
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906R45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 62

A Review on Filter Design Strategies Using

Optimization Techniques

Vaibhav Srivastava, Ramapati Mishra

Department of Electronics & Communication

IET, Dr. RMLAU, Ayodhya (U.P.)

Abstract: The particle swarm paradigm, that was only a

few years ago a curiosity, has now attracted the interest of

researchers around the globe. This article is intended to

give an overview of important work that gave direction

and impetus to research in particle swarms as well as some

interesting new directions and applications. Things change

fast in this field as investigators discover new ways to do

things, and new things to do with particle swarms. It is

impossible to cover all aspects of this area within the strict

page limits of this journal article. Thus this paper should

be seen work of few authors have at the time of writing.

Keywords-Pass band, Stop band ripples, PSO, Velocity

formula.

1. Introduction:

Introduced by Eberheart and Kennedy in 1995 [2], PSO is a

search technique based on social behavior of bird flocking and

fish schooling. There are different kinds of bio and social
behavior inspired algorithms. PSO is one of the different

swarm based algorithms. In PSO, each particle of the swarm is

a possible solution in the multi-dimensional search space. The

particles change their positions with a certain velocity in each

iteration, according to the standard PSO equations, thus

moving towards the global best (gbest) solution. Being easy to

implement and yet so effective, PSO has been utilized in a

wide variety of optimization applications. Particle swarm

optimization is a population based search algorithm and is

inspired by the observation of natural habits of bird flocking

and fish schooling. In PSO, a swarm of particles moves

through a D dimensional search space. The particles in the
search process are the potential solutions, which move around

the defined search space with some velocity until the error is

minimized or the solution is reached, as decided by the fitness

function. Fitness function is the measure of particles fitness

which is the deviation of the particle from the required

solution. The particles reach to the desired solution by

updating their position and velocity according to the PSO

equations. In PSO model, each individual is treated as a

volume-less particle in the D-dimensional search space with

initial random velocity.

A filter is a frequency selective circuit that allows a certain
frequency to pass while attenuating the others. Filters could be

analog or digital. Analog filters use electronic components

such as resistor, capacitor, transistor etc. to perform the

filtering operations. These are mostly used in communication

for noise reduction, video/audio signal enhancement etc. In

contrast, digital filters use digital processors which perform

mathematical calculations on the sampled values of the signal

in order to perform the filter operation. A computer or a

dedicated digital signal processor may be used for

implementing digital filters. Filters mostly find their use in

communication for noise reduction, audio/video signal

enhancement etc.

2. Related Work:

The initial ideas on particle swarms of Kennedy (a social

psychologist) and Eberhart (an electrical engineer) were

essentially aimed at producing computational intelligence by

exploiting simple analogues of social interaction, rather than

purely individual cognitive abilities. The first simulations

(Kennedy and Eberhart 1995) were influenced by Heppner
and Grenander’s work (Heppner and Grenander 1990) and

involved analogues of bird flocks searching for corn. These

soon developed (Kennedy and Eberhart 1995; Eberhart and

Kennedy 1995; Eberhart et al. 1996) into a powerful

optimization method— Particle Swarm Optimization (PSO).

In PSO a number of simple entities—the particles—are placed

in the search space of some problem or function, and each

evaluates the objective function at its current location. Each

particle then determines its movement through the search

space by combining some aspect of the history of its own

current and best (best-fitness) locations with those of one or
more members of the swarm, with some random perturbations.

The next iteration takes place after all particles have been

moved. Eventually the swarm as a whole, like a flock of birds

collectively foraging for food, is likely to move close to an

optimum of the fitness function.

The evolutionary computation (EC) community has shown a

significant interest in optimization for many years. In

particular, there has been a focus on global optimization of

numerical, real-valued ‘black-box’ problems for which exact

and analytical methods do not apply. Since the mid-sixties

many general-purpose optimization algorithms have been

proposed for finding near-optimal solutions to this class of
problems; most notably: evolution strategies (ES) [8],

evolutionary programming (EP) [3], and genetic algorithms

(GA) [6].

