
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906Q65 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 462

Automatic Control Realistic Through Statistical

Machine Learning

Ujjal Aloke Sarkar, Bhupender Kumar Singh

Ph.D Research Scholar, Dept. of Computer Science and Engg. , Dean JPIET, Meerut

Shri Venkateshwara University , Gajraula (UP)

Abstract : The horizontally extensible Internet service

on a commercial computer cluster appears to be very

suitable for automatic control. There is a target output

(service-level agreement), an observation output (actual

delay), and a gain controller (adjustment the number of

servers). However, there are few data centers that are

actually automated in this way in practice, due in part to

well-founded skepticism about whether the simple

models often used in the research literature can capture

complex real-life workload/performance relationships

and keep up with changing conditions that might

invalidate the models. We agree these shortcomings can

be solved by introducing modeling, control, and analysis

techniques from statistics and machine learning. In

particular, we applied a rich statistical model of

application performance, a simulation-based approach to

finding the optimal control strategy, and a change point

to find abrupt changes in performance. Preliminary

results of running a Web 2.0 benchmarking application

driven by actual workload tracking in the Amazon EC2

cloud show that our approach can effectively control the

number of servers, even in the face of performance

anomalies is showing.

Keyword: Web 2.0 benchmarking, Amazon EC2 cloud,

statistical machine learning (SML)

1 Introduction

Most Internet applications have strict performance

requirements, such as the 95th Percentile service level

agreement (SLAs) in response time. The application is

designed to be as extensible as possible to meet these

requirements. This means you can add more

applications, even in the face of greater demand.

However, these additional resources can be costly,

especially given the growing popularity of public

computing such as Amazon's EC2, applications are

incented to minimize resource usage because they incur

cost for their incremental resource usage. A natural way

to minimize used the while meeting performance

requirements is to automatically allocate resources based

on current needs. However, despite increasing research

on automatic control of Internet applications [2, 11, 6, 5,

4, 10], application operators are still skeptical of these

methods, and configuration is usually done manually.

In this article, we argue that the data center operators

suspicion is based on two key limitations of previous

automated configuration attempts. First, the commonly

used performance models, such as linear and simple

queueing models, are so impractical that they cannot

control complex Internet applications without sacrificing

SLA’s. Second, previous automatic control attempts

cannot demonstrate the robustness of the application and

its environment over time, such as usage patterns

changes, hardware failures, application changes, and

sharing resources with other applications in the cloud

environment.

We claim that both issues can be solved of modeling,

control and analysis techniques based on statistical

machine learning (SML).We propose a control

framework consisting of three elements. First, based on

our framework, there is a wealth of statistical

performance models that predict system performance for

future configurations and workloads. Second, to find

control strategies that minimize resource using while

maintaining performance, use a control strategy

simulator that simulates performance models to add

different strategies for adding and removing resources.

Finally, to achieve robustness, we used model

management techniques in the SML literature, such as

online training and change detection, to adjust the model

to changes in application performance. The important

thing is that control and model management are model-

agnostic: we use common statistics programs that allow

us to "plug and play" a different variety of performance

models.

Our new contributions are, first, to demonstrate the

power of applying established SML techniques for rich

models to this problem space, and second, to show how

to use these techniques to augment the conventional

closed-loop control framework, the actual high level of

automatic control more robust and practical to use in

real, highly variable, rapidly-changing Internet

applications.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906Q65 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 463

Figure 1: Architectural diagram of the control framework.

2. Modeling and Model Management

The controller needs to respond to several types of changes in

the expected performance of data center applications.

“Expected” changes, such as diurnal or seasonal workload

patterns and their impact on performance, can be accurately

measured and captured in historical models. However, there is

no way to plan for unplanned continuous spikes ("Slashdot

effects"), and even "planning" events such as bug fixes may

have unpredictable effects on workload performance

relationships, or a combination of workloads. (e.g., new

features). In addition, the controller needs to handle

performance anomalies and resource bottlenecks.

We propose a resource controller (see Figure 1) that use an

accurate performance model of the application to dynamically

adjust the resource allocation in response to changes in the

workload. We find the optimal control strategy and adapts the

performance model to change-point detection technology. The

control loop is executed every 20 seconds as follows.

