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Abstract :   

 

The problem of triple diffusive convection in a horizontal nanofluid layer in a porous medium heated and salted from below studied 

analytically. Following the linear stability theory and normal made technique, the effects of the solute Rayleigh numbers, 

concentration Rayleigh number, Lewis number, modified Darcy number, porosity and modified diffusivity ratio on the stability of 

the system is investigated analytically. Thus, concentration Rayleigh number, modified Darcy number and porosity destabilize the 

stationary convection while the solute Rayleigh number stabilizes the stationary convection. The critical Rayleigh number for the 

onset of instability is determined numerically, and results are depicted graphically. The sufficient conditions for the non-existence 

of over-stability are also derived. 

 

IndexTerms – Triple-diffusive convection; Brownian motion; oscillatory convection; porous medium; Nanofluid 

I. INTRODUCTION 

 

The study of nanofluid has become of increasing importance in the last few years. Some fluids, like water, engine oil and 

ethylene glycol mixture, have low thermal conductivity, so they have limited heat transfer capability. The flow of nanofluid 

is of great importance due to their applications in electronics, automotive, high flux solar collectors, and nuclear applications. 

Choi [1] coined the term “nanofluid” to refer to a fluid containing a dispersion of nanoparticles. The term nanofluids are 

colloidal suspensions of nanoparticles with typical dimensions of about 1-100 nm dispersed in a non-conducting carrier liquid 

like water, kerosene, ester and hydrocarbons etc. Nanofluids are synthesized in the laboratory; they do not occur naturally. 

Characteristic features of nanofluid are the formation of a very stable colloidal system with minimal settling and anomalous 

enhancement of the thermal conductivity compare to the base fluid [2-10]. Buongiorno [11] focused on heat transfer 

enhancement of nanofluid in convective situations and concluded that in the absence of destructive effects, only Brownian 

diffusion and thermophoresis are important slip mechanisms in nanofluids. Buongiorno [11] gave the conservation equation 

of a nonhomogeneous equilibrium model of nanofluid for mass, momentum and heat transport. Based on the transport 

equation, many researchers have studied the stability of the onset of convection in a nanofluid. Tzou [12] has studied the 

thermal instability of nanofluids in natural convection. The problem of onset of convection in a horizontal nanofluid layer of 

finite depth is studied by Nield and Kuznetsov [13]. They obtained that oscillatory instability is possible when nanoparticles 

concentrate near the bottom of the layer. The onset of double-diffusive convection in a nanofluid layer is studied by Nield 

and Kuznetsov [14]. On using one-term Galerkin approximation, they obtained that the stability boundaries for both non-

oscillatory and oscillatory cases.  

The growing importance of the use of non-Newtonian fluids in several applied fields oil recovery, food processing, the spread 

of contaminants in the environment and various processes in the chemical and materials industry has led various researchers 

to attempt diverse flow problems related to several non-Newtonian fluids. The problem on the thermal convection in a 

viscoelastic fluid was studied by many authors [15-18]. It is commonly believed that oscillatory convection is not possible in 

viscoelastic fluids under realistic experimental conditions [19]. Those experiments triggered new interest in convection by 

applying binary aspects to viscoelastic fluids. Rayleigh-Benard convection in binary viscoelastic fluids was studied by some 

researchers [20-22]. Laroze, Martinez-Mardones, Bragardc and Peirez-Garcia [23] have studied the problem of realistic 

rotating convection in a DNA suspension. The problem of thermal instability of rotating nanofluid layer is studied by Yadav, 

Agrawal and Bhargava [24]. The problem linear stability analysis of in a viscoelastic nanofluid layer is studied by Sheu [25]. 

He found that Oscillatory convection is possible for both bottoms heavy and top-heavy nanoparticle distributions. Chand and 

Rana [26] have studied the problem on the onset of thermal convection in rotating nanofluid layer saturating Darcey-

Brinkman porous medium and found that Lewis number and modified diffusivity ratio stabilize the stationary convection 

while concentration Rayleigh number destabilize the stationary convection. Gupta et al. [27] studied the effect of magnetic 

field on the onset of convection in a nanofluid layer and found that Lewis number increases the stability in nanofluid layer 

system and decreases it for oscillatory motions. 

