Abstract: The world in recent times has improved normally within the discipline of innovation

prompting further upgrade of the current software programs. There is big interest for Web Applications

for each transportable and work location's a right away result of the expansion in clients of net. The

essential targets are the Net Packages and the Web Servers as your login accreditations can be abused

with the aid of the assailant making use of SQL Injection assault as they're the ongoing well-known risks

even with the utilization of IDS and IPS. This paper speaks about the guideline notion at the back of a

SQL attack, the vicinity techniques and ultimately the preventive measures.

Index Terms - Web utility, Web Server, IDS, IPS.

I. INTRODUCTION

Internet plays a very important role in our day-to-day life. Web applications are used by organizations to

provide services like online banking, online shopping, social networking, etc. With the increasing usage

of internet cyber crime is also increasing. Hence, security has become a major concern for the

organizations. Web applications receive the requests from the user, interact with the backend database

and return the relevant information to the users. The backend database contains the confidential and

sensitive data that interests the attackers. [1]

Due to the more digitalization of world, usage of mobile phones, computers, tablets etc. is increasing

very fast. With boosting of digitalization and internet the usage of web applications has also increased.

Many of the web application has a three- tier construction i.e. Presentation tier, CGI tier, and Database

tier. SQL injection attack is also known as SQL insertion attack. Due to advances in internet, most offline

services have moved online. These online services use web applications and web services. Most web

attacks target the vulnerabilities of web applications. The SQL Injection Attack (SQLIA) does not waste

system resources as other attacks do. However, because of its ability to obtain/insert information from/to

databases, it is a strong threat to servers like military or banking systems. The web application

framework uses filtering methods for data inputted by user. By the development of the information

technology, a massive amount of sensitive information is stored in the database. This information is most

valuable for the organizations. Database intrusion attacks can occur for stealing the valuable and

sensitive information. SQL injection is the most widespread security issue in the web applications. Code

injection attacks consists of SQL injection attacks, in which SQL characters are inserted into the SQL

statements using an un trusted access to change the logic or meaning of the intended query. When the

SQL statements is constructed using the external input data, the threat of SQL injection is found. The

attacker could able modify the query Statements by modifying or altering the input data. The SQL

injection attack occurs due to lack of development time and training, lack of experience and knowledge

of potential security issues, developers often misuse these methods which results in SQL injection

vulnerabilities (SQLIVs).[2]

 SQL injection attack could be approach through which attackers increase contact done back to end

databases by adding malicious codes through front-end.SQL is Structured Query Language that is a

computer language for supply maneuver & retrieving information stored in a relational database. The

Relational Database Management Systems like My SQL, Sybase, Informix & MS Access, Oracle, SQL

Server use SQL is a database language.

The SQL Injection weakness of security, it is providing right location in that and hacker could use it to

bypass web applications verification & support mechanisms & take rear contents of entire database. The

SQL Injection is work to include, adjust & erase information in main database, disturbing data veracity

& extents like this, SQL Injection is also provides an attacker.[3]

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 217

SQL injection was an attack in which malicious code was embedded in strings that were later passed to

database back end for parsing and execution. The malicious data produced database query results and

acquired sensitive information, such as account credentials or internal business data. Through analyzing

the principle of SQL injection attacks, prevention method was proposed to solve the double defense

through the browser and server ends. [4]

Fig 1. SQL Database

II. Types of SQL Injection Attacks

To counter this problem firstly we need to know the ways through which it can be implemented. SQL

injections can be implemented in the following ways:

i) Tautology

ii) Illegal/logically incorrect queries

iii) End of line comment

iv) Timing attack

v) Union queries

vi) Blind SQL injection attacks

i) Tautology: This technique injects statements that are always true so that the queries always return

results upon evaluation of WHERE condition.