Many efforts have also been devoted to compare these

algorithms to each other. Typically, such comparisons have

been based on artificial numerical benchmark problems. The

goal of many studies was to verify that one algorithm

outperformed another on a given set of problems. In general, it

has been possible to improve a given standard method within a

restricted set of benchmark problems by making minor
modifications to it.

Recently, particle swarm optimization (PSO) [7] and

differential evolution (DE) [11] have been introduced and

particularly PSO has received increased interest from the EC

community. Both techniques have shown great promise in

several real-world applications [4], [5], [12], [14]. However, to

our knowledge, a comparative study of DE, PSO, and Gas on

a large and diverse set of problems has never been made. In

this study, we investigated the performance of DE, PSO, and

an evolutionary algorithm (EA) 1 on a selection of 34

numerical benchmark problems. The main objective was to

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906R45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 63

examine whether one of the tested algorithms would

outperform all others on a majority of the problems.
Additionally, since we used a rather large number of

benchmark problems, the experiments would also reveal

whether the algorithms would have any particular difficulties

or preferences.

Overall, the experimental results show that DE was far more

efficient and robust (with respect to reproducing the results in

several runs) compared to PSO and the EA. This suggests that

more emphasis should be put on DE when solving numerical

problems with real-valued parameters. However, on two noisy

test problems, DE was outperformed by the other algorithms.

Kennedy and Spears (1998) compared this binary particle
swarm to several kinds of GAs, using Spears’ multimodal

random problem generator. This paradigm allows the creation

of random binary problems with some specified

characteristics, e.g., number of local optima, dimension, etc. In

that study, the binary particle swarm was the only algorithm

that found the global optimum on every single trial, regardless

of problem features. It also progressed faster than GAs with

crossover, mutation, or both, on all problems except the very

simplest ones, with low dimension and a small number of

local optima; the mutation-only GA was slightly faster in

those cases.

Several other researchers have proposed alterations to the
particle swarm algorithm to allow it to operate on binary

spaces. Agrafiotis and Cedeño [1] used the locations of the

particles as probabilities to select features in a pattern-

matching task. Each feature was assigned a slice of a roulette

wheel based on its floating-point value, which was then

discretized to {0, 1}, indicating whether the feature was

selected or not. Mohan and Al-Kazemi (2001) suggested

several ways that the particle swarm could be implemented on

binary spaces. One version, which he calls the “regulated

discrete particle swarm,” performed very well on a suite of test

problems. In Pamparä et al. (2005), instead of directly
encoding bit strings in the particles, each particle stored the

small number of coefficients of a trigonometric model (angle

modulation) which was then run to generate bit strings.

Extending PSO to more complex combinatorial search spaces

is also of great interest. The difficulty there is that notions of

velocity and direction have no natural extensions for TSP

tours, permutations, schedules, etc. Nonetheless, progress has

recently been made (Clerc 2004, 2006b; Moraglio et al. 2007)

but it is too early to say if PSO can be competitive in these

spaces.

Dynamic problems are challenging for PSO. These are

typically modeled by fitness functions which change over

time, rendering particle memory obsolete (Hu and Eberhart

2001).

Parsopoulos and Vrahatis (2001) showed that the particle

swarm could track slowly moving optima without any changes

at all. Eberhart and Shi (2001) made a slight adjustment to the

inertia by randomizing the inertia weight between 0.5 and 1.0.

The idea is that when tracking a single dynamic optimum, it

can not be predicted whether exploration (a larger inertia

weight) or exploitation (a smaller inertia weight) will be better
at any given time.

However, in many cases more specialized changes are

required to handle dynamic problems. The problem can be

split into two: how to detect change and how to respond.

Carlisle and Dozier, Carlisle and Dozier (2000, 2001)

occasionally re-evaluate the previous best of a single particle.
Change is indicated by a different function value upon re-

evaluation. They tried two responses to change. In the first, the

current position was set to be the previous best and in the

second, and more successful response, previous bests are

compared with current positions, and memory is updated

accordingly. Hu and Eberhart (2002) used a similar scheme

for change detection but, as a response, randomized the entire

swarm in the search space.