The double-diffusive convection is convection in which the fluid contains two components with different molecular 

diffusivities. However, there are many situations where more than two components are involved like the solidification of 

molten alloys, geothermally heated lakes, magmas and their laboratory models and seawater. The triple-diffusive convection 

in nanofluid has been studied by Rionero [28] and Khan et al. [29]. 

In recent years, the theory of nanofluids became more attractive due to the inexpensive price and easy production. Also, the 

presence of more than one chemical dissolved in fluid mixtures is very often requested for describing natural phenomena like 

contaminant transport, underground water flow, acid rain effects, worming of the stratosphere. These situations can also occur 

in a nanofluid mixture if we dissolve different salts in a nanofluid. Therefore, the triple-diffusive convection in a nanofluid 

layer has been studied in the present paper, taking the effects of Brownian diffusion and thermophoresis in the account.To 

the best of our knowledge, the effect of triple-diffusive convection in stability of the nanofluid layer has not been investigated 
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yet. Employing the linear stability analysis, the analytical Rayleigh number has been obtained using normal mode technique. 

We have also discussed the stationary, oscillatory convection and case of overstability. 

 

II. ASSUMPTIONS 

The following assumptions have been taken for the mathematical treatment of the considered problem. 

(i) The nanofluid is taken as incompressible and Newtonian, and the flow is considered to be laminar. 

(ii) There is no chemical reactions take place during the thermal convection. 

(iii) The density of the nanofluid is considered to be constant except in the term for the external force in momentum 

equation while other thermophysical properties of nanofluid (viscosity, specific heat, thermal conductivity, 

solute diffusivities etc.)are assumed to be constant (Boussinesq Hypothesis). 

(iv) The nanoparticles and fluid phase are in a thermal equilibrium state.  

(v) Nano particles are considered to be spherical. 

(vi) In comparison with the other modes of heat transfer, the Radiative heat transfer between the sides of the wall is 

extremely small; therefore, the effect has been neglected. 

(vii) Nanoparticles are being suspended in the nanofluid using either surfactant or surface charge technology, 

preventing the agglomeration and deposition of these on the porous matrix. 

(viii) The reference temperature is assumed to be high as compared to fluid temperature. 

III. PROBLEM FORMULATION  

 

We consider an infinite horizontal layer of fluid confined between two horizontal planes situated at 
* 0z  and

*z d acted upon by gravity field (0, 0, )gg . We use the asterisks to denote the variables in dimensional form. In the 

present problem, z -axis-aligned vertically upward. The boundary walls are assumed to be perfectly thermally conducting 

and nanoparticles concentrated. At the bottom surface, the temperature
*( )T  is, and solute concentrations 

(1)* (2)*( , )C C  are 

taken as 
* *

0T T , 
(1)* (1)*

0C C  and 
(2)* (2)*

0C C  while at the top surface, these values are assumed to be 
*

0T , 
(1)*

0C  

and
(2)*

0C , respectively. In the present analysis, we use the Oberbeck-Boussinesq approximation, and a mixture of nanofluid 

and concentrations (salts) is homogeneous and is in local thermal equilibrium. The temperature change is assumed to be small 

as compared to
*

0T , and similarly, the changes in concentrations are assumed to be small in comparison with 
(1)*

0C and
(2)*

0C , 

respectively.  

