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ABSTRACT: 

   The simplex method for linear programming can be extended to permit the minimization of any convex 

separable piecewise-linear objective, subject to linear constraints. Part I of this paper has developed a 

general and direct simplex algorithm for piecewise-linear programming, under convenient assumptions that 

guarantee a finite number of basic solutions, existence of basic feasible solutions, and nondegeneracy of all 

such solutions. Part II now shows how these assumptions can be weakened so that they pose no obstacle to 

effective use of the piecewise-linear simplex algorithm. The theory of piecewise-linear programming is 

thereby extended, and numerous features of linear programming are generalized or are seen in a new light. 

An analysis of the algorithm's computational requirements and a survey of applications will be presented in 

Part III.  

Key words: Linear programming, simplex methods, piecewise-linear programming,  

Introduction: 

The minimization of convex separable piecewise-linear functions has traditionally been regarded as an 

application of purely linear programming. A given piecewise- linear program has first been converted to an 

equivalent larger linear program, by any of several well-known transformations. Then the linear program 

has been solved either by a standard simplex algorithm, or by a somewhat specialized simplex algorithm 

designed to exploit certain features of the transformation. Piecewise-linear simplex algorithms represent a 

more direct approach to the problem of piecewise-linear programming. They operate directly on an 

untrans-formed, unenlarged representation of the piecewise-linear objective function and linear constraints. 

Specialized piecewise-linear simplex algorithms have become standard in certain applications, notably in 

phase one of the linear simplex method and in 11 estimation. More recently, general simplex algorithms for 
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piecewise-linear programming have been outlined by Premoli , Rockafellar , Snyder and the author . This 

chapter builds upon previous work to develop and analyze a general, computationally practical 

piecewise-linear simplex algorithm. 

1. Piecewise-linear functions  

The exposition of the piecewise-linear case begins here, with the introduction of a terminology for the 

functions that serve as objectives of primal and dual piecewise- linear programs. Several fundamental 

properties of convex separable piecewise-linear functions are also stated below. Proofs can be devised by 

arguing directly from the definitions, or by specializing standard properties of convex functions.  

Separable piecewise-linear functions : 

A function 𝑓𝑘of a single real variable  𝑥𝑘 is piecewise-linear (or 𝑃 − 𝐿) if it is linear on each of a series of 

intervals that partition the real line. To describe such a function it is convenient to define an increasing 

sequence of breakpoints, (𝑦𝑘
ℎ): 

.  .  . 𝛾𝑘
(−2)

< 𝛾𝑘
(−1)

< 𝛾𝑘
(0)

< 𝛾𝑘
(2)

< 𝛾𝑘
(2)

< .  .  . 

Then  𝑓𝑘 is specified by a linear function on each interval [𝛾𝑘
(ℎ)

, 𝛾𝑘
(ℎ+1)

]. The sequence 𝛾𝑘
(ℎ)

 is potentially 

infinite in both directions, but it may effectively start with some 𝛾𝑘
(𝑠)

= −∞ = -co or may end with some  

𝛾𝑘
(𝑡)

= −∞. 

A separable piecewise-linear function f of n variables 𝑥1, 𝑥2, … , 𝑥𝑛. is the sum of 𝑛 piecewise-linear 

functions 𝑓𝑘 of these variables. Thus a separable 𝑃 − 𝐿 function is defined by 𝑛 increasing sequences of 

breakpoints  𝛾𝑘
(ℎ)

, along with linear functions on all of the intervals  [𝛾𝑘
(ℎ)

, 𝛾𝑘
(ℎ+1)

].  

 

2. Continuous separable piecewise-linear functions  

If the piecewise-linear function  𝑓𝑘 is continuous, then it can be specified almost entirely in terms of  its slopes on 

the intervals between breakpointsLet the slope of 𝑓𝑘 be 𝑐𝑘
(ℎ)

 on the interval [𝛾𝑘
(ℎ)

, 𝛾𝑘
(ℎ+1)

].  

Then for scalar values 𝑢 <  𝑣 such that 

𝛾𝑘
(𝑠)

≤ 𝑢 

                ≤ 𝛾𝑘
(𝑠+1)

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                  www.jetir.org (ISSN-2349-5162) 

JETIR1906S22 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 573 
 

Thus any continuous 𝑃 − 𝐿 function can be specified up to an additive constant by just the sequences 𝛾𝑘
(ℎ)

 and𝑐𝑘
(ℎ)

. 

