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Abstract:  Bifurcation theory is a subject with classical mathematical origin. The modern development of this subject 

dates back to the pioneering work of Poincare, and over the past four decades this theory has witnessed rapid 

developments with new ideas and methods from dynamical systems theory, singularity theory and many others. In 

general, in a dynamical system, a parameter is allowed to vary, and then the differential system may change. Equilibrium 

can become unstable and a periodic solution may appear or a new stable equilibrium may appear making the previous 

equilibrium unstable. The value of parameter at which these changes occur is known as “bifurcation value” and the 

parameter that is varied is known as the “bifurcation parameter”. In recent years many types of bifurcations of flow and 

maps have been studied and classified including saddle node, Hopf, umbilic, zip, Homo clinic tangencies, period doubling 

and cusp bifurcations. It is our belief that in the years to come the bifurcation theory plays a more active role in various 

application domains of Science and Technology. In the first section several types of bifurcations have shown through 

examples. In the second section the structural stability is introduced and studied. The most important two bifurcations 

have dealt with in detail in the next two sections, where also sufficient conditions are given for these bifurcations. 

Applications of bifurcation will be given in fifth section. 

Index Terms - Bifurcation, Equilibrium, structural stability, saddle node bifurcation, Hopf bifurcation. 

I. BIFURCATION 

1.1. Introduction 

Bifurcation theory is a subject with classical mathematical origin. The modern   this subject dates back to the pioneering work 

of Poincaré, and over the past four decades this theory has witnessed rapid developments with new ideas and methods from 

dynamical systems theory, singularity theory and many others. 

Bifurcation theory attempts to explain various phenomena that have been discovered and described in the natural sciences over 

the centuries. The buckling of the Euler rod, the appearance of Taylor vortices, and the onset of oscillations in an electric circuit, for 

instance, all have a common cause: A specific physical parameter crosses a threshold, and that event forces the system to the 
organization of a new state that differs considerably from that observed before. Mathematically speaking, the following occurs: The 

observed states of a system correspond to solutions of nonlinear equations that model the physical system. A state can be observed 

if it is stable, an intuitive notion that is made precise for a mathematical solution.  

One expects that a slight change of a parameter in a system should not have a big influence, but rather that stable solutions 

change continuously in a unique way. That expectation is verified by the Implicit Function Theorem. Consequently, as long as a 

continuous branch of solutions preserves its stability, no dramatic change is observed when the parameter is varied. However, if 

that “ground state” loses its stability when the parameter reaches a critical value, then the state is no longer observed, and the 

system itself organizes a new stable state that “bifurcates” from the ground state. Bifurcation is a paradigm for non-uniqueness in 

Nonlinear Analysis. Bifurcation Theory provides the mathematical existence of bifurcation scenarios observed in various systems 

and experiments. A necessary condition is obviously the failure of the Implicit Function Theorem. 

The bifurcation is the qualitative change in the phase portrait. The bifurcation occurs at those parameter values for which the 

phase portrait is not topologically equivalent to those belonging to nearby parameter values. This is formulated in the following 

definition. Consider the equation �̇�(𝑡)  =  𝑓(𝑥(𝑡), 𝜆), where 𝑓 ∶  ℝ𝑛  ×  ℝ𝑘  →  ℝ𝑛  is a continuously differentiable function and 

𝜆 ∈ ℝ𝑘 is a parameter. 

Definition. 

The parameter value 𝜆0 ∈ ℝ𝑘  is called regular, if there exists 𝛿 >  0, for which|𝜆 − 𝜆0|  <  𝛿 implies that the system 𝑓(·, 𝜆) is 

topologically equivalent to the system 𝑓(·, 𝜆0). At the parameter value 𝜆0 ∈ ℝ𝑘  there is a bifurcation if it is not regular. 

In general, in a dynamical system, a parameter is allowed to vary, and then the differential system may change. Equilibrium can 

become unstable and a periodic solution may appear or a new stable equilibrium may appear making the previous equilibrium 

unstable. The value of parameter at which these changes occur is known as “bifurcation value” and the parameter that is varied is 

known as the “bifurcation parameter”. 

In the first section several types of bifurcations will be shown through examples. In the second section the structural stability is 

introduced and studied. The most important two bifurcations will be dealt with in detail in the next two sections, where also 

sufficient conditions will be given for these bifurcations. Applications of bifurcation will be given in fifth section.  

 

1.2. Basic concepts of bifurcation analysis 

As it is stated above, in dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the 

bifurcation parameters) of a system causes a sudden  “qualitative" or topological change in its behavior. Generally, at a bifurcation, 

the local stability properties of equilibrium, periodic orbits or other invariant sets changes. It has two types; 

Local bifurcations, which can be analyzed entirely through changes in the local stability properties of equilibrium, periodic 

orbits or other invariant sets as parameters cross through critical thresholds; and 
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Global bifurcations, which often occur when larger invariant sets of the system ”collide” with each other, or with equilibrium 

of the system. They cannot be detected purely by a stability analysis of the equilibrium. 