The governing equation for the nanofluid layer (Buongiorno [11], Tzou [12])can be written as 

*. 0 q ,            (1) 

1 2

*
* * * * * *2 * *2 * * *0

0*
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*

* * * *2 * * * * * * * * * *

0*
( . ) . / .B Tm f p
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(1)*
* * (1)* *2 (1)*

*

1
( . ) S

C
C D C

t


   

 
q ,        (4) 

2

(2)*
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C D C
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
   

 
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 
*

* * * *2 * * *2 *

0*

1
( . ) /B TD D T T

t


       

 
q .     (6) 

Here, flow velocity
* * * *( , , )u v wq  and is assumed that solute concentrations and volume fraction of the nanoparticles are 

constant on both the boundaries. Therefore, the boundary conditions can be written as 

At 
* 0z 

* 2 *
* * * *

1 0* *2

(1)* (1)* (1)* (2)* (2)* (2)* * *

0 0 0

0, 0,

, ,

w w
w d T T T

z z

C C C C C C



 

  
    

 
     

   (7) 

and 

At 
*z d

* 2 *
* * *

2 0* *2

(1)* (1)* (2)* (2)* * *

0 0 1

0, 0,

, ,

w w
w d T T

z z

C C C C



 

  
   

 
   

 ,     (8) 

where 1 and 2 are the parameters which take the value zero for the case of a rigid boundary and infinity for the case of a 

free boundary. 

We accept that in some context, the choice of boundary conditions imposed on is somewhat arbitrary. It could be 

claimed that on the boundaries, zero particle flux is more realistic physically, but then one is faced with the problem that it 

appears that no steady-state solution for the basic conduction equations is then possible (we have tried to find one and met a 

contradiction) so that in order to find the analytical solution for considered problem it is necessary to restrict the basic profile 

for  and at that stage our choice of boundary conditions is seen to be quite realistic. 

 To introduce non-dimensional variables, we define
* * *( , , ) ( , , ) /x y z x y z d ,

* * *( , , ) ( , , ) / fu v w u v w d  , 

* / fp p K  ,  * * *

0 /T T T T   ,    * * * *

0 1 0/      , 
* 2/ft t d   ,  (1) (1)* (1)* (1)*

0 /C C C C   ,

 (2) (2)* (2)* (2)*

0 /C C C C   ,  where  /f f
c     and    /

m f
c c    . 

The non-dimensional form of the equations (1) - (6) can be written as 

. 0 q ,            (9) 

2 (1) (2)1 2

1 2

ˆ ˆ ˆ ˆ ˆ
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z z z z z
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 

q
q q ,  (10) 

  2. . .B A BN N NT
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t Ln Ln
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
q ,      (11) 

 
(1)

(1) 2 (1)

1

1 1 1
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C
C C

t Le


   
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q ,        (12) 

 
(2)

(2) 2 (2)

2

1 1 1
.

C
C C

t Le


   
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q ,        (13) 

  2 21 1 1
. AN

T
t Ln Ln


      

  
q .       (14) 

The dimensionless boundary conditions are 

At 0z 
2

(1) (2)

1 2
0, 0, 1, 1, 1, 0

w w
w d T C C

z z
 

  
      

 
   (15) 

and 
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At 1z 
2

(1) (2)

2 2
0, 0, 0, 0, 0, 1

w w
w d T C C

z z
 

  
      

 
,    (16)

 

Here, dimensionless parameters as follows; 

0

Pr
f



 

; the Prandtl number,
2/Da K d ; the Darcy number, 

2/Da K d  ; the  Brinkman-Darcy number, 

f

B

Ln
D


 ;the nanofluid Lewis number,

1

1

f

S

Le
D


 ; the familiar Lewis number, 

2

2

f

S

Le
D


 ; the analogous Lewis number, 

*

0 T

f

g Kd T
Ra

  



;the familiar thermal Rayleigh number, 1

1

(1)*

1

C

S

g Kd C
Rs

D

  



;the familiar solute Rayleigh number, 

2

2

(2)*

2

C

S

g Kd C
Rs

D

  



; the analogous solute Rayleigh number. The parameters 

 * *

1 11p

f

gKd
Rm

    
 


and 

  * *

1 0p

f

gKd
Rn

    
 


 may be regarded as a basic density Rayleigh number and a nanoparticle concentration 

Rayleigh number, respectively. The parameter
 

*

* * *

0 1 0

T
A

B

D T
N

D T




 
is a modified diffusivity ratio and 

   
 

* *

1 0p

B

f

c
N

c

   



 is a modified particle-density increment. 

