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Abstract: The particle swarm paradigm, that was only a 

few years ago a curiosity, has now attracted the interest of 

researchers around the globe. This article is intended to 

give an overview of important work that gave direction 

and impetus to research in particle swarms as well as some 

interesting new directions and applications. Things change 

fast in this field as investigators discover new ways to do 

things, and new things to do with particle swarms. It is 

impossible to cover all aspects of this area within the strict 

page limits of this journal article. Thus this paper should 

be seen work of few authors have at the time of writing. 
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1. Introduction: 

Introduced by Eberheart and Kennedy in 1995 [2], PSO is a 

search technique based on social behavior of bird flocking and 

fish schooling. There are different kinds of bio and social 
behavior inspired algorithms. PSO is one of the different 

swarm based algorithms. In PSO, each particle of the swarm is 

a possible solution in the multi-dimensional search space. The 

particles change their positions with a certain velocity in each 

iteration, according to the standard PSO equations, thus 

moving towards the global best (gbest) solution. Being easy to 

implement and yet so effective, PSO has been utilized in a 

wide variety of optimization applications. Particle swarm 

optimization is a population based search algorithm and is 

inspired by the observation of natural habits of bird flocking 

and fish schooling. In PSO, a swarm of particles moves 

through a D dimensional search space. The particles in the 
search process are the potential solutions, which move around 

the defined search space with some velocity until the error is 

minimized or the solution is reached, as decided by the fitness 

function. Fitness function is the measure of particles fitness 

which is the deviation of the particle from the required 

solution. The particles reach to the desired solution by 

updating their position and velocity according to the PSO 

equations. In PSO model, each individual is treated as a 

volume-less particle in the D-dimensional search space with 

initial random velocity. 

A filter is a frequency selective circuit that allows a certain 
frequency to pass while attenuating the others. Filters could be 

analog or digital. Analog filters use electronic components 

such as resistor, capacitor, transistor etc. to perform the 

filtering operations. These are mostly used in communication 

for noise reduction, video/audio signal enhancement etc. In 

contrast, digital filters use digital processors which perform 

mathematical calculations on the sampled values of the signal 

in order to perform the filter operation. A computer or a 

dedicated digital signal processor may be used for 

implementing digital filters. Filters mostly find their use in 

communication for noise reduction, audio/video signal 

enhancement etc.  

 

2. Related Work: 

The initial ideas on particle swarms of Kennedy (a social 

psychologist) and Eberhart (an electrical engineer) were 

essentially aimed at producing computational intelligence by 

exploiting simple analogues of social interaction, rather than 

purely individual cognitive abilities. The first simulations 

(Kennedy and Eberhart 1995) were influenced by Heppner 
and Grenander’s work (Heppner and Grenander 1990) and 

involved analogues of bird flocks searching for corn. These 

soon developed (Kennedy and Eberhart 1995; Eberhart and 

Kennedy 1995; Eberhart et al. 1996) into a powerful 

optimization method— Particle Swarm Optimization (PSO). 

In PSO a number of simple entities—the particles—are placed 

in the search space of some problem or function, and each 

evaluates the objective function at its current location. Each 

particle then determines its movement through the search 

space by combining some aspect of the history of its own 

current and best (best-fitness) locations with those of one or 
more members of the swarm, with some random perturbations. 

The next iteration takes place after all particles have been 

moved. Eventually the swarm as a whole, like a flock of birds 

collectively foraging for food, is likely to move close to an 

optimum of the fitness function. 

The evolutionary computation (EC) community has shown a 

significant interest in optimization for many years. In 

particular, there has been a focus on global optimization of 

numerical, real-valued ‘black-box’ problems for which exact 

and analytical methods do not apply. Since the mid-sixties 

many general-purpose optimization algorithms have been 

proposed for finding near-optimal solutions to this class of 
problems; most notably: evolution strategies (ES) [8], 

evolutionary programming (EP) [3], and genetic algorithms 

(GA) [6]. 

 

Many efforts have also been devoted to compare these 

algorithms to each other. Typically, such comparisons have 

been based on artificial numerical benchmark problems. The 

goal of many studies was to verify that one algorithm 

outperformed another on a given set of problems. In general, it 

has been possible to improve a given standard method within a 

restricted set of benchmark problems by making minor 
modifications to it. 

