A Note on Group Rings which Are F-Rings

A.A Samyal

The author in [1] calls a ring R to be a F-ring if there is a finite set X of non zero elements in R such that

 $aR \cap X \neq \phi$ for any non-zero a in R. If in addition X is contained in the centre of R; R is called an FZ-ring. In this note

we obtain conditions under which a group ring is a F-ring. For more about F-rings please refer [1]. Throughout this

paper RG (or FG) denotes the group ring of the group G over the ring R(or the field F).

Example 1: let $Z_2 = (0,1)$ be the field of characteristic 2 and $G = \langle g/g^2 = 1 \rangle$. Then the group ring Z_2G is a F-ring. For take $x = \{1 + g\} Z_2G$. Clearly a. $Z_2G \cap X \neq \phi$ for any non –zero a in R. Trivially Z_2G is a FZ-ring.

Example 2: let $G = \langle g/g^3 = 1 \rangle$ and $Z_{2} = (0,1)$. Then Z_2G is a F-ring (FZ-ring) with $X = \{1+g, 1+g^2, g+g^2, 1+g+g^2\}$. **Example 3:** let $Z_2 = (0,1)$ and

Be the symmetrical group of order 3.Z₂S₃ is a F-ring but Z₂S₃ is not a FZ-ring. For take X ={elements taken two time (i.e. $p_i + p_j$), element taken four at a time (i.e. $p_i + p_j + p_k + p_r$) and $(1 + p_1 + p_2 + p_3 + p_4 + p_5)$ }. Clearly $\alpha Z_2S_3 \cap X \neq \phi$ for any non-zero α in Z₂S₃. Since S₃ is non commutative and X is not in the center of Z₂S₃; Z₂S₃ is not a FZ-ring.

THEOREM 1: Let $Z_2 = (0,1)$ be the field of characteristics two and S_n be the symmetric group of degree n. Then the group ring Z_2S_n is a F-ring.

PROOF: Take

Clearly for every non zero a \in Z2Sn;aZ2Sn \cap X $\neq \phi$. Hence Z2Sn is a F-ring.

THEOREM 2: let $Z_2 = (0,1)$ and G be any finite group. Then the group ring Z_2G is a F-ring.

© 2019 JETIR June 2019, Volume 6, Issue 6

if the order of G is even; adjoin to X the element $\dot{\alpha} = \sum_{i=1}^{n} ; \in h | \dot{\alpha} |$ =order of G if order of G is odd. Clearly $aZ2G \cap \neq \in 2G$.

REMARK: If order of G is infinite or G is torsion free Z₂G need not be a, F-ring.

THEOREM 3. Let G be a finite group and K be a field of characteristic zero. Then the group ring KG is an F-ring.

Clearly X is a finite subset of KG with 0 KG $\cap \neq$

for any non zero $a \in$.

REMARK: if the order of G is infinite and G is torsion free we cannot conclude KG to be a F-ring. **THEOREM 4:** Let Zp = (o,1,...,p-1) be the field of characteristic p, p>2; p a prime and G be a finite group of order n. If p/n then Z_PG is a F-ring.

c c

REFERENCE:

1. Chen, Jain Long, Zhao Yong Gan, A note on F-rings, J.Math. Res. Exp., 9, No. 1,317-318 (1989).