Nothing is lost, moreover, in assuming that 𝑐𝑘
(ℎ−1)

≠ 𝑐𝑘
(ℎ)

 for all ℎ, since 𝑐𝑘
(ℎ−1)

= 𝑐𝑘
(ℎ)

 implies that the breakpoint 

𝛾𝑘
(ℎ)

 is superfluous. 

 The sum of continuous 𝑃 − 𝐿 functions of 𝑥1, 𝑥2, … , 𝑥𝑛. is necessarily a continuous separable piecewise-linear 

function. It is specified up to an additive constant by the sequences 𝛾𝑘
(ℎ)

 and 𝑐𝑘
(ℎ)

 for 𝑘 =  1, . . . , 𝑛. This is a 

sufficient specification for the purposes of piecewise-linear programming, which is concerned only with minimizing 

such functions. The above observations suggest a concise notation for continuous piecewise-linear functions in terms 

of their slopes and breakpoints will be written as 

[𝑐/𝛾]𝑘𝑥𝑘 

 A continuous 𝑃 − 𝐿 function of 𝑋𝑘, defined by slopes  𝑐𝑘
(ℎ)

 and breakpoints  𝛾𝑘
(ℎ)

, will be written 

[
𝑐

𝛾
] 𝑥 = ∑ [𝑐/𝛾]𝑘𝑥𝑘

𝑛
𝑘=1  

The piecewise-linear 'cost vector' [
𝑐

𝛾
] plays the role of the familiar cost vector 𝑐 in linear programming, but the 

value of each 'coefficient' [
𝑐

𝛾
] 𝑥 may depend on 𝑥𝑘.  

3. Convex separable piecewise-linear functions  

Consider now the continuous piecewise-linear functions [𝑐/𝛾]𝑘 whose slopes, as well as their breakpoints, 

are increasing: 

 .  .  . 𝑐𝑘
(−2)

< 𝑐𝑘
(−1)

< 𝑐𝑘
(0)

< 𝑐𝑘
(2)

< 𝑐𝑘
(2)

< .  .  . 

Like the sequence of breakpoints, this sequence of slopes is potentially infinite. 

However, it is useful to let the slopes begin with some𝑐𝑘
𝑠 = −∞or end with some 𝑐𝑘

𝑠 = ∞; if [𝑐/𝛾]𝑘 is 

required to be continuous only on some closed interval where it is finite, then there is a natural interpretation 

of infinite slopes in terms of infinite values of [𝑐/𝛾]𝑘: 

𝑐𝑘
𝑠 = −∞ implies[𝑐/𝛾]𝑘𝑥𝑘=∞  for all 𝑥𝑘 < 𝛾𝑘

(𝑆+1)
 

𝑐𝑘
𝑡 = ∞ implies[𝑐/𝛾]𝑘𝑥𝑘=∞  for all 𝑥𝑘 > 𝛾𝑘

(𝑡)
 

The interval on which [𝑐/𝛾] is finite must be nonempty provided that at least one slope or one breakpoint is 

finite. Under this extended interpretation of [𝑐/𝛾 ], increasing sequences of slopes and breakpoints 

characterize the convex piecewise-linear functions. 
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The interval on which [𝑐/𝛾] is finite must be nonempty provided that at least one slope or one breakpoint is 

finite. Under this extended interpretation of [𝑐/𝛾 ], increasing sequences of slopes and breakpoints 

characterize the convex piecewise-linear functions:  

Property 1. 

 [𝑐/𝛾]𝑘 is convex if and only if 𝑐𝑘
(ℎ−1)

<  𝑐𝑘
(ℎ)

 < for every finite breakpoint  𝛾𝑘
(ℎ)

.  

There is indeed a one-to-one correspondence between complementary increasing sequences of slopes and 

breakpoints, among which at least one slope or breakpoint is finite, and classes of convex 𝑃 − 𝐿 functions 

that are proper (not everywhere infinite), closed (continuous where they are finite), and identical up to an 

additive constant. Henceforth [𝑐/𝛾]𝑘 will denote only proper closed convex 𝑃 − 𝐿 functions, which are the 

natural objective functions of piecewise-linear programs. Because [𝑐/𝛾]𝑘 is convex, any tangent to its graph 

must lie below the graph. In more precise terms: 

 Property 2.  

If [𝑐/𝛾]𝑘is convex, then[𝑐/𝛾]𝑘  

for any real values of u and v such that 𝛾𝑘
(ℎ)

≤ 𝑢 ≤ 𝛾𝑘
(ℎ+1)

 and −∞ < 𝑐𝑘
𝑡 < ∞  , in proving that the 

piecewise-linear simplex algorithm reduces the objective value at each iteration.  