Equilibrium points 

 In dynamical systems, only the solutions of linear systems may be found explicitly. The problem is that in general real life 
problems may only be modeled by nonlinear systems. The main idea is to approximate a non linear system by a linear one (around 

the equilibrium point). Of course, we do hope that the behavior of the solutions of the linear system will be the same as the 

nonlinear one. But this is not always true. Before the linear stability analysis, we give some basic definitions below. 

Definition (Equilibrium Point):  

Consider a nonlinear differential equation 𝑥′(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), where f is a function mapping ℝ𝑘  × ℝ𝑛  →  ℝ𝑛 . A point �̅� is 

called an equilibriumpoint if there is a specific �̅�  ∈ 𝑅𝑚 such that 

𝑓(𝑥(𝑡), 𝑢(𝑡))  =  0 
Suppose �̅� is an equilibrium point (with the input �̅�). Consider the initial condition x (0) = �̅�, and applying the input 𝑢(𝑡) = �̅� for 

all 𝑡 ≥  𝑡0, then resultingsolution 𝑥(𝑡) satisfies 𝑥(𝑡) =  �̅�, for all 𝑡 ≥  𝑡0. That is why it is called an equilibriumpoint or solution.  

Example: 

 As an example, consider the logistic growth equation (the rate of population density) 𝑥′ =  𝑟𝑥(1 −  
𝑥 

𝐾
 ), where 𝑥(𝑡) 

denotes the population density at time t, r and K are positive constants, K is the carrying capacity. Then by setting right hand side 

function equal to zero, 𝑓(𝑥) = 𝑟𝑥(1 − 
𝑥

𝐾
  ) = 0, we obtain two equilibriumpoints 𝑥 =  0 and𝑥 =  𝐾. 1.3. Normal forms of 

Elementary bifurcations  

 In this section, we discuss several types of bifurcations, saddle node, Trans critical, pitchfork and Hopf bifurcation. The 

first three types of bifurcation occur in scalar and in systems of differential equations. The fourth type called Hopf bifurcation does 
not occur in scalar differential equations because this type of bifurcation involves a change to a periodic solution. Scalar 

autonomous differential equations cannot have periodic solutions. Hopf bifurcation occurs in systems of differential equations 

consisting of two or more equations. This type is also referred to as a “Poincare-Andronov-Hopf bifurcation”. 

1.3.1. Phase portrait 

Consider the differential equation �̇� =  𝜆 − 𝑥 in which 𝜆 𝜖 ℝ is a parameter.For a given value of 𝜆 the equilibrium is the point 

𝑥 = 𝜆 .This point is globally asymptotically stable for all values of 𝜆, that is trajectories are tending to this point.The phase portrait 

for different values of 𝜆 can be shown in a coordinate system, wherethe horizontal axis is for 𝜆 and for a given value of 𝜆 the 

corresponding phase portraitis given on the vertical line at𝜆, as it is shown in Figure 1.1. This Figure shows that the phase portrait is 

the same for all values of𝜆, that is all values of 𝜆 are regular, i.e. there is no bifurcation. The topological equivalence of the phase 

portraits corresponding to different values of 𝜆can be formally verified by determining the homeomorphism the orbits to each other. 

For example, the orbits for  𝜆= 0 can be taken to those belongingto𝜆= 1 by the homeomorphism ℎ (𝑝)  =  𝑝 − 1. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The phase portrait of the differential equation �̇� =  𝛌 − 𝐱 for different values of the parameter 𝛌. 

 

1.3.2. Saddle-node bifurcation 

A saddle-node bifurcation or tangent bifurcation is a collision and disappearance of two equilibrium in dynamical systems. In 

autonomous systems, this occurs when the critical equilibrium has one zero eigenvalue. This phenomenon is also called fold or 

limit point bifurcation. 

Example 1.3.2. 

 Consider the differential equation�̇� =  𝜆 − 𝑥2̇ , where 𝜆 𝜖 ℝ  is a parameter. In this case the existence of the equilibrium 

depends on the parameter𝜆. If  𝜆 < 0 , then there is no equilibrium, for 𝜆 = 0 the origin 𝑥 = 0 is an equilibrium, and for 𝜆 > 0 

there are two equilibria 𝑥 = ±√𝜆.The phaseportrait can be shown for different values of 𝜆by using the same method as in the 

previousexample, as it is shown in Figure 1.3.2. It can be seen in the Figure that the bifurcation is at𝜆 = 0, since the phase portrait is 

different for positive and negative values of the parameter. The values 𝜆 ≠ 0 are regular, because choosing a positive or negative 

valueof 𝜆the phase portrait does not change as 𝜆 is varied in a suitably small neighborhood.The topological equivalence of the 

phase portraits corresponding to different non-zero values of 𝜆 can be formally verified by determining the homeomorphism taking 

the orbits to each other. For example, the orbits for 𝜆< 0 can be taken to each other by the homeomorphism ℎ(𝑝)  =  𝑝. For positive 
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values of 𝜆 the orbits for can be taken to each other by a piece-wise linear homeomorphism. The bifurcation in this example is 

called fold or saddle-node bifurcation.  

