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Abstract : The horizontally extensible Internet service 

on a commercial computer cluster appears to be very 

suitable for automatic control. There is a target output 

(service-level agreement), an observation output (actual 

delay), and a gain controller (adjustment the number of 

servers). However, there are few data centers that are 

actually automated in this way in practice, due in part to 

well-founded skepticism about whether the simple 

models often used in the research literature can capture 

complex real-life workload/performance relationships 

and keep up with changing conditions that might 

invalidate the models. We agree these shortcomings can 

be solved by introducing modeling, control, and analysis 

techniques from statistics and machine learning. In 

particular, we applied a rich statistical model of 

application performance, a simulation-based approach to 

finding the optimal control strategy, and a change point 

to find abrupt changes in performance. Preliminary 

results of running a Web 2.0 benchmarking application 

driven by actual workload tracking in the Amazon EC2 

cloud show that our approach can effectively control the 

number of servers, even in the face of performance 

anomalies is showing. 
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statistical machine learning (SML)  

1 Introduction 

Most Internet applications have strict performance 

requirements, such as the 95th Percentile service level 

agreement (SLAs) in response time. The application is 

designed to be as extensible as possible to meet these 

requirements. This means you can add more 

applications, even in the face of greater demand. 

However, these additional resources can be costly, 

especially given the growing popularity of public 

computing such as Amazon's EC2, applications are 

incented to minimize resource usage because they incur 

cost for their incremental resource usage. A natural way 

to minimize used the while meeting performance 

requirements is to automatically allocate resources based 

on current needs. However, despite increasing research 

on automatic control of Internet applications [2, 11, 6, 5,  

 

 

4, 10], application operators are still skeptical of these 

methods, and configuration is usually done manually.  

In this article, we argue that the data center operators 

suspicion is based on two key limitations of previous 

automated configuration attempts. First, the commonly 

used performance models, such as linear and simple 

queueing models, are so impractical that they cannot 

control complex Internet applications without sacrificing 

SLA’s. Second, previous automatic control attempts 

cannot demonstrate the robustness of the application and 

its environment over time, such as usage patterns 

changes, hardware failures, application changes, and 

sharing resources with other applications in the cloud 

environment. 

We claim that both issues can be solved of modeling, 

control and analysis techniques based on statistical 

machine learning (SML).We propose a control 

framework consisting of three elements. First, based on 

our framework, there is a wealth of statistical 

performance models that predict system performance for 

future configurations and workloads. Second, to find 

control strategies that minimize resource using while 

maintaining performance, use a control strategy 

simulator that simulates performance models to add 

different strategies for adding and removing resources. 

Finally, to achieve robustness, we used model 

management techniques in the SML literature, such as 

online training and change detection, to adjust the model 

to changes in application performance. The important 

thing is that control and model management are model-

agnostic: we use common statistics programs that allow 

us to "plug and play" a different variety of performance 

models. 

Our new contributions are, first, to demonstrate the 

power of applying established SML techniques for rich 

models to this problem space, and second, to show how 

to use these techniques to augment the conventional 

closed-loop control framework, the actual high level of 

automatic control more robust and practical to use in 

real, highly variable, rapidly-changing Internet 

applications. 
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Figure 1: Architectural diagram of the control framework. 

2. Modeling and Model Management 

The controller needs to respond to several types of changes in 

the expected performance of data center applications. 

“Expected” changes, such as diurnal or seasonal workload 

patterns and their impact on performance, can be accurately 

measured and captured in historical models. However, there is 

no way to plan for unplanned continuous spikes ("Slashdot 

effects"), and even "planning" events such as bug fixes may 

have unpredictable effects on workload performance 

relationships, or a combination of workloads. (e.g., new 

features). In addition, the controller needs to handle 

performance anomalies and resource bottlenecks. 

We propose a resource controller (see Figure 1) that use an 

accurate performance model of the application to dynamically 

adjust the resource allocation in response to changes in the 

workload.  We find the optimal control strategy and adapts the 

performance model to change-point detection technology. The 

control loop is executed every 20 seconds as follows. 

Step 1. First, predict the next 5 minutes of work using a simple 

linear regression over the last 15 minutes. (More sophisticated 

historical workload models can be easily incorporated here.) 

Step 2. Next, the predicted workload is then used as input to a 

performance model that estimates the number of servers needed 

to process the forecasting workload (section 2.1). However, 

many complex factors can affect application performance, such 

as workload combination, database size, and application code 

changes. Instead of capturing all this in a single model, we 

detect that the current performance model no longer accurately 

simulates actual performance, and estimate the new model from 

the production data collected from the survey of the 

configuration space. We explain this model management 

process is described in section 2.2. 