As we assumed the case of small thermal and solutal gradients in a dilute suspension of nanoparticles, the 

linearization of equation (11) will be done by the neglect of terms, one proportional to the product of  and T  another 

proportional to the product of , 
(1)C and , 

(2)C . For the linearization, we use the concept of Oberbeck-Boussinesq 

approximation. 

IV. BASIC STATE  

 

 

We assume that thebasic state of nanofluid layer is timeindependent and is described by  

(0, 0, 0)q , ( )bp p z , ( )bT T z , 
(1) (1) ( )bC C z , 

(2) (2) ( )bC C z , ( )b z   ,    (17) 

Using above equation, equations (10) - (14) take the form 

(1) (2)1 2

1 2

0 b b b b b

Rs Rsd
p Rm RaT C C Rn

dz Le Le
        ,      (18) 

22

2
. 0b b b bB A B

d T d dT dTN N N

dz Ln dz dz Ln dz

   
     

   
,       (19) 

2 (1)

2

1

1
0bd C

Le dz
 ,           (20) 

2 (2)

2

2

1
0bd C

Le dz
 ,           (21) 

2 2

2 2
0b b

A

d d T
N

dz dz


  .           (22) 
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(0) 1bT  , 
(1) (0) 1bC  ,

(2) (0) 1bC  , (0) 0b  , (1) 0bT  ,
(1) (1) 0bC  ,

(2) (1) 0bC  , (0) 1b  . (23) 

In mostly cases of nanofluid layers, the value of 
* *

1 0

Ln

  
is large of order 

510 -
610 [ Buongiorno (2006)] and 

alsothenanoparticle fraction decrement  * *

1 0  is typically no smallerthan 
310

implies that Ln  is large, of order 

2 310 10 . It has also been observed that AN will not be greater than 10. Using this approximation, the basicsolution can be 

written as follows; 

( ) 1bT z z  , 
(1) ( ) 1bC z z  , 

(2) ( ) 1bC z z  , ( )b z z  .     (24) 

V. PERTURBED STATE 

 

If we impose the ‘small perturbations’ to the basic state of the nanofluid layer, the parameters become

( , , ) (0, 0, 0) ( , , )u v w u v w   q q q , bp p p  , bT T T   ,
(1) (1) (1)

bC C C   and 
(2) (2) (2)

bC C C   . Here prime 

denotes the quantities in a perturbed state. 

We are using here linear stability theory and therefore we are neglecting all product and powers (higher than the 

first) of the increments. Now,the linearized perturbation equations are 

. 0 q ,            (25) 

2 (1) (2)1 2

1 2

ˆ ˆ ˆ ˆ
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z z z z
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p Da RaT e C e C e Rn e

t Le Le
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 

q
q q ,   (26) 
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(1)
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1

1 1 1C
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,         (28) 

(2)
2 (2)

2

1 1 1C
w C

t Le

   
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,        (29) 

2 21 1 1 AN
w T

t Ln Ln


       

  
.        (30) 

The dimensionless boundary conditions are 

0w  , 

2

1 2
0

w w

z z

  
  

 
, 0T   , 

(1) 0C   , 
(2) 0C   , 0  at 0z    (31) 

and 0w  , 

2

2 2
0

w w

z z

  
 

 
, 0T   , 

(1) 0C   , 
(2) 0C   , 0  at 1z  .  (32) 

It can be noted that the parameter Rm  is just a measure of the basic static pressure gradient and is not involved in above 

equations. If we take a regularbinary fluid (not a nanofluid) the parameters Rn , 
AN and 

BN  will be zero and second term 

in L.H.S in equation (30) is absent because / 0bd dz  . The remaining equations are reduced to the familiar equations for 

the triple-diffusive Rayleigh-Benard problem. 