As an alternative to these strategies, a level of diversity can be

maintained throughout the run. Parsopoulos and Vrahatis
(2004) use repulsion to keep particles away from detected

optima. The authors of (Blackwell and Bentley 2002)

introduced charged particles into the swarm. These particles

mutually repel and orbit a converging nucleus of ‘neutral’

particles, in analogy with a (picture of) an atom. Charged

swarms can detect optimum shifts within their orbit and are

therefore able to track quite severe changes. Diversity can also

be maintained with a grid-like local neighborhood (Li and

Dam 2003) and using hierarchical structures (Janson and

Middendorf 2004).

Dynamic multi-modal landscapes are especially challenging

for PSO (Blackwell and Branke 2006). The strategies
mentioned above—restart and diversity enhancement—are

less successful in situations where function peaks can vary in

height as well as location because a small change in peak

height might entail a large change in the position of the global

optimum. In these cases, multi-population approaches have

proven to be beneficial. The idea behind multi-swarm models

is to position swarms on different peaks so that, should a

suboptimal peak become optimal, a swarm will be ready to

immediately begin re-optimizing. Parrot and Li (2006) adjust

the size and number of swarms dynamically by ordering the

particles into ‘species’ in a technique called clearing.
Blackwell and Branke (2006), borrowing from the atomic

analogy referred to above, invoke an exclusion principle to

prevent swarms from competing on the same peak and an anti-

convergence measure to maintain diversity of the multi-swarm

as a whole. Recently, a self-adapting multi-swarm has been

derived (Blackwell 2007). The multi-swarm with exclusion

has been favorably compared, on the moving peaks problem,

to the hierarchical swarm, PSO re-initialization and a state of

the art dynamic-optimization evolutionary algorithm known as

self-organizing scouts.

Noisy fitness functions are important since they are often

encountered in real-world problems. In these problems, unlike

dynamic problems where the fitness function changes over

time, the fitness function remains the same. However, its

evaluation is noisy. Therefore, if a PSO explores the same

position more than once, the fitness values associated to each

evaluation may differ.

Parsopoulos and Vrahatis (2001) studied the behavior of the

PSO when Gaussian distributed random noise was added to

the fitness function and random rotations of the search space

were performed. Experimental results indicated that the PSO

remained effective in the presence of noise, and, in some
cases, noise even helped the PSO avoid being trapped in local

optima.

Pugh et al. (2005) compared the PSO to a noise-resistant

variant where the main PSO loop was modified so that

multiple evaluations of the same candidate solution are

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906R45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 64

aggregated to better assess the actual fitness of this particular

solution. The comparison considered several numerical
problems with added noise, as well as unsupervised learning

of obstacle avoidance using one or more robots. The noise-

resistant PSO showed considerably better performance than

the original.

Several investigators have attempted to adapt PSO parameters

in response to information from the environment. Techniques

from evolutionary computation and other methods have been

borrowed by particle swarm researchers as well.

Angeline [2] produced one of the first intentionally hybridized

particle swarms. In his model, selection was applied to the
particle population; “good” particles were reproduced with

mutation, and “bad” particles were eliminated. Angeline’s

results showed that PSO could benefit from this modification.

Miranda and Fonseca (2002) borrowed an idea from evolution

strategies. In that paradigm, points are perturbed by the

addition of random values distributed around a mean of zero;

the variance of the distribution is evolved along with function

parameters. Those researchers used Gaussian random values

to perturb χ, φ1, and φ2, as well as the position of the

neighborhood best—but not the individual best—using

selection to adapt the variance. The evolutionary self-adapting
particle swarm optimization method, a hybrid of PSO and

evolutionary methods, has shown excellent performance in

comparison to some standard particle swarm methods.

Miranda has used it for the manufacture of optical filters as

well as in the optimization of power systems (Miranda and

Fonseca 2002).

