ALGORITHM TO FIND MAXIMUM NUMBER OF EDGE COLORING.

S.SUTHANTHIRA, M.KAVITHA

\author{

1. M Phil scholar, Department of Mathematics, St. Peters Institute of Higher Education and Research, Avadi, Chennai - 54
}

2 .Assistant professor, Department of Mathematics, St. Peters Institute of Higher Education and Research, Avadi, Chennai - 54

Abstract

: A graph G be a mathematical structure consisting of two set vertices of $G(V(G))$ and edge of $\mathrm{G}(\mathrm{E}(\mathrm{G}))$. Graph Coloring is one of the popular and broadly researched subject in Graph theory .Now we dicuss about the edge coloring of some graph using algorithm.

Key Word:

Graph coloring, edge coloring, algorithm to find edge coloring.

Introduction:

In Graph theory, Graph coloring is a special case of Graph labeling; it is an assignment of labels traditionally called "colors" to element of a Graph subject to certain constraint. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edge share the same color, and a face that share a boundary have the same color.

Vertex coloring is the starting point of the subject, and other coloring problem can be transformed into a vertex version .for example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual.

Edge coloring:

An edge coloring of a graph is a proper coloring of the edges, meaning an assignment of colors to edge so that no vertex is incident to two edges of the same color. An edge coloring with κ-colors is called a κ-edgecoloring and is equivalent to the problem of partitioning the edge set into κ matchings. The smallest number of colors needed for an edge coloring of a graph G is the chromatic index , or edge chromatic number , $\chi^{\prime}(\mathrm{G})$.

EXAPMLE:

Edge coloring

ALGORITHM:

STEP 1:

Start node, finding the maximum degree and number of edge of the graph.
Maximum of the degree $=n$.
Number of edges $=\mathrm{m}$.

STEP 2:

For $i=1 ; i \leq m ; i++)$
Color $\left(e_{i}\right)=$ min $\left\{\right.$ set of total color used -colors of adjacent edge of $\left.e_{i}\right\}$
Where the set of total color used $=\{1,2,3, \ldots . n\}$
If

Color $\left(e_{i}\right)==0$
Color $\left(e_{i}\right) \quad=\mathrm{n}+1$

STEP 3:

End node

EXAMPLE:

$$
\begin{array}{lllll}
V_{5} & e_{5} & V_{4} & e_{4} & V_{3}
\end{array}
$$

STEP 1:

Maximum degree $=\mathrm{n}=4$
No of degree $\quad m=7$

STEP 2:

For $\mathrm{i}=1,1 \leq 7$
Color $\left(e_{1}\right)=\min \{\{1,2,3,4\}-\{0\}\}$
Color $\left(e_{1}\right)=\min \{\{1,2,3,4\}\}$
Color $\left(e_{1}\right)=1$

STEP 3:

For i $=2,2 \leq 7$
Color $\left(e_{2}\right)=\min \{\{1,2,3,4\}-\{1\}\}$
Color $\left(e_{2}\right)=\min \{\{2,3,4\}\}$
Color $\left(e_{2}\right)=2$

STEP 4:

For $\mathrm{i}=3,3 \leq 7$
Color $\left(e_{3}\right)=\min \{\{1,2,3,4\}-\{2\}\}$
Color $\left(e_{3}\right)=\min \{\{1,3,4\}\}$
Color $\left(e_{3}\right)=1$

STEP 5:

For $\mathrm{i}=4,4 \leq 7$
Color $\left(e_{4}\right)=\min \{\{1,2,3,4\}-\{1\}\}$
Color $\left(e_{4}\right)=\min \{\{2,3,4\}$
Color $\left(e_{4}\right)=2$

STEP 6:

For $\mathrm{i}=5,5 \leq 7$
Color $\left(e_{5}\right)=\min \{\{1,2,3,4\}-\{1,2\}\}$
Color $\left(e_{5}\right)=\min \{\{3,4\}\}$
Color $\left(e_{5}\right)=3$

STEP 7:

For $\mathrm{i}=6,6 \leq 7$
Color $\left(e_{6}\right)=\min \{\{1,2,3,4\}-\{1,2,3\}\}$
Color $\left(e_{6}\right)=\min \{\{4\}\}$
Color $\left(e_{6}\right)=4$

STEP 8:

For $\mathrm{i}=6,7=7$
Color $\left(e_{7}\right)=\min \{\{1,2,3,4\}-\{1,2,3,4\}\}$
Color $\left(e_{7}\right)=\min \{\{0\}\}$
Color $\left(e_{7}\right)=0 \quad$ (if condition)
Color $\left(e_{7}\right)=5$
The colors of the edges are tabulated below :-

EDGES	$\left(e_{1}\right)$	$\left(e_{2}\right)$	$\left(e_{3}\right)$	$\left(e_{4}\right)$	$\left(e_{5}\right)$	$\left(e_{6}\right)$	$\left(e_{7}\right)$
COLORS	1	2	1	2	3	4	5

CONCLUSION :

In this paper we discuss about a new algorithm and an example.
Also we discuss how to find maximum coloring for edges for a graph.

REFERENCE :

1 .O. V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colourings of multigraphs, J Combin Theory Series B 71(2) (1997), 184-204.
2 . R. Diestel, Graph theory, 4 edn., Springer-Verlag, New York, 2010.
3. F.Galvin, The list chromatic index of a bipartite multigraph, J Combin Theory Series B 63 (1995), 153-158.

4 . S. Isobe, X. Zhou, and T. Nishizeki, Total colorings of degenerate graphs, Combinatorica 27 (2007), 167-182.
5 .T. R. Jensen and B. Toft, Graph Coloring Problems, Wiley Interscience, New York, USA, 1995.
6 . M. Juvan, B. Mohar, and R. Thomas, List edge-colorings of series-parallel graphs, Electron J Combin 6 (1999), 6.
7 .A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math 162(1-3) (1996), 199-214.