 

Eliminating 'p by operating a curl twice on (25), we obtain 

 2 4 2 2 2 (1) 2 (2) 21 2

1 2Pr
H H H H

Rs RsDa
w Da w w Ra T C C Rn

t Le Le

                  
 

. (33) 
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Here
2

H is the two-dimensional Laplacian operator in the horizontal plane. The differential equations (33), (27) - (30) and 

the boundary conditions (31) and (32) constitute a linear boundary value problem that can be solved using the method of 

normal modes. Now analyzing the perturbations into normal modes, we assume that the perturbation quantities are of the 

form 

 (1) (2), , , , ( ), ( ), ( ), ( ), ( ) exp{ },x yw T C C W z z z z z ik x ik y nt      
 

Q G Y F
  

(34) 

Where xk and yk are the wave numbers in x and y directions respectively,
2 2 1/ 2( )x yk k k  is the resultant wave 

number of propagation and n  is the frequency of any arbitrary disturbance which is, in general, a complex constant. Using 

equation (34) in the equations (33) and (27)-(30), we get 

   2 2 2 2 2 2 2 21 2

1 2

1
Pr

Rs RsDa n
Da D k D k W Rak k k X Rnk

Le Le

 
           

, (35) 

 2 2 2
0B A B BN N N N

W D k n D D D
Ln Ln Ln

 
        
 

,        (36) 

 2 2

1

1
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W n
D k
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 
     

  
,          (37) 

 2 2

2

1
0

W n
D k X
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 
    

  
,           (38) 

   2 2 2 21
0ANW n

D k D k
Ln Ln

 
       

  
,        (39) 

We are considering the case of free boundaries forstability analysis. Therefore the boundary conditions are 

0W  , 
2 0D W  , 0  , 0  , 0X  , 0  at 0z  and 1z  .     (40) 

Now, we assume the solutions of the equations (35) to (39) in the form  

0W W Sin z  , 0 Sin z  , 0 Sin z   , 0X X Sin z  and 0 Sin z   ,   (41) 

because they satisfy the boundary conditions (40).  

Substituting equation (41) in to equations (35) - (39), we have   

 

4 2 2 2 2 2 21 2

1 2

2

0

02

01

0
2

0
2

2 2

Pr

1 0 0 0

1 1
0 0 0

0

1 1
0 0 0

1 1
0 0A

Rs RsnDa
Da Rak k k Rnk

Le Le

n W

n

Le

Xn

Le

N n

Ln Ln

 
      

 
      

                
  
            

 
  

       

.  

          (42) 

Here, 
2 2 2k    is total wave number. The nontrivial solution of the above homogeneous equations requires that 
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     
 

 
 

2 2 22 2
2 4

1 22 2 2
1 2

2 2

2

Pr Pr ( )

A

n n nn nDa
Ra Da Rs Rs

k nLe nLe

nLn Ln N Rn
nLn

        
        

     


     
 

,   (43) 

Now, we take n i  in equation (43), and we get 

1 2Ra i    .           (44) 

Here, 

   
 

 
 

 
 

4 6 2 2 4 2 4 2

1 2

1 1 22 2 4 2 2 2 4 2 2

1 2

4 2 2 4

2 4 2 2

Pr Pr

Pr

A

Da Da Le Le
Rs Rs

k Le Le

Ln Ln N Rn

Ln

            
   

        

    


   

, (45) 

and 

   

 
 

 

 

 

2 4 4 2 2

1 2

2 1 22 2 4 2 2 2 4 2 2

1 2

2

2 4 2 2

Pr Pr

Pr

A

Da Da Le Le
Rs Rs

k Le Le

Ln Ln N Rn

Ln

          
   

        

  


   

,    (46) 

As the Rayleigh number Ra is a physical quantity and therefore, it must be real. Hence, it can be concluded from the 

equation(44) that either 0 (exchange of stabilities, steady-state) or 2 0  ( 0 , overstability or oscillatory onset). 

 

VI. STATIONARY CONVECTION 

 

Steady onset corresponds to 0  and Rayleigh number is given by 

 
 

4 2

1 22

1 1 1 1st

A

Da
Ra Rs Rs Ln N Rn

k

 
     

  
,     (47) 

In the absence of concentrations (salts), equation (47) becomes 

 
 

4 2

2

1 1st

A

Da
Ra Ln N Rn

k

 
  


,       (48) 

This is same equation as obtained by Tzou [12] and Sheu[25].   