Loøvbjerg et al. (2001) use “breeding”, borrowed from genetic

algorithms, in a recent particle swarm study. Some selected

particles were paired at random, and both positions and

velocities were calculated from weighted arithmetic averages

of the selected particles’ parameters. Those researchers also
divided the particle swarm into subpopulations in order to

increase diversity, with some probability that individuals

would breed within their own subpopulation or with a member

of another. Results were encouraging, though the model as

reported was not clearly superior to standard PSO or GA.

Wei et al. (2002) took a different tack, embedding velocity

information in an evolutionary algorithm. They replaced

Cauchy mutation with a version of PSO velocity in a fast

evolutionary programming (FEP) algorithm, to give the FEP

population direction. Their published results indicate that the
approach is very successful on a range of functions; the new

algorithm found global optima in tens of iterations, compared

to thousands for the FEP versions tested.

Robinson et al. (2002), trying to optimize a profiled

corrugated horn antenna, noted that a GA improved faster

early in the run, and PSO improved later. As a consequence of

this observation, they hybridized the two algorithms by

switching from one to the other after several hundred

iterations. They found the best horn by going from PSO to GA

(PSO-GA) and noted that the particle swarm by itself

outperformed both the GA by itself and the GA-PSO hybrid,
though the PSO-GA hybrid performed best of all. It appears

from their result that PSO more effectively explores the search

space for the best region, while GA is effective at finding the

best point once the population has converged on a single

region; this is consistent with other findings.

Krink and Loøvbjerg (2002) similarly alternated among
several methods, but they allowed individuals in a population

to choose whether to belong to a population of a genetic

algorithm, a particle swarm, or to become solitary hill-

climbers. In their self-adaptive search method, an individual

changed its stage after 50 iterations with no improvement. The

population was initialized as PSO particles; the “LifeCycle”

algorithm outperformed all three of the methods that

comprised it. Krink and Loøvbjerg’s graphs show interesting

changes in the proportion of individuals in each state for

various problems.

A hybrid between a PSO and a hill-climber was proposed by

Poli and Stephens (2004) who considered swarms of particles

sliding on a fitness landscape rather than flying over it. The

method uses particles without memory and requires no book-

keeping of personal best. Instead it uses the physics of masses

and forces to guide the exploration of fitness landscapes.

Forces include: gravity, springs, and friction. Gravity provides

the ability to seek minima. Springs provide exploration.

Friction slows down the search and focuses it.

Clerc’s recent experiments (Clerc 2006b) have shown that

adaptation of the constriction factor, population size, and

number of neighbors can produce improved results. His
studies found that best performance were obtained when all

three of these factors are adapted during the course of the run.

Clerc used three rules: (a) Suicide and generation: a particle

kills itself when it is the worst in its neighborhood and

generates a new copy of itself when it is the best;

(b)Modifying the coefficient: good local improvement caused

an increase in the constriction coefficient, while poor

improvement caused its decrease; (c) Change in

neighborhood: the locally best particle could reduce the

number of its neighbors, while poorly performing particles

could increase theirs. Adaptive changes were not made on
every iteration, but only occasionally.

Vesterstroøm et al. (2002) borrowed the idea of division of

labor from research on insect swarm algorithms. In their

hybrid particle swarm model, individuals in the swarm were

assigned, after some number of iterations without

improvement, to conduct local search. Local search was

implemented by placing a particle at the population’s global

best position with a new random velocity vector. The division

of labor modification was intended to improve performance on

unimodal problems; this improvement was seen, though
performance on multimodal functions was not significantly

improved.

Hendtlass (2001) proposed a hybridization of PSO with ant

colony optimization (ACO) (Dorigo and Stützle 2004) but did

not present any results. More recently, Holden and Freitas

(2005) introduced a hybrid PSO/ACO algorithm for

hierarchical classification. This was applied to the functional

classification of enzymes, with very promising results.