If [𝑐/𝛾]𝑘𝑥𝑘  is convex for each 𝑘 , then [
𝑐

𝛾]𝑘
∑ [𝑐/𝛾]𝑘𝑥𝑘

𝑛
𝑘=1 must also be convex. Hence 𝑛  different 

increasing sequences of slopes  and breakpoints 𝛾𝑘
ℎ  define a (proper, closed) convex separable 

piecewise-linear function [𝑐/𝛾] of n variables.  

4. Basic solutions  

The basis matrix 𝐵 for a piecewise-linear program is defined by 𝑚 independent columns of the constraint 

matrix 𝐴, just as for a bounded-variable linear program. 

However, whereas a basic solution is determined for an 𝐿𝑃 by fixing each nonbasic variable at one of its 

bounds, a basic solution for a 𝑃 − 𝐿𝑃 is determined by fixing each nonbasic variable at one of its breakpoints 

in the 𝑃 − 𝐿 objective function.A basic solution for a 𝑃 − 𝐿𝑃 is defined by a basis matrix 𝐵 together with 

an assignment of finite breakpoints 𝛾𝑁𝑗
ℎ  to the nonbasic variables 𝑥𝑁𝑗 . Writing simply  𝛾𝑁𝑗

  for the 

breakpoint assigned to 𝑥𝑁𝑗., the formulas for a basic solution are  
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�̅�Nj=  𝛾𝑁𝑗
  for all j, 𝐵�̅�B𝑏 − ∑ 𝑎𝑁𝑗𝛾𝑁𝑗

 
𝑗  

These expressions reduce when  𝛾𝑁𝑗
  is taken to be 𝛾𝑁𝑗̅̅ ̅̅

   

 At any particular basic solution, each basic variable has a certain slope in the objective function. The slope 

of 𝑥𝐵𝑖 is given by  

  𝑐𝐵𝑖 = 𝑐𝐵𝑖
(h) where 𝛾𝐵𝑖

(ℎ)
≤ 𝑥𝐵𝑖 ≤ 𝛾𝐵𝑖

(ℎ+1)
  

 

The 𝑚-vector of these basic slopes, denoted 𝑐𝐵 , plays the same role as the vector of basic costs.  

 In describing an iteration of the piecewise-linear simplex algorithm, it will be convenient to have a notation 

for the slopes and breakpoints of the objective function  relative to the current basic solution• Thus, for each 

nonbasic variable 𝑥𝑁𝑗
 ,  Let 𝑐𝑁𝑗

+{1}
,  𝑐𝑁𝑗

+{2}
,…  be the sequence of slopes as 𝑥𝑁𝑗 . increases, and let  

𝛾𝑁𝑗
+{1}

 𝛾𝑁𝑗
{2}

 ,... be the intervening sequence of breakpoints; similarly, let  𝑐𝑁𝑗
−{1}

, 𝑐𝑁𝑗
−{2}

,… and  𝛾𝑁𝑗
−{1}

 𝛾𝑁𝑗
−{2}

 ,...  

be the sequences of slopes and breakpoints as  𝑥𝑁𝑗. decreases. 

 

 The slopes of 𝑥𝑁𝑗. in successive intervals are then given as follows: 

 

 

A complementary notation describes the slopes and breakpoints for each basic varia 
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The differences between the basic and nonbasic notations reflect the differing roles of the basic and nonbasic 

variables in a basic solution 

For 𝑥𝑁𝑗 the breakpoint 𝛾𝑁𝑗
   is fixed, and the notation 'centers' the slopes and other breakpoints around it. 

For 𝑥𝐵𝑖. the notation centers the breakpoints and slopes around the fixed slope 𝑥𝐵𝑖. 

5. Statement and proof of a piecewise-linear simplex algorithm  

 Given a basic feasible solution from which to start, this algorithm finds a basic optimal solution (if a finite 

minimum exists) provided that the number of breakpoints is finite and that all basic feasible solutions are 

non-degenerate . The proof of the algorithm adopts the familiar arguments of the linear case. First it is shown 

that the algorithm eventually stops. Then it is proved that, when the algorithm does stop, it has either found a 

finite optimal solution or has demonstrated that none exists. The 𝑃 − 𝐿 conjugacy properties make possible a 

concise proof of optimality. Under the further hypothesis that basic feasible solutions exist whenever the 

constraints are feasible , the optimality proof simultaneously establishes a strong duality theorem for 

piecewise-linear programming. 