 

Recently, particle swarm optimization (PSO) [7] and 

differential evolution (DE) [11] have been introduced and 

particularly PSO has received increased interest from the EC 

community. Both techniques have shown great promise in 

several real-world applications [4], [5], [12], [14]. However, to 

our knowledge, a comparative study of DE, PSO, and Gas on 

a large and diverse set of problems has never been made. In 

this study, we investigated the performance of DE, PSO, and 

an evolutionary algorithm (EA) 1 on a selection of 34 

numerical benchmark problems. The main objective was to 
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examine whether one of the tested algorithms would 

outperform all others on a majority of the problems. 
Additionally, since we used a rather large number of 

benchmark problems, the experiments would also reveal 

whether the algorithms would have any particular difficulties 

or preferences. 

Overall, the experimental results show that DE was far more 

efficient and robust (with respect to reproducing the results in 

several runs) compared to PSO and the EA. This suggests that 

more emphasis should be put on DE when solving numerical 

problems with real-valued parameters. However, on two noisy 

test problems, DE was outperformed by the other algorithms. 

Kennedy and Spears (1998) compared this binary particle 
swarm to several kinds of GAs, using Spears’ multimodal 

random problem generator. This paradigm allows the creation 

of random binary problems with some specified 

characteristics, e.g., number of local optima, dimension, etc. In 

that study, the binary particle swarm was the only algorithm 

that found the global optimum on every single trial, regardless 

of problem features. It also progressed faster than GAs with 

crossover, mutation, or both, on all problems except the very 

simplest ones, with low dimension and a small number of 

local optima; the mutation-only GA was slightly faster in 

those cases. 

Several other researchers have proposed alterations to the 
particle swarm algorithm to allow it to operate on binary 

spaces. Agrafiotis and Cedeño [1] used the locations of the 

particles as probabilities to select features in a pattern-

matching task. Each feature was assigned a slice of a roulette 

wheel based on its floating-point value, which was then 

discretized to {0, 1}, indicating whether the feature was 

selected or not. Mohan and Al-Kazemi (2001) suggested 

several ways that the particle swarm could be implemented on 

binary spaces. One version, which he calls the “regulated 

discrete particle swarm,” performed very well on a suite of test 

problems. In Pamparä et al. (2005), instead of directly 
encoding bit strings in the particles, each particle stored the 

small number of coefficients of a trigonometric model (angle 

modulation) which was then run to generate bit strings. 

 

Extending PSO to more complex combinatorial search spaces 

is also of great interest. The difficulty there is that notions of 

velocity and direction have no natural extensions for TSP 

tours, permutations, schedules, etc. Nonetheless, progress has 

recently been made (Clerc 2004, 2006b; Moraglio et al. 2007) 

but it is too early to say if PSO can be competitive in these 

spaces. 
 

Dynamic problems are challenging for PSO. These are 

typically modeled by fitness functions which change over 

time, rendering particle memory obsolete (Hu and Eberhart 

2001). 

Parsopoulos and Vrahatis (2001) showed that the particle 

swarm could track slowly moving optima without any changes 

at all. Eberhart and Shi (2001) made a slight adjustment to the 

inertia by randomizing the inertia weight between 0.5 and 1.0. 

The idea is that when tracking a single dynamic optimum, it 

can not be predicted whether exploration (a larger inertia 

weight) or exploitation (a smaller inertia weight) will be better 
at any given time.  

 

However, in many cases more specialized changes are 

required to handle dynamic problems. The problem can be 

split into two: how to detect change and how to respond. 

Carlisle and Dozier, Carlisle and Dozier (2000, 2001) 

occasionally re-evaluate the previous best of a single particle. 
Change is indicated by a different function value upon re-

evaluation. They tried two responses to change. In the first, the 

current position was set to be the previous best and in the 

second, and more successful response, previous bests are 

compared with current positions, and memory is updated 

accordingly. Hu and Eberhart (2002) used a similar scheme 

for change detection but, as a response, randomized the entire 

swarm in the search space. 

 

As an alternative to these strategies, a level of diversity can be 

maintained throughout the run. Parsopoulos and Vrahatis 
(2004) use repulsion to keep particles away from detected 

optima. The authors of (Blackwell and Bentley 2002) 

introduced charged particles into the swarm. These particles 

mutually repel and orbit a converging nucleus of ‘neutral’ 

particles, in analogy with a (picture of) an atom. Charged 

swarms can detect optimum shifts within their orbit and are 

therefore able to track quite severe changes. Diversity can also 

be maintained with a grid-like local neighborhood (Li and 

Dam 2003) and using hierarchical structures (Janson and 

Middendorf 2004). 