Hendtlass (2001) combined PSO with differential evolution

(DE) but with mixed results. While the hybridized algorithm

did better than either PSO or DE on one multimodal problem,
the particle swarm by itself tended to be faster and more

robust than either DE or two version of hybrids that were

tested. However, more recently, others, for example, Zhang

and Xie (2003), have obtained more positive results.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906R45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 65

A hybridization of PSO based on genetic programming (GP)

was proposed (Poli et al. 2005b, 2005a) showing some
promise. GP is used to evolve new laws for the control of

particles’ movement for specific classes of problems. The

method has consistently provided PSOs that performed better

than some standard reference PSOs in the problem class used

for training, and, in some cases, also generalized outside that

class.

A PSO that borrows from estimation of distribution algorithms

has recently been proposed in (Iqbal and Montes de Oca

2006). In this approach, the swarm’s collective memory is

used to bias the particles’ movement towards regions in the
search space which are estimated to be promising and away

from previously sampled low-quality regions. Experiments

suggest that this PSO hybrid finds better solutions than the

canonical PSO using fewer function evaluations.

Some researchers have noted a tendency for the swarm to

converge prematurely on local optima. Several approaches

have been implemented in order to correct for the decline of

diversity as the swarm concentrates on a single optimum.

Loøvbjerg (2002) used self-organized criticality to help the

PSO attain more diversity, making it less vulnerable to local
optima. When two particles are too close to one another, a

variable called the “critical value” is incremented. When it

reaches the criticality threshold, the particle disperses its

criticality to other particles that are near it and relocates itself.

Other researchers have attempted to diversify the particle

swarm by preventing the particles’ clustering too tightly in one

region of the search space. Blackwell and Bentley (2002)

collision-avoiding swarms achieve this by reducing the

attraction of the swarm center.

Krink et al. (2002) developed “spatially extended” particles,
where each particle is conceptualized as being surrounded by a

sphere of some radius. When the spatially extended particle

collides with another, it bounces off.

Xie et al. (2002) added negative entropy to the particle swarm

in order to discourage premature convergence (excessively

rapid convergence towards a poor quality local optimum). In

some conditions, they weighted the velocity and, in some

conditions, the particle’s location, by some random value,

thereby obtaining a sort of “dissipative particle swarm.”

In bare-bones formulations of PSO, Kennedy (2003) proposed

to move particles according to a probability distribution rather

than through the addition of velocity—a “velocity-free” PSO.

Bare-bones seeks to throw light on the relative importance of

particle motion and the neighborhood topology.

Gaussian bare-bones works quite well, imitating the

performance of PSO on some problems, but proving less

effective on others (see also the comparisons in Richer. and

Blackwell 2006). On closer examination, what appears to be a

bell curve actually has a kurtosis which increases with

iteration (Kennedy 2004), and the distribution has fatter tails

than Gaussian. It has been suggested that the origin of this lies
in the production of “bursts of outliers” (Kennedy 2004).5 The

trigger for these bursts is unknown; however Kennedy

discovered that if burst events are added by hand to Gaussian

bare-bones, performance is improved. The conjecture,

therefore, is that the fat tails in the position distribution of

canonical PSO enhance the ability of the swarm to move from

sub-optimal locations.
Following on from this result, Richer. and Blackwell (2006)

replaced the Gaussian distribution on bare-bones with a Lévy

distribution. The Lévy distribution is bell-shaped like the

Gaussian but with fatter tails. The Lévy has a tunable

parameter, α, which interpolates between the Cauchy

distribution (α = 1) and Gaussian (α = 2). This parameter can

be used to control the fatness of the tails. In a series of trials,

Richer and Blackwell found that Lévy bare-bones at α = 1.4

reproduces canonical PSO behavior, a result which supports

the above conjecture.