Step 1. First, predict the next 5 minutes of work using a simple

linear regression over the last 15 minutes. (More sophisticated

historical workload models can be easily incorporated here.)

Step 2. Next, the predicted workload is then used as input to a

performance model that estimates the number of servers needed

to process the forecasting workload (section 2.1). However,

many complex factors can affect application performance, such

as workload combination, database size, and application code

changes. Instead of capturing all this in a single model, we

detect that the current performance model no longer accurately

simulates actual performance, and estimate the new model from

the production data collected from the survey of the

configuration space. We explain this model management

process is described in section 2.2.

Step 3. Add or remove servers based on performance model

recommendations of the performance model, which we call s

targets. To prevent wild oscillations in the controller, we use

hysteresis with gains α and β. More formally, maintain s, this is

a continuous version of the server that tracks the s target by goals

 𝑠𝑛𝑒𝑤 ← 𝑠𝑜𝑙𝑑 + {
𝛼(𝑠𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠𝑜𝑙𝑑)𝑖𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡>𝑠𝑜𝑙𝑑

𝛽(𝑠𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠𝑜𝑙𝑑) 𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒
 (1)

Where α and β are hysteresis parameters used to determine the

rate at which the controller add to removes servers. Section 2.3

describes how to use the simulator to find optimal values for α

and β.

The proposed change-points and simulation methods are model-

agnostic, suitable for most existing statistical performance

model choices, and can be any model that predicts the mean and

variance of performance. This makes the proposed framework

very flexible; advances in statistical machine learning can be

applied directly to modeling, control or model management

without affecting the other components.

2.1 Statistical Performance Models

The performance model estimates the fraction of requests

slower than the SLA threshold, given input of the form

{workload, # servers}. Each point in the training data represents

the amount of work observed at 20 second intervals, the number

of servers, and system performance. Use a smooth spline based

performance model [3]. This is an established technique for

non-linear regression without having to specify the shape of the

curve in advance. Use this approach to estimate a curve that

maps the number of workloads and servers directly to represent

performance (see, for example, Figure 3). In addition to

forecasting average performance, forecasting variance is

equally important as it represents forecasting of "typical"

performance spikes. After fitting the average performance, we

estimate the variance by calculating the square of the difference

between the predicted average performance of each training

point and the model, resulting in a training measurement of the

variance. Finally, fit a non-linear regression model (especially

LOESS regression [3]) and map the mean performance to the

variance. In this method, you can use to important capture fact

that high workloads not only increase average performance, but

also increase a higher variance.

2.2 Detecting Changes in Application Performance

Our performance model should be discarded or modified when

it no longer accurately captures the relationship among

Simulate

Pref. model

Change point

detection

Pref.model

Alpha, beta

Controller

(alpha,beta)

Pref. model

Control signal:

number of

machines

System

Measured workload

and performance

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906Q65 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 464

workload, number of servers and performance. In fact, this

relationship can change due to software upgrades, temporary

hardware failures, or other changes in the environment. Note

that this is different from just detecting changes in performance

alone: 10% increase in workload they can reduce performance,

decrease, but we do not want to flag it as a change point.

The accuracy of a model is usually estimated from residuals, the

difference between the measured performance of the application

and the predictions of the model. At steady state, the residual

must follow a static distribution, so an increase in the mean or

the variance in the distribution indicates that the model is no

longer accurate and should be updated. The online change point

detection technique [1]uses statistical hypothesis testing to

compare residual distributions in two consecutive time

intervals. If the differences between distributions are

statistically significant, start training a new model. The

magnitude of the change affects the detection time; sudden

changes should be detected within a few minutes, and it may

take several days to detect slow and gradual changes.

Because we are deploying models online from production data

rather than small test deployments, there is a strong demand for

an approach that will quickly collect the training data needed for

new models. To address this limitation, use aggressive search

strategies until a performance model is established. In explore

mode, the controller is very cautious about the number of

machines needed to process the current workload, starting with

a large number of machines to ensure good application

performance, and then to the current workload level Remove the

machine slowly to find the required minimum value. As the

accuracy of the performance model improves, the controller

switches from exploration to optimal control.

2.3 Control Policy Simulator

The individual accurate performance models do not guarantee

the good performance of the control strategy in a production

environment, as the various parameters in the control loop (such

as hysteresis gains α and β) have a major impact on control.