The critical cell size at the onset of instability is obtained from the condition 0Ra
k





. 

2
ck


 ,          (49) 

Thus, for steady onset, the corresponding critical thermal Rayleigh number i   

VII. OSCILLATORY CONVECTION 

 

For oscillatory onset, 2 0  and 0 , which gives 

2 3 2 2 2

3 2 1 0( ) ( ) ( ) 0a a a a       .         (51) 

Here,   2 2 2 2 2 2

3 1 2 Pr 1 ,a Le Le Ln Da Da       
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  

   

 

2 2 2 2 6 2 2 2 6 2 2 2 6 2

2 1 2 1 2

2 4 2 2 2 2 4 2 2 2

2 1 1 1 2 1

2 2 2 2 2

1 2

Pr Pr

Pr Pr

Pr A

a Da Da Le Le Le Ln Le Ln

k Le Ln Le Rs k Le Ln Le Rs

k Le Le Ln Ln N Rn

              

       

    

 

  

  

  

  

2 2 10 4 2 10 4 2 10 4 2

1 1 2

2 6 2 4 2 6 4 2

1 2 1 1

2 6 4 2 2 6 4 2

2 1 2 2

2 6 4 2 2 6 4 2

1 2

Pr Pr

Pr Pr

Pr Pr

Pr PrA

a Da Da Le Le Ln

Le k Le Rs k Ln Rs

Le k Le Rs k Ln Rs

Ln N k Le Ln k Le Ln Rn

              

      

      

       

 

   

   

2 2 14 6 2 10 6

0 1 1

2 10 6 2 10 6 2

2 2 1

Pr Pr Pr

Pr Pr A

a Da Da k Rs Le

k Rs Le k Le Ln Ln N Rn

           

        
. 

As we know, Ln  is of order
2 310 10 , 1 10AN   and therefore 

ALn N  is always positive. If 
1Le and 

2Le are 

greater than 1, equation (51) does not admit the positive value of
2 . In other words, we can say Oscillatory convection is 

possible only when
1 2,Le Le  . 

Thus from Eq. (37) and (38), oscillatory Rayleigh number is given by 

   
 

 
 

 
 

4 6 2 2 4 2 4 2

1 2

1 22 2 4 2 2 2 4 2 2

1 2

4 2 2 4

2 4 2 2

Pr Pr

Pr

osc

A

Da Da Le Le
Ra Rs Rs

k Le Le

Ln Ln N Rn

Ln

            
  

        

    


   

, (52) 

Here, where 
2  is given by equation (51). If no positive value of 

2  exist, then oscillatory convection is not possible. This 

result is a good agreement with the result obtained by Sheu[25]. 

 

VIII. CASE OF OVERSTABILITY 

 
Here, we check the possibility of occurrence of overstability. Since, we wish to find the Rayleigh number for the onset of 

instability via a state of pure oscillation, for which it suffices to find the conditions for which equation (51) will have the solution 

with real values of . The three values of
2 (  being real) are positive. 

The product of root is 0 3( / )a a  , and this is to be positive. However, from Eq. (51) it is clear that 3b is always positive 

and 0b  is positive if  

0Rn  , 1 2,Le Le    and
ALn N   .      (53) 

Hence inequalities (53) are sufficient conditions for the non-existence of overstability, the violation of which does not necessarily 

imply the occurrence of overstability. 

 

IX. RESULTS AND DISCUSSIONS 

 

In this section, we describe our results numerically. Stationary thermal Rayleigh number is given by equation (47), and the 

expression of the oscillatory thermal Rayleigh number is obtained analytically using equation (52) where 
2 is given by 

equation (51). From equation (47) and (52), it is clear that stationary Rayleigh number and oscillatory Rayleigh number do 

not depend on
BN because the effect of

BN in equation (36) is cancelled due to the integration of orthogonal functions. The 

impact of Brownian motion and thermophoresis in the thermal energy equation of instability does not appear. The 
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Brownian motion and thermophoresis directly contribute to the equation expressing the conservation of nanoparticles 

to produce their effects. In this way, the temperature and nanoparticle density is coupled in a particular way in which the 

instability is almost purely a phenomenon due to buoyancy coupled with the conservation of nanoparticle motion. Therefore, 

it is worth discussing the limiting case, 0AN  , which indicates the absence of athermophoretic effect.  