A statistical distribution also appears in canonical PSO; the p

− x terms are multiplied by a random number from a uniform

distribution. This injection of noise is believed to be critical to

the search properties of PSO. The uniform distributed spring

constant was replaced by a Gaussian random variable in

(Secrest and Lamont 2003) and by the Lévy distribution in

(Richer. and Blackwell 2006). The Gaussian spring constants

PSO performed worse than standard PSO in a nine-function

test suite, but Lévy spring constants PSO produced excellent

results (Richer. and Blackwell 2006). The explanation might

lie at the tails again, where large spring constants induce big

accelerations and move particles away from local optima.

3. Conclusion:

In this work we have presented a review on filter

design strategies using optimization techniques.

DAPSO is an improved particle swarm optimization

(PSO) that proposes a new definition for the

velocity vector and swarm updating and hence the

solution quality is improved. The distance from

each particle to the global best position is calculated

in order to adjust the velocity suitably of each

particle. The inertia weight has been modified in

this PSO to enhance its search capability that leads

to a higher probability of obtaining the global

optimal solution. The key feature of the modified

inertia weight mechanism is to monitor the weights

of particles, which linearly decrease in general

applications.

References:
[1] Agrafiotis, D. K., & Cedeño, W. (2002). Feature selection

for structure-activity correlation using binary particle swarms.

Journal of Medicinal Chemistry, 45(5), 1098–1107.

[2] Angeline, P. (1998). Evolutionary optimization versus

particle swarm optimization: Philosophy and performance

differences. In V. W. Porto, N. Saravanan, D. Waagen, & A.

E. Eiben (Eds.), Proceedings of evolutionary programming

VII (pp. 601–610). Berlin: Springer.

[3] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial

intelligence through a simulation of evolution. In M. Maxfield,

A. Callahan, and L. J. Fogel, editors, Biophysics and

Cybernetic Systems: Proc. of the 2nd Cybernetic Sciences
Symposium, pp. 131–155. Spartan Books, 1965.

[4] Y. Fukuyama, S. Takayama, Y. Nakanishi, and H.

Yoshida. A particle swarm optimization for reactive power

and voltage control in electric power systems. In W. Banzhaf,

J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1906R45 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 66

and R. E. Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, pp. 1523–1528.
Morgan Kaufmann Publishers, 1999.

[5] D. Gies and Y. Rahmat-Samii. Particle swarm optimization

for reconfigurable phase-differentiated array design.

Microwave and Optical Technology Letters, Vol. 38, No. 3,

pp. 168–175, 2003.

[6] J. H. Holland. Adpatation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor, MI, 1975.

[7] J. Kennedy and R. C. Eberhart. Particle swarm

optimization. In Proceedings of the 1995 IEEE International

Conference on Neural Networks, Vol. 4, pp. 1942–1948. IEEE

Press, 1995.
[8] I. Rechenberg. Evolution strategy: Optimization of

technical systems by means of biological evolution. Fromman-

Holzboog, 1973.

[9] Blackwell, T. M. (2007). Particle swarm optimization in

dynamic environments. In S. Yand, Y. Ong, & Y. Jin (Eds.),

Evolutionary computation in dynamic environments (pp. 29–

49). Springer, Berlin. DOI 10.1007/978-3-540-49774-5-2.

[10] Blackwell, T., & Bentley, P. J. (2002). Don’t push me!

Collision-avoiding swarms. In Proceedings of the IEEE

congress on evolutionary computation (CEC) (pp. 1691–

1696), Honolulu, HI. Piscataway: IEEE.

[11] R. Storn and K. Price. Differential evolution - a simple
and efficient adaptive scheme for global optimization over

continuous spaces. Technical report, International Computer

Science Institute, Berkley, 1995.

[12] R. Thomsen. Flexible ligand docking using differential

evolution. In Proceedings of the 2003 Congress on

Evolutionary Computation, Vol. 4, pp. 2354–2361. IEEE

Press, 2003.

[13] Blackwell, T. M., & Branke, J. (2006). Multi-swarms,

exclusion and anti-convergence on dynamic environments.