Injected query: select name from user_details where username=’naman’ and password=’’or ‘1’=’1’.

ii) Illegal/Logically incorrect queries: This method is used by the threat agent to collect information

about the database. Attacker intentionally injects SQL tokens or junk input in query to produce logical

errors, type mismatches or syntax errors by purpose.

iii) End of line comment: In this technique the values are entered in the input field in such a way that

rest of the query is treated as a comment.

iv) Timing attack: In this type of attack, the attacker guesses the information character by character,

depending on the output form of true/false. In time based attacks, attacker introduces a delay by injecting

an additional SLEEP (n) call into the query and then observing if the webpage was actually by n seconds.

v) Union Query: Injected query is concatenated with the original SQL query using the keyword UNION

in order to get information related to other tables from the application.

vi) Blind SQL injection attacks: Attackers typically test for SQL injection vulnerabilities by sending

the input that would cause the server to generate an invalid SQL query.

If the server then returns an error message to the client, the attacker will attempt to reverse-engineer

portions of the original SQL query using information gained from these error messages. The typical

administrative safeguard is simply to prohibit the display of database server error messages.

Unfortunately, that’s not sufficient. If your application does not return error messages, it may still be

susceptible to “blind” SQL injection attacks.

 SQL Query

 Query Language

 Processor
Parser

 DBMS Engine
 Transaction

 Manager

Optimizer

File

 Manager

Physical DB

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 218

III. Related Work

There are lots of researches in area of SQL injection attack. Study of several researchers has been made.

These studies discuss attacking mechanism along with solution of problem with their pros and cons.

Following is the list of method and approaches used by existing researchers:

Table 1. Comparisons of previous approaches

Method Name Advantages Drawbacks

Novel based algorithm to

prevent back end

database[1]

Proposed model uses the concept

of ASCII values with three

phases that storing, checking and

retrieving form database

Storage is an major concern

because need double space

for storing an ASCII values

Defeating SQL Injection-

Removing Parameter

values [2]

Proposed Model detects the

injection attacks by using a

combine static and dynamic

analysis.

Runtime prevention

approach requires dynamic

monitoring systems but it

could prevent all attacks.

Encountering SQL

injection in Web

application[3]

Using Anomaly based prediction

query will be validated and if

anamaly value reaches an

threshold it will be rejected.

Validation of SQL query

interms of case sensitivity it

affect major concern of

authenticity for an

authorized users

SQL injection attack

defense model[4]

The proposed defense model it

tries to detect from network level

legitimacy , Query length and

checks the privilege

Mismatch interpretation

from the SQL server it will

not allow authorized user to

access to that.

A novel method for SQL

injection attack based on

removing SQL query

attribute values [5]

Proposed method can be used for

modularization of detection

programs.

It is independent of the

DBMS when compared with

other SQLIA detection

methods.

SQL Injection: A

demonstration and

implications for

accounting students[6]

Identifying and understanding the

risks of SQL injection and its

impacts on financial processes.

Identifying and

understanding of risk related

to SQL query it’s not so easy

to detect it.

Analysis of field data on

web security

vulnerabilities[7]

Application written in high level

language have an less

vulnerabilities and exploits

Vulnerabilities are not

present in the source data

analysis.

IV. SQL Injection Detection

Detect potential SQL injection vulnerabilities

The first step towards achieving a successful SQL injection attack is to detect vulnerabilities. Of course,

some tools can automate the process, but it’s better to understand how detection can be done manually.

In addition, there are some situations where only manual testing will allow in-depth analysis.

Interfering with Query

The only way to know if an input source is potentially vulnerable is to trigger anomalies in the tested

webpage or application. In order to do this, the attacker must submit input values that are likely to be

incorrectly handled. This technique fuzzing will not yet confirm that an SQL injection flaw is present,

but it will help finding what needs further testing.

Testing Strings

To create anomalies in the tested script you need to submit input values prone to generate an invalid SQL

syntax. Some key testing strings will allow you to achieve this. Those include special characters

that should have been filtered by the application. Here are a few examples from the SQL injection testing

strings article.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 219

Detection Example

 Before jumping in the core of the subject let’s take a look at a simple example.

As expected, the page returned an error.

In this example it is pretty obvious that there is a security flaw. However, in some cases it is much more

difficult to tell. When generic errors or HTTP errors are returned, it becomes hard to know if the

suspicious data was intercepted by server-side validation or if the code handled an error generated by the

query. For this reason, it is necessary to push tests a bit further.