Dynamic multi-modal landscapes are especially challenging 

for PSO (Blackwell and Branke 2006). The strategies 
mentioned above—restart and diversity enhancement—are 

less successful in situations where function peaks can vary in 

height as well as location because a small change in peak 

height might entail a large change in the position of the global 

optimum. In these cases, multi-population approaches have 

proven to be beneficial. The idea behind multi-swarm models 

is to position swarms on different peaks so that, should a 

suboptimal peak become optimal, a swarm will be ready to 

immediately begin re-optimizing. Parrot and Li (2006) adjust 

the size and number of swarms dynamically by ordering the 

particles into ‘species’ in a technique called clearing. 
Blackwell and Branke (2006), borrowing from the atomic 

analogy referred to above, invoke an exclusion principle to 

prevent swarms from competing on the same peak and an anti-

convergence measure to maintain diversity of the multi-swarm 

as a whole. Recently, a self-adapting multi-swarm has been 

derived (Blackwell 2007). The multi-swarm with exclusion 

has been favorably compared, on the moving peaks problem, 

to the hierarchical swarm, PSO re-initialization and a state of 

the art dynamic-optimization evolutionary algorithm known as 

self-organizing scouts. 

 
Noisy fitness functions are important since they are often 

encountered in real-world problems. In these problems, unlike 

dynamic problems where the fitness function changes over 

time, the fitness function remains the same. However, its 

evaluation is noisy. Therefore, if a PSO explores the same 

position more than once, the fitness values associated to each 

evaluation may differ. 

Parsopoulos and Vrahatis (2001) studied the behavior of the 

PSO when Gaussian distributed random noise was added to 

the fitness function and random rotations of the search space 

were performed. Experimental results indicated that the PSO 

remained effective in the presence of noise, and, in some 
cases, noise even helped the PSO avoid being trapped in local 

optima. 

Pugh et al. (2005) compared the PSO to a noise-resistant 

variant where the main PSO loop was modified so that 

multiple evaluations of the same candidate solution are 
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aggregated to better assess the actual fitness of this particular 

solution. The comparison considered several numerical 
problems with added noise, as well as unsupervised learning 

of obstacle avoidance using one or more robots. The noise-

resistant PSO showed considerably better performance than 

the original. 

 

Several investigators have attempted to adapt PSO parameters 

in response to information from the environment. Techniques 

from evolutionary computation and other methods have been 

borrowed by particle swarm researchers as well. 

Angeline [2] produced one of the first intentionally hybridized 

particle swarms. In his model, selection was applied to the 
particle population; “good” particles were reproduced with 

mutation, and “bad” particles were eliminated. Angeline’s 

results showed that PSO could benefit from this modification. 

 

Miranda and Fonseca (2002) borrowed an idea from evolution 

strategies. In that paradigm, points are perturbed by the 

addition of random values distributed around a mean of zero; 

the variance of the distribution is evolved along with function 

parameters. Those researchers used Gaussian random values 

to perturb χ, φ1, and φ2, as well as the position of the 

neighborhood best—but not the individual best—using 

selection to adapt the variance. The evolutionary self-adapting 
particle swarm optimization method, a hybrid of PSO and 

evolutionary methods, has shown excellent performance in 

comparison to some standard particle swarm methods. 

Miranda has used it for the manufacture of optical filters as 

well as in the optimization of power systems (Miranda and 

Fonseca 2002). 

Loøvbjerg et al. (2001) use “breeding”, borrowed from genetic 

algorithms, in a recent particle swarm study. Some selected 

particles were paired at random, and both positions and 

velocities were calculated from weighted arithmetic averages 

of the selected particles’ parameters. Those researchers also 
divided the particle swarm into subpopulations in order to 

increase diversity, with some probability that individuals 

would breed within their own subpopulation or with a member 

of another. Results were encouraging, though the model as 

reported was not clearly superior to standard PSO or GA. 