IEEE Transactions on Evolutionary Computation, 10, 459–

472.
[14] R. K. Ursem and P. Vadstrup. Parameter identification of

induction motors using differential evolution. In Proceedings

of the 2003 Congress on Evolutionary Computation, Vol. 2,

pp. 790–796. IEEE Press, 2003.

[15] Carlisle, A., & Dozier, G. (2000). Adapting particle

swarm optimization to dynamic environments. In Proceedings

of international conference on artificial intelligence (pp. 429–

434), Las Vegas, NE.

[16] Carlisle, A., & Dozier, G. (2001). Tracking changing

extrema with particle swarm optimizer. Auburn University

Technical Report CSSE01-08.
[17] Clerc, M. (2004). Discrete particle swarm optimization,

illustrated by the traveling salesman problem. In B. V. Babu &

G. C. Onwubolu (Eds.), New optimization techniques in

engineering (pp. 219–239). Berlin: Springer.

[18] Clerc, M. (2006b). Particle swarm optimization. London:

ISTE.

[19] Dorigo, M., & Stützle, T. (2004). Ant colony

optimization. Cambridge: MIT Press.
[20] Eberhart, R. C., & Kennedy, J. (1995). A new optimizer

using particle swarm theory. In Proceedings of the sixth

international symposium on micro machine and human

science (pp. 39–43), Nagoya, Japan. Piscataway: IEEE.

[21] Eberhart, R. C., & Shi, Y. (2001). Tracking and

optimizing dynamic systems with particle swarms. In

Proceedings of the IEEE congress on evolutionary

computation (CEC) (pp. 94–100), Seoul, Korea. Piscataway:

IEEE.

[22] Eberhart, R. C., Simpson, P. K., & Dobbins, R. W.

(1996). Computational intelligence PC tools. Boston:
Academic Press.

[23] Hendtlass, T. (2001). A combined swarm differential

evolution algorithm for optimization problems. In L.

Monostori, J. Váncza & M. Ali (Eds.), Lecture notes in

computer science: Vol. 2070. Proceedings of the 14th

international conference on industrial and engineering

applications of artificial intelligence and expert systems

(IEA/AIE) (pp. 11–18), Budapest, Hungary. Berlin: Springer.

[24] Heppner, H., & Grenander, U. (1990). A stochastic non-

linear model for coordinated bird flocks. In S. Krasner (Ed.),

The ubiquity of chaos (pp. 233–238). Washington: AAAS.

[25] Holden, N., & Freitas, A. A. (2005). A hybrid particle
swarm/ant colony algorithm for the classification of

hierarchical biological data. In Proceedings of the IEEE

swarm intelligence symposium (SIS) (pp. 100– 107).

Piscataway: IEEE.

[26] Hu, X., & Eberhart, R. C. (2001). Tracking dynamic

systems with PSO: where’s the cheese? In Proceedings of the

workshop on particle swarm optimization. Purdue school of

engineering and technology, Indianapolis, IN.

[27] Hu, X., & Eberhart, R. C. (2002). Adaptive particle

swarm optimization: detection and response to dynamic

systems. In Proceedings of the IEEE congress on evolutionary
computation (CEC) (pp. 1666–1670), Honolulu, HI.

Piscataway: IEEE.

[28] Iqbal, M., & Montes de Oca, M. A. (2006). An estimation

of distribution particle swarm optimization algorithm. In M.

Dorigo, L. M. Gambardella, M. Birattari, A. Martinoli, R. Poli

& T. Stützle (Eds.), Lecture notes in computer science: Vol.

4150. Proceedings of the fifth international workshop on ant

colony optimization and swarm intelligence ANTS 2006 (pp.

72–83). Berlin: Springer.

[29] Janson, S., & Middendorf, M. (2004). A hierarchical

particle swarm optimizer for dynamic optimization problems.
In G. R. Raidl (Ed.), Lecture notes in computer science: Vol.

3005. Proceedings of evoworkshops 2004: 1st European

workshop on evolutionary algorithms in stochastic and

dynamic environments (pp. 513–524), Coimbra, Portugal.

Berlin: Springer.

http://www.jetir.org/