Confirm Detection

Inference testing is a good technique to confirm that a potential flaw is really vulnerable. Simply put,

testing SQL injection by inference will allow the attacker to reconstruct information by analysing the

application’s response to different requests. In this case, the tester will craft special SQL segments to

make sure he really has control over the query. Two different tests will be required.

V. SQL Prevention Methods

Parameterized Statements

Programming languages talk to SQL databases using database drivers. A driver allows an application to

construct and run SQL statements against a database, extracting and manipulating data as needed.

Parameterized statements make sure that the parameters (i.e. inputs) passed into SQL statements are

treated in a safe manner.

String sql = "SELECT * FROM users WHERE email = ?";

// Run the query, passing the 'email' parameter value...

ResultSet results = stmt.executeQuery(sql, email);

while (results.next()) {

// ...do something with the data returned.}

The code here portrays that the utilization of a particular parameter empowers in protecting the code and

the product from the assault inside.

Contrast this to explicit construction of the SQL string, which is very dangerous

// Bad, bad news! Don't construct the query with string concatenation.

String sql = "SELECT * FROM users WHERE email = '" + email + "'";

// I have a bad feeling about this...

ResultSet results = stmt.executeQuery(sql);

while(results.next()) {

// ...oh look, we got hacked.

}

This code has the real imperfection of utilizing the string link that causes the assailant to utilize the holes

in utilizing the strings to transfer the code into the framework.

The key difference is the data being passed to the execute Query (...) method.

TEST STRINGS TO DETECT SQL INJECTION (1 PER LINE).

 xyz'

xyz')

1 OR

1)

THE QUERY IS BUILT WITHOUT SANITIZING PARAMETERS.
$query = "SELECT title, content FROM posts WHERE page='".$_GET['page']."'";

 TEST STRING SUBMITTED BY THE ATTACKER (VALUE OF PAGE PARAMETER).

xyz')

 QUERY GENERATED. NOTICE THAT THE INJECTED QUOTE CLOSES THE STRING (COLOR

CAN BE CONFUSING HERE)!
SELECT title, content FROM posts WHERE page='xyz')'

ERROR RETURNED AFTER INJECTION ATTEMPT.
1064 - You have an error in your SQL syntax; check the manual that corresponds to your MySQL

server version for the right syntax to use near ')'' at line 1.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 220

In the first case, the parameterized string and the parameters are passed to the database separately, which

allows the driver to correctly interpret them. In the second case, the full SQL statement is constructed

before the driver is invoked, meaning we are vulnerable to maliciously crafted parameters.

NOTE: Use parameterized statements where available, they are your number one protection against SQL

injection.

Object Relational Mapping

Many development teams prefer to use Object Relational Mapping (ORM) frameworks to make the

translation of SQL result sets into code objects more seamless. ORM tools often mean developers will

rarely have to write SQL statements in their code – and these tools thankfully use parameterized

statements under the hood.

Code like this is protected from SQL Injection assaults as they utilize the in-manufactured directions

rather than the essential directions that are powerless against the assault.

Using an ORM does not automatically make you immune to SQL injection, however. Many ORM

frameworks allow you to construct SQL statements, or fragments of SQL statements, when more

complex operations need to be performed on the database. For example, the following Ruby code is

vulnerable to injection attacks:

Escaping Inputs

If you are unable to use parameterized statements or a library that writes SQL for you, the next best

approach is to ensure proper escaping of special string characters in input parameters.

Injection attacks often rely on the attacker being able to craft an input that will prematurely close the

argument string in which they appear in the SQL statement. (This is why you will often see ' or "

characters in attempted SQL injection attacks.)

Programming languages have standard ways to describe strings containing quotes within them – SQL is

no different in this respect. Typically, doubling up the quote character – replacing ' with '' – means “treat

this quote as part of the string, not the end of the string”.

Escaping symbol characters is a simple way to protect against most SQL injection attacks, and many

languages have standard functions to achieve this. There are a couple of drawbacks to this approach,

however:

 You need to be very careful to escape characters everywhere in your codebase where an SQL

statement is constructed.

 Not all injection attacks rely on abuse of quote characters.

For example, when an numeric ID is expected in a SQL statement, quote characters are not required. The

following code is still vulnerable to injection attacks, no matter how much you play around with quote

characters

How much ever you attempt to alter the code and attempt to adjust the substance the vulnerabilities in the

essential codes can't be changed.