Step 3. Add or remove servers based on performance model 

recommendations of the performance model, which we call s 

targets. To prevent wild oscillations in the controller, we use 

hysteresis with gains α and β. More formally, maintain s, this is 

a continuous version of the server that tracks the s target by goals 

 𝑠𝑛𝑒𝑤 ← 𝑠𝑜𝑙𝑑 + {
𝛼(𝑠𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠𝑜𝑙𝑑)𝑖𝑓𝑠𝑡𝑎𝑟𝑔𝑒𝑡>𝑠𝑜𝑙𝑑

𝛽(𝑠𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠𝑜𝑙𝑑) 𝑜𝑡ℎ𝑒𝑟𝑣𝑖𝑠𝑒
                 (1) 

Where α and β are hysteresis parameters used to determine the 

rate at which the controller add to removes servers. Section 2.3 

describes how to use the simulator to find optimal values for α 

and β. 

The proposed change-points and simulation methods are model-

agnostic, suitable for most existing statistical performance 

model choices, and can be any model that predicts the mean and 

variance of performance. This makes the proposed framework 

very flexible; advances in statistical machine learning can be 

applied directly to modeling, control or model management 

without affecting the other components. 

2.1 Statistical Performance Models 

The performance model estimates the fraction of requests 

slower than the SLA threshold, given input of the form 

{workload, # servers}. Each point in the training data represents 

the amount of work observed at 20 second intervals, the number 

of servers, and system performance. Use a smooth spline based 

performance model [3]. This is an established technique for 

non-linear regression without having to specify the shape of the 

curve in advance. Use this approach to estimate a curve that 

maps the number of workloads and servers directly to represent 

performance (see, for example, Figure 3). In addition to 

forecasting average performance, forecasting variance is 

equally important as it represents forecasting of "typical" 

performance spikes. After fitting the average performance, we 

estimate the variance by calculating the square of the difference 

between the predicted average performance of each training 

point and the model, resulting in a training measurement of the 

variance. Finally, fit a non-linear regression model (especially 

LOESS regression [3]) and map the mean performance to the 

variance. In this method, you can use to important capture fact 

that high workloads not only increase average performance, but 

also increase a higher variance. 

2.2 Detecting Changes in Application Performance 

Our performance model should be discarded or modified when 

it no longer accurately captures the relationship among 
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workload, number of servers and performance. In fact, this 

relationship can change due to software upgrades, temporary 

hardware failures, or other changes in the environment. Note 

that this is different from just detecting changes in performance 

alone: 10% increase in workload they can reduce performance, 

decrease, but we do not want to flag it as a change point. 

The accuracy of a model is usually estimated from residuals, the 

difference between the measured performance of the application 

and the predictions of the model. At steady state, the residual 

must follow a static distribution, so an increase in the mean or 

the variance in the distribution indicates that the model is no 

longer accurate and should be updated. The online change point 

detection technique [1]uses statistical hypothesis testing to 

compare residual distributions in two consecutive time 

intervals. If the differences between distributions are 

statistically significant, start training a new model. The 

magnitude of the change affects the detection time; sudden 

changes should be detected within a few minutes, and it may 

take several days to detect slow and gradual changes. 

Because we are deploying models online from production data 

rather than small test deployments, there is a strong demand for 

an approach that will quickly collect the training data needed for 

new models. To address this limitation, use aggressive search 

strategies until a performance model is established. In explore 

mode, the controller is very cautious about the number of 

machines needed to process the current workload, starting with 

a large number of machines to ensure good application 

performance, and then to the current workload level Remove the 

machine slowly to find the required minimum value. As the 

accuracy of the performance model improves, the controller 

switches from exploration to optimal control. 

2.3 Control Policy Simulator 

The individual accurate performance models do not guarantee 

the good performance of the control strategy in a production 

environment, as the various parameters in the control loop (such 

as hysteresis gains α and β) have a major impact on control. 

Although this is a standard problem of control theory called gain 

scheduling, it is difficult to find the optimal value of parameters 

in a complex control domain because the operation delay and 

the time scale and cost function used by the controller are 

different. To solve this problem, we use Pegasus [8], a strategy 

search algorithm that uses simulation to compare different 

control strategies. Use the Performance Model to estimate the 

alpha and beta parameters of the various values using the 

workload estimation performance of the application and return 

the amount spent on the machine and the number of SLA 

violations. By using a local search heuristics such as hill-

climbing, you can find optimal values for alpha α and β to 

minimize the total cost of running the application.                    

                         

Figure 3: The Smoothing spline performance model estimated 

from observations; circles and x are observations from 2 and 5 

servers, respectively. Each curve represents the mean 

performance estimated by the model. The error bars in the eight-

server line represent our estimate of the standard deviation of 

performance. 

3 Preliminary Results 

In this section shows the initial results and introduces an 

automatic resource allocation method. First, as described in 

Section 2.1, we first present a resource management 

experiments using a smooth spline-based performance model. 

Next, we show that the simulator is effective in selecting the 

optimal value of the β hysteresis parameter. Finally, we use 

variable point detection techniques to identify performance 

changes during performance anomalies. 

All experiments used the Cloudstone Web 2.0 Benchmark [9], 

written in Ruby on Rails and deployed on Amazon EC2. 

Cloudstone includes a workload generator called Faban [7]. 

This is used to replay the 3 days of actual workload data 

obtained from Ebates.com. The tracking playback time has been 

reduced to 12 hours to improve efficiency. 