 

Wei et al. (2002) took a different tack, embedding velocity 

information in an evolutionary algorithm. They replaced 

Cauchy mutation with a version of PSO velocity in a fast 

evolutionary programming (FEP) algorithm, to give the FEP 

population direction. Their published results indicate that the 
approach is very successful on a range of functions; the new 

algorithm found global optima in tens of iterations, compared 

to thousands for the FEP versions tested. 

 

Robinson et al. (2002), trying to optimize a profiled 

corrugated horn antenna, noted that a GA improved faster 

early in the run, and PSO improved later. As a consequence of 

this observation, they hybridized the two algorithms by 

switching from one to the other after several hundred 

iterations. They found the best horn by going from PSO to GA 

(PSO-GA) and noted that the particle swarm by itself 

outperformed both the GA by itself and the GA-PSO hybrid, 
though the PSO-GA hybrid performed best of all. It appears 

from their result that PSO more effectively explores the search 

space for the best region, while GA is effective at finding the 

best point once the population has converged on a single 

region; this is consistent with other findings. 

 

Krink and Loøvbjerg (2002) similarly alternated among 
several methods, but they allowed individuals in a population 

to choose whether to belong to a population of a genetic 

algorithm, a particle swarm, or to become solitary hill-

climbers. In their self-adaptive search method, an individual 

changed its stage after 50 iterations with no improvement. The 

population was initialized as PSO particles; the “LifeCycle” 

algorithm outperformed all three of the methods that 

comprised it. Krink and Loøvbjerg’s graphs show interesting 

changes in the proportion of individuals in each state for 

various problems. 

 
A hybrid between a PSO and a hill-climber was proposed by 

Poli and Stephens (2004) who considered swarms of particles 

sliding on a fitness landscape rather than flying over it. The 

method uses particles without memory and requires no book-

keeping of personal best. Instead it uses the physics of masses 

and forces to guide the exploration of fitness landscapes. 

Forces include: gravity, springs, and friction. Gravity provides 

the ability to seek minima. Springs provide exploration. 

Friction slows down the search and focuses it. 

Clerc’s recent experiments (Clerc 2006b) have shown that 

adaptation of the constriction factor, population size, and 

number of neighbors can produce improved results. His 
studies found that best performance were obtained when all 

three of these factors are adapted during the course of the run. 

Clerc used three rules: (a) Suicide and generation: a particle 

kills itself when it is the worst in its neighborhood and 

generates a new copy of itself when it is the best; 

(b)Modifying the coefficient: good local improvement caused 

an increase in the constriction coefficient, while poor 

improvement caused its decrease; (c) Change in 

neighborhood: the locally best particle could reduce the 

number of its neighbors, while poorly performing particles 

could increase theirs. Adaptive changes were not made on 
every iteration, but only occasionally. 

 

Vesterstroøm et al. (2002) borrowed the idea of division of 

labor from research on insect swarm algorithms. In their 

hybrid particle swarm model, individuals in the swarm were 

assigned, after some number of iterations without 

improvement, to conduct local search. Local search was 

implemented by placing a particle at the population’s global 

best position with a new random velocity vector. The division 

of labor modification was intended to improve performance on 

unimodal problems; this improvement was seen, though 
performance on multimodal functions was not significantly 

improved. 

 

Hendtlass (2001) proposed a hybridization of PSO with ant 

colony optimization (ACO) (Dorigo and Stützle 2004) but did 

not present any results. More recently, Holden and Freitas 

(2005) introduced a hybrid PSO/ACO algorithm for 

hierarchical classification. This was applied to the functional 

classification of enzymes, with very promising results. 

Hendtlass (2001) combined PSO with differential evolution 

(DE) but with mixed results. While the hybridized algorithm 

did better than either PSO or DE on one multimodal problem, 
the particle swarm by itself tended to be faster and more 

robust than either DE or two version of hybrids that were 

tested. However, more recently, others, for example, Zhang 

and Xie (2003), have obtained more positive results. 
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A hybridization of PSO based on genetic programming (GP) 

was proposed (Poli et al. 2005b, 2005a) showing some 
promise. GP is used to evolve new laws for the control of 

particles’ movement for specific classes of problems. The 

method has consistently provided PSOs that performed better 

than some standard reference PSOs in the problem class used 

for training, and, in some cases, also generalized outside that 

class. 