5.1. Statement of the algorithm  

The piecewise-linear simplex algorithm starts with some basic feasible solution 𝑥̅̅ ̅ defined by a basis matrix 

𝐵 and a vector of breakpoint values 𝛾𝑁: 

�̅�𝑁𝑗 = 𝛾𝑁,   𝐵�̅�𝐵 = 𝑏 − ∑ 𝑎𝑁𝑗,𝛾𝑁𝑗𝑗  

 

A vector CB of finite slopes is chosen to correspond to the values �̅�𝐵 of the basic variables: 
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     CBi=𝑐𝐵𝑖
ℎ   if 𝛾𝐵𝑖

ℎ < �̅�𝐵𝑖𝛾𝐵𝑖
(ℎ+1)

  

An iteration of the algorithm then proceeds as follows:  

(1) Solve �̅�𝐵 = 𝐶B. 

 (2) Test for optimality: If the no basic variables satisfy 

𝐶𝑁𝑗
−{1}

≤ �̅�𝑎𝑁𝑗 ≤ 𝐶𝑁𝑗
+{1}

 for all 𝑗 

then the basic solution is optimal. STOP.  

(3) Select entering variable: Choose a variable  𝑥𝑁𝑃 such that 

𝑑𝑁𝑃
− = 𝐶𝑁𝑃

−{1}
− �̅�𝑎𝑁𝑝 > 0,  or 

𝑑𝑁𝑃
+ = 𝐶𝑁𝑃

+{1}
− �̅�𝑎𝑁𝑝 < 0, 

 

(4) Solve 

𝐵𝑦B=  −𝑎𝑁𝑝 if  𝑑𝑁𝑃
− > 0  , or 

𝐵𝑦B=  𝑎𝑁𝑝 if  𝑑𝑁𝑃
+ < 0 

(5) Test for unboundedness: If 

  𝛾𝐵𝑞
+{1}

= +∞ for all  𝑦𝐵𝑖
 < 0 

  𝛾𝐵𝑞
−{1}

= −∞ for all  𝑦𝐵𝑖
 > 0 

   𝛾𝑁𝑝
+{1}

= +∞ if  𝑑𝑁𝑃
+ < 0 

  𝛾𝑁𝑝
−{1}

= −∞ if  𝑑𝑁𝑃
− > 0 

then the objective can decrease without bound. STOP. 

(6) Select leaving variable: Choose any variable 𝑥𝐵𝑞 and breakpoint 𝛾𝐵𝑞

+{𝑟𝑞}
 or 𝛾𝐵𝑞

−{𝑟𝑞}
 such that 

(a)  (𝑥𝐵𝑞 − 𝛾𝐵𝑞

+{𝑟𝑞}
)/𝑦𝐵𝑞 = �̅� and  𝑦𝐵𝑞 < 0, or 

(b)  (𝑥𝐵𝑞 − 𝛾𝐵𝑞

−{𝑟𝑞}
)/𝑦𝐵𝑞 = �̅� and  𝑦𝐵𝑞 > 0 

or choose any breakpoint 𝛾𝐵𝑞
+{𝑟}

 or 𝛾𝐵𝑞
_{𝑟}

 such that  

(C)           −(𝛾𝑁𝑝
 − 𝛾𝑁𝑝

+{𝑟}
= �̅� and  𝑑𝑁𝑃

+ < 0, or 

(d)        (𝛾𝑁𝑝
 − 𝛾𝑁𝑝

{𝑟}
= �̅� and  𝑑𝑁𝑃

− > 0     
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provided �̅� is small enough that 𝑑𝑁𝑃
+ < 0 and  