3.1 Automatic Resource Allocation 

First, we show that the SML performance model can be used for 

automatic resource allocation. Model the business cost of 

violating a single SLA as a $ 10 penalty per 10 minutes with a 

95th percentile delay of> 1 second. We used our offline 

benchmark data to train our initial performance model, which 

was used to derive the relationship between workload and 

optimal number of servers. The controller tries to minimize the 

total cost of combining hardware costs and penalties for SLA 

violations. Set α = 0.9 to respond quickly respond to workloads, 

but β = 0.01 is very conservative when removing machines. 

Figure 2 shows that with these choices, the execution is 

successful, there are no SLA violations, and there are few 

controller operations to change the number of servers. However, 

as shown in Figure 4, the controller is very sensitive to the 

values of α and β, so next we will explain how to use the 

simulator to automatically find the best values for these 

parameters. 
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Figure 2: Results of a 12 hours workload reproduced in a 12-hour experiment The following diagram shows the number of servers 

(thickness, step size curve) requested by the workload and the controller. The figure above shows that the required ratio is slower 

than 1 second between a 20 second interval (thin line, gray line) and during the ten-minute SLA evaluation interval (thickness, step 

curve). The SLA does not violate because the percentage of slow requests during the ten-minute interval is always less than 5% the 

SLA was not violated. During the whole experiment 0.52% of the request were slower than one second. The controller performs 55 

actions. 

3.2 Control Policy Simulator 

In this section describes how to use the Control Strategy 

Simulator (Section 2.3) to find the optimal value for controller 

strategy parameters. In this experiment, using a simulator, the 

optimum value of β, which is the hysteresis gain when the 

machine was removed, was determined while maintaining α = 

0.9. For each value of β, 10 simulations were performed to 

calculate the average total cost of the control strategy (dashed 

line in Figure 4). If β = 0.01, the minimum average total cost is 

$ 78.05. To validate this result, we measured the actual 

performance of the application on EC2 using the same workload 

and the same beta value (solid line in Figure 4). The results are 

almost completely consistent, confirming that the simulator 

finds the optimal value for β. 

3.3 Detecting Changes in Performance 

In this section shows you how to use change point detection for 

performance anomalies observed when running Cloudstone on 

Amazon EC2. Workload and control parameters are the same as 

described in Figure 2, but performance anomalies of up to 3 

hours were observed, during which the percentage of slow 

requests increased significantly (the time in the upper graph in 

Figure 5) The result of the change point test for each t is the p 

value, the lower the p value, the higher the probability that the 

average of the normalized performance signal will change 

significantly. The lower graph in Figure 5 shows the p-values 

calculated on a logarithmic scale, but the degradation 

corresponds to the beginning and end of the performance 

anomaly. Furthermore, the p value remains the same except for 

performance anomalies the p-values. This result show prime the 

p-value could indeed a use of practice to direct model 

management. 

4 Related Work 

Most of the work in dynamic configuration of Web applications 

used analytical performance models such as queuing models 

and did not consider adapting to environmental changes. In 

contrast, our statistical models have numerical features that 

allow more natural use of statistical methods to optimize control 

parameters and model management. 

Muse [2] adds, removes, closes, or reassigns servers to 

maximize energy efficiency using control policies, but limits 

SLA on the quality of service for each application in a co-

managed service plan Receive Muse assumes that each 

application already has a utility function that represents the 

monetary value of additional resources, including the monetary 

value of improved performance. In our work, we learn the 

performance impact of additional resources. 

In [6], the author uses a simple queuing model (single M / G1 / 

1 / processor sharing queue) and adaptive admission control for 

layer 3 Web applications using a proportional integral (PI) 

controller I designed a strategy. However, one queue cannot 

simulate the effects of a bottleneck. For example, if additional 

application servers no longer help, you can statistical model can 

incorporate naturally model. 

 [11] Use a more complex system analysis performance models 

(G / G / 1 queue networks) for resource allocation. [5] provides 

a virtual machine integrated controller based on a simple 

performance model and advanced control. This is similar to the 

simulator. [10] Apply reinforcement learning to train resource 

allocation controller traces from other controllers and improve 

their performance. The system learns the direct relationship 

between observation and action, but since it explicitly models 

the performance of the application, this approach is more 

modular and interpretable, simulating virtual future workloads. 

 [4] Shows an example of using change detection in a thread 

pool controller design to accommodate concurrency levels and 

changes in workload. In our control strategy, change point 

detection is used to indicate when the performance model needs 

to be modified. 
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Figure 5: Top graph: Performance of the application during the 

12 hour experiment with performance anomalies within 6 to 8 

hours. Center map: Performance observed using model 

predictions. Bottom: p-values of hypothesis by the test report. 

5. Conclusion 

We have demonstrated that the shortcomings of using closed-

loop control to automate data centers can be solved by replacing 

simple modeling and model management methods with more 

sophisticated methods that are derived from statistical machine 

learning. An important goal of our framework and methodology 

is to enable SML to move further into this area. We encourage 

the increasing interaction between control theory, machine 

learning, and systematic research groups. 
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