 

A PSO that borrows from estimation of distribution algorithms 

has recently been proposed in (Iqbal and Montes de Oca 

2006). In this approach, the swarm’s collective memory is 

used to bias the particles’ movement towards regions in the 
search space which are estimated to be promising and away 

from previously sampled low-quality regions. Experiments 

suggest that this PSO hybrid finds better solutions than the 

canonical PSO using fewer function evaluations. 

 

Some researchers have noted a tendency for the swarm to 

converge prematurely on local optima. Several approaches 

have been implemented in order to correct for the decline of 

diversity as the swarm concentrates on a single optimum. 

 

Loøvbjerg (2002) used self-organized criticality to help the 

PSO attain more diversity, making it less vulnerable to local 
optima. When two particles are too close to one another, a 

variable called the “critical value” is incremented. When it 

reaches the criticality threshold, the particle disperses its 

criticality to other particles that are near it and relocates itself. 

Other researchers have attempted to diversify the particle 

swarm by preventing the particles’ clustering too tightly in one 

region of the search space. Blackwell and Bentley (2002) 

collision-avoiding swarms achieve this by reducing the 

attraction of the swarm center.  

 

Krink et al. (2002) developed “spatially extended” particles, 
where each particle is conceptualized as being surrounded by a 

sphere of some radius. When the spatially extended particle 

collides with another, it bounces off. 

 

Xie et al. (2002) added negative entropy to the particle swarm 

in order to discourage premature convergence (excessively 

rapid convergence towards a poor quality local optimum). In 

some conditions, they weighted the velocity and, in some 

conditions, the particle’s location, by some random value, 

thereby obtaining a sort of “dissipative particle swarm.”  

 
In bare-bones formulations of PSO, Kennedy (2003) proposed 

to move particles according to a probability distribution rather 

than through the addition of velocity—a “velocity-free” PSO. 

Bare-bones seeks to throw light on the relative importance of 

particle motion and the neighborhood topology. 

Gaussian bare-bones works quite well, imitating the 

performance of PSO on some problems, but proving less 

effective on others (see also the comparisons in Richer. and 

Blackwell 2006). On closer examination, what appears to be a 

bell curve actually has a kurtosis which increases with 

iteration (Kennedy 2004), and the distribution has fatter tails 

than Gaussian. It has been suggested that the origin of this lies 
in the production of “bursts of outliers” (Kennedy 2004).5 The 

trigger for these bursts is unknown; however Kennedy 

discovered that if burst events are added by hand to Gaussian 

bare-bones, performance is improved. The conjecture, 

therefore, is that the fat tails in the position distribution of 

canonical PSO enhance the ability of the swarm to move from 

sub-optimal locations. 
Following on from this result, Richer. and Blackwell (2006) 

replaced the Gaussian distribution on bare-bones with a Lévy 

distribution. The Lévy distribution is bell-shaped like the 

Gaussian but with fatter tails. The Lévy has a tunable 

parameter, α, which interpolates between the Cauchy 

distribution (α = 1) and Gaussian (α = 2). This parameter can 

be used to control the fatness of the tails. In a series of trials, 

Richer and Blackwell found that Lévy bare-bones at α = 1.4 

reproduces canonical PSO behavior, a result which supports 

the above conjecture. 

 
A statistical distribution also appears in canonical PSO; the p 

− x terms are multiplied by a random number from a uniform 

distribution. This injection of noise is believed to be critical to 

the search properties of PSO. The uniform distributed spring 

constant was replaced by a Gaussian random variable in 

(Secrest and Lamont 2003) and by the Lévy distribution in 

(Richer. and Blackwell 2006). The Gaussian spring constants 

PSO performed worse than standard PSO in a nine-function 

test suite, but Lévy spring constants PSO produced excellent 

results (Richer. and Blackwell 2006). The explanation might 

lie at the tails again, where large spring constants induce big 

accelerations and move particles away from local optima. 
 

3. Conclusion: 

In this work we have presented a review on filter 

design strategies using optimization techniques. 

DAPSO is an improved particle swarm optimization 

(PSO) that proposes a new definition for the 

velocity vector and swarm updating and hence the 

solution quality is improved. The distance from 

each particle to the global best position is calculated 

in order to adjust the velocity suitably of each 

particle. The inertia weight has been modified in 

this PSO to enhance its search capability that leads 

to a higher probability of obtaining the global 

optimal solution. The key feature of the modified 

inertia weight mechanism is to monitor the weights 

of particles, which linearly decrease in general 

applications. 
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