𝑑𝑁𝑃
+ (�̅�) = 𝑐𝑁𝑝

+{𝑟}
− ∑ 𝑐𝐵𝑖

+{𝑟𝑖−1}
𝑦𝐵𝑖<0

𝑦𝐵𝑖 − ∑ 𝑐𝐵𝑖
{𝑟𝑖−1}

𝑦𝐵𝑖>0
𝑦𝐵𝑖 < 0, 

or �̅� is small enough that d 𝑑𝑁𝑃
+ > 0 and 

𝑑𝑁𝑃
− (�̅�) = 𝑐𝑁𝑝

−{𝑟}
− ∑ 𝑐𝐵𝑖

+{𝑟𝑖−1}
𝑦𝐵𝑖<0

𝑦𝐵𝑖 − ∑ 𝑐𝐵𝑖
{𝑟𝑖−1}

𝑦𝐵𝑖>0
𝑦𝐵𝑖 > 0 

where the breakpoints 𝑟𝑖 and 𝑟 are defined by 

(𝑥𝐵𝑖 − 𝛾𝐵𝑖
+{𝑟𝑖−1}

)/𝑦𝐵𝑖 < �̅� ≤ (𝑥𝐵𝑖 − 𝛾𝐵𝑖
+{𝑟𝑖}

)/𝑦𝐵𝑖 for 𝑦𝐵𝑖 < 0, 

(𝑥𝐵𝑖 − 𝛾𝐵𝑖

{𝑟𝑖−1}
)/𝑦𝐵𝑖 < �̅� ≤ (𝑥𝐵𝑖 − 𝛾𝐵𝑖

{𝑟𝑖}
)/𝑦𝐵𝑖 for 𝑦𝐵𝑖 > 0, 

−(𝛾𝑁𝑝
 − 𝛾𝑁𝑝

+{𝑟𝑖−1}
)/𝑦𝐵𝑖 < �̅� ≤ (𝛾𝑁𝑝

 − 𝛾𝑁𝑝
+{ 𝑟}

)/𝑦𝐵𝑖 for𝑑𝑁𝑃
+ < 0,, 

   (𝛾𝑁𝑝
 − 𝛾𝑁𝑝

{𝑟𝑖−1}
)/𝑦𝐵𝑖 < �̅� ≤ (𝛾𝑁𝑝

 − 𝛾𝑁𝑝
{𝑟 }

)/𝑦𝐵𝑖 for 𝑑𝑁𝑃
− > 0, 

 

 (7) Update basic solution: Reset 

�̅�𝐵 ← �̅�𝐵 − 𝜃𝑦̅̅̅̅
𝐵,   

�̅�𝑁𝑝 ←     𝛾𝑁𝑃
+ + �̅� , if d+

Np < 0,      

�̅�𝑁𝑝 ←     𝛾𝑁𝑃
+ − �̅� , if d-

Np > 0, and set CBi accordingly for i≠q 

CBi = 𝑐𝐵𝑖
+{𝑟𝑖−1}   for  𝑦𝐵𝑖 < 0, 

CBi = 𝑐𝐵𝑖
+{𝑟𝑖−1}     for 𝑦𝐵𝑖 > 0, 

(8) Change basis, according to the choice made in step (6): 

If (a) or (b), replace 𝑎Bq by 𝑎Np in𝐵. 

Set CNp= 𝐶𝑁𝑃
+{𝑟}  (if 𝑑𝑁𝑃

+ < 0) or CNp = 𝐶𝑁𝑃
−{𝑟}    (if  𝑑𝑁𝑃

− > 0  ) 

 Set     𝛾𝐵𝑞
 =     𝛾𝐵𝑞

+{𝑟𝑞}
 (if 𝑌Bq < 0 or     𝛾𝐵𝑞

 =     𝛾𝐵𝑞
−{𝑟𝑞}

 (if 𝑌Bq > 0).  

If (c) or (d), set     𝛾𝑁𝑝
 = 𝛾𝑁𝑞

+{𝑟}
   (if 𝑑𝑁𝑃

+ < 0 ) or   𝛾𝑁𝑃
  = 𝛾𝑁𝑃

−{𝑟}
 ( if  𝑑𝑁𝑃

− > 0) 

The piecewise-linear simplex algorithm carries out a series of these iterations,  

Each starting from the B, CB, 𝛾𝑁
  and  𝑥̅̅ ̅   determined at the end of the preceding  

iteration. The algorithm stops when, at some iteration, the termination conditions  

of step (2) or step (5) are satisfied. 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                  www.jetir.org (ISSN-2349-5162) 

JETIR1906S22 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 579 
 

CONCLUSION 

           The first develops and justifies a piecewise-linear simplex algorithm,that each piecewise-linear 

term has a finite number of pieces, that a basic feasible starting basis can be found, and that all bases are 

non-degenerate. Then second shows how the algorithm may be extended to permit the relaxation of these 

assumptions. The third carries out the computational analysis, and concludes with a summary of applications 

of piecewise-linear programming. The first begins with a survey of the origins of the subject in second. The 

bounded-variable simplex algorithm is then introduced in third , to provide a point of comparison and to 

establish simplex terminology. 

The develop the piecewise-linear algorithm. Introduce convex separable piecewise-linear functions and 

piecewise-linear programs, respectively, and state their elementary properties. The defines basic solutions 

for piecewise-linear programs, and  derives the essential operations of moving from one basic solution to 

another. Finally,  presents a detailed statement and proof of the algorithm. 
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