Although this is a standard problem of control theory called gain

scheduling, it is difficult to find the optimal value of parameters

in a complex control domain because the operation delay and

the time scale and cost function used by the controller are

different. To solve this problem, we use Pegasus [8], a strategy

search algorithm that uses simulation to compare different

control strategies. Use the Performance Model to estimate the

alpha and beta parameters of the various values using the

workload estimation performance of the application and return

the amount spent on the machine and the number of SLA

violations. By using a local search heuristics such as hill-

climbing, you can find optimal values for alpha α and β to

minimize the total cost of running the application.

Figure 3: The Smoothing spline performance model estimated

from observations; circles and x are observations from 2 and 5

servers, respectively. Each curve represents the mean

performance estimated by the model. The error bars in the eight-

server line represent our estimate of the standard deviation of

performance.

3 Preliminary Results

In this section shows the initial results and introduces an

automatic resource allocation method. First, as described in

Section 2.1, we first present a resource management

experiments using a smooth spline-based performance model.

Next, we show that the simulator is effective in selecting the

optimal value of the β hysteresis parameter. Finally, we use

variable point detection techniques to identify performance

changes during performance anomalies.

All experiments used the Cloudstone Web 2.0 Benchmark [9],

written in Ruby on Rails and deployed on Amazon EC2.

Cloudstone includes a workload generator called Faban [7].

This is used to replay the 3 days of actual workload data

obtained from Ebates.com. The tracking playback time has been

reduced to 12 hours to improve efficiency.

3.1 Automatic Resource Allocation

First, we show that the SML performance model can be used for

automatic resource allocation. Model the business cost of

violating a single SLA as a $ 10 penalty per 10 minutes with a

95th percentile delay of> 1 second. We used our offline

benchmark data to train our initial performance model, which

was used to derive the relationship between workload and

optimal number of servers. The controller tries to minimize the

total cost of combining hardware costs and penalties for SLA

violations. Set α = 0.9 to respond quickly respond to workloads,

but β = 0.01 is very conservative when removing machines.

Figure 2 shows that with these choices, the execution is

successful, there are no SLA violations, and there are few

controller operations to change the number of servers. However,

as shown in Figure 4, the controller is very sensitive to the

values of α and β, so next we will explain how to use the

simulator to automatically find the best values for these

parameters.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906Q65 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 465

Figure 2: Results of a 12 hours workload reproduced in a 12-hour experiment The following diagram shows the number of servers

(thickness, step size curve) requested by the workload and the controller. The figure above shows that the required ratio is slower

than 1 second between a 20 second interval (thin line, gray line) and during the ten-minute SLA evaluation interval (thickness, step

curve). The SLA does not violate because the percentage of slow requests during the ten-minute interval is always less than 5% the

SLA was not violated. During the whole experiment 0.52% of the request were slower than one second. The controller performs 55

actions.

3.2 Control Policy Simulator

In this section describes how to use the Control Strategy

Simulator (Section 2.3) to find the optimal value for controller

strategy parameters. In this experiment, using a simulator, the

optimum value of β, which is the hysteresis gain when the

machine was removed, was determined while maintaining α =

0.9. For each value of β, 10 simulations were performed to

calculate the average total cost of the control strategy (dashed

line in Figure 4). If β = 0.01, the minimum average total cost is

$ 78.05. To validate this result, we measured the actual

performance of the application on EC2 using the same workload

and the same beta value (solid line in Figure 4). The results are

almost completely consistent, confirming that the simulator

finds the optimal value for β.

3.3 Detecting Changes in Performance

In this section shows you how to use change point detection for

performance anomalies observed when running Cloudstone on

Amazon EC2. Workload and control parameters are the same as

described in Figure 2, but performance anomalies of up to 3

hours were observed, during which the percentage of slow

requests increased significantly (the time in the upper graph in

Figure 5) The result of the change point test for each t is the p

value, the lower the p value, the higher the probability that the

average of the normalized performance signal will change

significantly. The lower graph in Figure 5 shows the p-values

calculated on a logarithmic scale, but the degradation

corresponds to the beginning and end of the performance

anomaly. Furthermore, the p value remains the same except for

performance anomalies the p-values. This result show prime the

p-value could indeed a use of practice to direct model

management.