 

Figure 1 shows the neutral curves for different values of modified Darcy numbers. It has been observed that stationary 

Rayleigh number decreases with increasing the modified Darcy number. Thus, modified Darcy number destabilizes the 

stationary convection. 

 

Figure 2 shows the neutral curves for different values of solute Rayleigh numbers. It shows that stationary Rayleigh number 

increases with increase the solute Rayleigh number. Thus, solute Rayleigh number stabilizes the stationary convection. 

 

Figure 3 shows the neutral curves for different values of analogous solute Rayleigh numbers. It shows that stationary Rayleigh 

number increases with increase the solute Rayleigh number. Thus, solute Rayleigh number stabilizes the stationary 

convection. 

 

Figure 4 shows the neutral curves for different values of nanofluid lewis number. It has been found that stationary Rayleigh 

number decreases with increasing the nanofluid lewis number. Thus, nanofluid lewis number destabilizes the stationary 

convection. 

 

Figure 5 shows the neutral curves for different values of porosity. It has been observed that stationary Rayleigh number 

decreases with increase the porosity. Thus, porosity destabilizes the stationary convection. 

 

Figure 6 shows the neutral curves for different values of concentration Rayleigh number. It has been observed that stationary 

Rayleigh number decreases with increase the concentration Rayleigh number. Thus, concentration Rayleigh number 

destabilizes the stationary convection. 

 

For the bottom heavy distribution of the nanoparticles,  is negative while is positive for top-heavy distribution. It is 

observed that stationary convection is possible for both bottom-heavy and top-heavy nanoparticles distribution and 

stationary Rayleigh number is smaller for top-heavy than that of bottom-heavy distribution of nanoparticles [25]. 

Figure 7 shows the neutral curves for different values of modified diffusivity ratio. It has been observed that stationary 

Rayleigh number decreases with increase the modified diffusivity ratio. Thus, the modified diffusivity ratio destabilizes the 

stationary convection. 

 

 

Fig. 1. Neutral stability curve for Rayleigh number for different values of modified  Darcy number 
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Fig. 2. Neutral stability curve for Rayleigh number for different values of solute Rayleigh number. 

 

Fig. 3.Neutral stability curve for Rayleigh number for different values of analogous solute Rayleigh number 

 

 

Fig. 4.Neutral stability curve for Rayleigh number for different values nanofluid Lewis number 
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Fig. 5.Neutral stability curve for Rayleigh number for different values of porosity 

 

Fig. 6. Neutral stability curve for Rayleigh number for different values of concentration Rayleigh number 

 

Fig. 7.Neutral stability curve for Rayleigh number for different values of modified diffusivity ratio 

 

X. CONCLUSIONS 

Linear stability analysis of triple-diffusive convection in a nanofluid layer is investigated. The problem is analyzed for free-

free boundaries by employing the normal mode technique. The main conclusions are: 

(i) The Oscillatory convection is not possible if both Lewis number and analogous Lewis number 1 . 

(ii) The critical cell size is not a function of any thermophysical properties of nanofluid. 

(iii) The critical value of the Rayleigh number is independent of modified particle-density increment BN . 
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(iv) Instability is unaffected by Brownian motion and thermophoresis. It is purely phenomenon due to the coupling of 

buoyancy and conservation of nanoparticles. 

(v) Solute Rayleigh number and analogous solute Rayleigh number stabilize the stationary convection. 

(vi) Lewis number and modified diffusivity ratio stabilize the stationary convection. 

(vii) Concentration Rayleigh number destabilizes the stationary convection. It is also found that stationary convection is 

possible for both bottom-heavy and top heavy distribution of nanoparticles. 

(viii) The sufficient conditions for the non-existence of overstability are 1 21 ,1Le Le   and 1ALn N  . 
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