Sanitizing Inputs

Sanitizing inputs is a good practice for all applications. In our example hack, the user supplied a

password as ' or 1=1--, which looks pretty suspicious as a password choice.

Developers should always make an effort to reject inputs that look suspicious out of hand, while taking

care not to accidentally punish legitimate users. For instance, your application may clean parameters

supplied in GET and POST requests in the following ways:

 Check that supplied fields like email addresses match a regular expression.

 Ensure that numeric or alphanumeric fields do not contain symbol characters.

 Reject (or strip) out whitespace and new line characters where they are not appropriate.

Def current_user(email)
 User.find_by_email(email)
end

Def current_user(email)
User. where ("email = '" + email + "'")
end

defcurrent_user(id)
 User.where("id = " + id)
end

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906P33 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 221

VI. Proposed Model

This paper focused on how SQL injection attack possesses serious threats to web users and web

application services majorly caused by input validation and similar other reasons. Rather than utilizing a

similar old systems like the code based, concrete assault and the tainted based vulnerability, we can

ensure that the rudiments are being securely utilizing the inbuilt keyword rather than the essential and

basic ones, which make it much secure and will help in diminishing the affected codes that are internally

code based and to prevent them from spreading to further influence the other active and live codes.

Therefore we can utilize the counteractive action procedures referenced in the preventive measures to

further protect the codes from assaults of a similar kind. This paper also highlights introduction to

various types of SQL injection attacks their detection and prevention techniques.

VII. Conclusion

 SQL injection attack is a serious security and integrity problem in Web application and all those actions

performed by user with the help of web. Most of these attacks are successful due to lack of valid input,

rules, policies and standards by the user. The attackers make good use of these vulnerabilities and carry

out these attacks. Hence the prevention and knowledge about these attacks is very important in order to

keep data and databases safe. In addition to SQL injection attacks, we discussed about various detection

and prevention techniques in this paper.

 References

[1] Mahima Srivastava,”Algorithm to prevent back end database against SQL injection attacks,”IEEE

International conference on computing for sustainable global development, 2014, pp.754-757.

[2] Rajashree.katole, Dr.Swati S.Shrekar, Dr.Vilas M. Thakare,”Detection of SQL injection attacks by

removing the parameter values of SQL Query.”IEEE proceedings of the conference on Inventive

systems and Control,2018,pp.736-741

[3] Joshi padma N, Dr.N.Ravishankar, Dr.M.B. Raju and N.CH.Ravi,”Encountering SQL injection in

Web applications.” IEEE proceedings of the conference on computing methodologies and

communication,2018,pp.251-261

[4] Li Qian,Zhenyuan Zhu,Jun Hu,”Resaerch of SQL injection attack and prevention technology.”IEEE

proceedings of the conference in detection and information fusion,2015,pp.303-307

[5] Indrani B., E. Ramaraj (2012) “An Efficient Technique for Detection & Prevention of SQL

Injection Attack using ASCII Based String Matching” International Conference on Communication

Technology & System Design

[6] P. Sonam, “Protection of Web Application against Sql Injection Attacks”, International Journal of

Modern Engineering Research Vol.3, Issue.1, Jan-Feb. 2013 pp-166-168

[7] Lwin Khin Shar & Hee Beng Kuan (2013)Tan Mining SQL Injection & Cross Site Scripting

Vulnerabilities using Hybrid Program Analysis

[8] S. Pankaj Sharma, “Integrated approach to prevent SQL injection attack & reflected cross site

scripting attack,” International Journal on Recent & Innovation Trends in Computing &

Communication Volume: 1 Issue: 4,2014

[9] Amirmohammad Sadeghian 2014 SQL Injection Vulnerability General Patch Using Header

Sanitization

[10] Nabeel Salih Ali Protection Web Applications using Real-Time Technique to Detect Structured

Query Language Injection Attacks 2016

[11] Kanchan Choudhary, Anuj Kumar Singh (2016) “A Modified Scheme for Preventing web

Application against SQL Injection Attack”, International Journal of Computer Applications (0975 –

8887) Volume 141 – No.10, May 2016

http://www.jetir.org/