4 Related Work

Most of the work in dynamic configuration of Web applications

used analytical performance models such as queuing models

and did not consider adapting to environmental changes. In

contrast, our statistical models have numerical features that

allow more natural use of statistical methods to optimize control

parameters and model management.

Muse [2] adds, removes, closes, or reassigns servers to

maximize energy efficiency using control policies, but limits

SLA on the quality of service for each application in a co-

managed service plan Receive Muse assumes that each

application already has a utility function that represents the

monetary value of additional resources, including the monetary

value of improved performance. In our work, we learn the

performance impact of additional resources.

In [6], the author uses a simple queuing model (single M / G1 /

1 / processor sharing queue) and adaptive admission control for

layer 3 Web applications using a proportional integral (PI)

controller I designed a strategy. However, one queue cannot

simulate the effects of a bottleneck. For example, if additional

application servers no longer help, you can statistical model can

incorporate naturally model.

 [11] Use a more complex system analysis performance models

(G / G / 1 queue networks) for resource allocation. [5] provides

a virtual machine integrated controller based on a simple

performance model and advanced control. This is similar to the

simulator. [10] Apply reinforcement learning to train resource

allocation controller traces from other controllers and improve

their performance. The system learns the direct relationship

between observation and action, but since it explicitly models

the performance of the application, this approach is more

modular and interpretable, simulating virtual future workloads.

 [4] Shows an example of using change detection in a thread

pool controller design to accommodate concurrency levels and

changes in workload. In our control strategy, change point

detection is used to indicate when the performance model needs

to be modified.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906Q65 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 466

Figure 5: Top graph: Performance of the application during the

12 hour experiment with performance anomalies within 6 to 8

hours. Center map: Performance observed using model

predictions. Bottom: p-values of hypothesis by the test report.

5. Conclusion

We have demonstrated that the shortcomings of using closed-

loop control to automate data centers can be solved by replacing

simple modeling and model management methods with more

sophisticated methods that are derived from statistical machine

learning. An important goal of our framework and methodology

is to enable SML to move further into this area. We encourage

the increasing interaction between control theory, machine

learning, and systematic research groups.

References

[1] M. Basseville and I. V. Nikiforov. Detectiong of Abrupt

Changes. Prentice Hall, 1993.

[2] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and

R. P. Doyle. Managing energy and server resources in hosting

centers. In Symposium on Operating Systems Principles

(SOSP), 2001.

[3] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements

of Statistical Learning. Springer, August 2001.

[4] J. L. Hellerstein, V. Morrison, and E. Eilebrecht. Optimizing

concurrency levels in the .net threadpool: A case study of

controller design and implementation. In Feedback Control

Implementation and Design in Computing Systems and

Networks, 2008.

[5] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and

G. Jiang. Power and performance management of virtualized

computing environments via lookahead control. In ICAC ’08:

Proceedings of the 2008 International Conference on

Autonomic Computing, pages 3–12, Washington, DC, USA,

2008. IEEE Computer Society.

[6] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive control of

multi-tiered web applications using queueing predictor.

Network Operations and Management Symposium, 2006.

NOMS 2006. 10th IEEE/IFIP, pages 106– 114, April 2006.

[7] S. Microsystems. Next generation benchmark

development/runtime infrastructure.

http://faban.sunsource.net/, 2008.

[8] A. Y. Ng and M. I. Jordan. Pegasus: A policy search method

for large mdps and pomdps. In UAI ’00: Proceedings of the 16th

Conference on Uncertainty in Artificial Intelligence, pages

406–415, San Francisco, CA, USA, 2000. Morgan Kaufmann

Publishers Inc.

[9] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H.

Wong, S. Patil, A. Fox, and D. Patterson. Cloudstone: Multi-

platform, multi-language benchmark and measurement tools for

web 2.0, 2008.

 [10] G. Tesauro, N. Jong, R. Das, and M. Bennani. A hybrid

reinforcement learning aproach to autonomic resource

allocation. In International Conference on Autonomic

Computing (ICAC), 2006.

[11] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.

Dynamic provisioning of multi-tier internet applications. In

ICAC, 2005.

http://www.jetir.org/