Figure 1.2: Fold or saddle-node bifurcation in the differential equation �̇� =  𝝀 − 𝒙𝟐 at𝝀 = 𝟎 

 

1.3.3. Trans critical bifurcation 

In a Trans critical bifurcation, two families of fixed points collide and exchange their stability properties. The family that was 

stable before the bifurcation is unstable after it. The other fixed point goes from being unstable to being stable. 

Example 1.3.3. 

Consider the differential equation ẋ =  λx − x2, where 𝜆 𝜖 ℝ is a parameter. The point x = 0 is an equilibrium for any value of 

λ.Besides this point x = λ is also an equilibrium, therefore in the case λ ≠ 0 there aretwo equilibria, while for λ = 0 there is only 

one. Hence there is a bifurcation at λ = 0.The phase portrait can be shown for different values of λ by using the same method asin 

Example 1.1, as it is shown in Figure 1.3. It can be seen in the Figure that the bifurcation is at λ = 0, since the phase portrait for 

non-zero values of the parameter is different from that of belonging to λ = 0. The values λ ≠ 0  are regular, because choosinga 

positive or negative value of λ the phase portrait does not change as λ is varied in a suitably small neighbourhood. For negative 

values of λthe point x = 0 is stable and 𝑥 =  λ is unstable, while for positive λ values it is the other way around. This bifurcation 

iscalled trans critical because of the exchange of stability. The topological equivalence of thephase portraits corresponding to 

different non-zero values of  λ can be formally verified by determining the homeomorphism taking the orbits to each other. 

 

 
 

Figure 1.3: Trans critical  bifurcation in the differential equation �̇� =  𝝀𝒙 − 𝒙𝟐 at 𝝀 = 𝟎 

 

1.3.4. The pitchfork bifurcation 

In pitchfork bifurcation one family of fixed points transfers its stability properties to two families after or before the bifurcation 

point. If this occurs after the bifurcation point, then pitchfork bifurcation is called supercritical. Similarly, a pitchfork bifurcation is 

called subcritical if the nontrivial fixed points occur for values of the parameter lower than the bifurcation value. In other words, the 

cases in which the emerging nontrivial equilibria are stable are called supercritical whereas the cases in which these equilibria are  

called subcritical. 
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Example.1.3.4. 

Consider the differential equation ẋ =  λx − x3, where 𝜆 𝜖 ℝ is a parameter. The point x = 0 is an equilibrium for any value 

ofλ.Besides this point x = ±λ is also an equilibriumif λ > 0 .Thus for λ < 0 there is a unique equilibrium, while for λ > 0, there 

are 3 equilibria. Hence there is a bifurcation at λ = 0. The phase portrait can be shown for different values of λ by using the same 

method as in Example 1.3.1, as it is shown in Figure 1.4. It can be seen in the Figure that the bifurcation is at λ = 0, since the phase 

portrait for non-zero values of the parameter is different from that of belonging to 𝜆 =  0. The values 𝜆 ≠  0 are regular, because 

choosing a positive or negative value of λ the phase portrait does not change as λ is varied in a suitably small neighbourhood. For 

negative values of λ the equilibrium point 𝑥 =  0 is globally stable. For positive values of λ the points 𝑥 =  ±√𝜆 take over 

stability. This bifurcation is called pitchfork bifurcation because of the shape of the bifurcation curve. The topological equivalence 

of the phase portraits corresponding to different non-zero values of λ can be formally verified by determining the homeomorphism 

taking the orbits to each other. 

 
Figure 1.4: Pitchfork bifurcation in the differential equation �̇� =  𝛌𝐱 − 𝐱𝟑, at 𝝀 =  𝟎. 

 

 

Bifurcation in two dimension 

1.3.5. Hopf bifurcation 

Definition:  

A Hopf or Poincare-Andronov-Hopf bifurcation is a local bifurcation in which a fixed point of a dynamical system loses 

stability as a pair of complex conjugate eigenvalues of linearization around the fixed point cross the imaginary axis of the complex 

plane. 

 
Bifurcation diagram corresponding to Supercritical Hopf bifurcation 

 

Example 1.3.5  (Andronov–Hopf bifurcation). 
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Consider the differential equation �̇�  =  𝜆𝑟 +  𝜎𝑟3, ˙ 𝜑 =  1 given in polar coordinates, where 𝜆 ∈  ℝ and 𝜎 ∈  ℝ are 

parameters.First, fix the value 𝜎 =  −1 (any 𝜎 <  0 yields the same phenomenon) and see how thephase portrait changes as the 

value of λ is varied. The origin is an equilibrium for any value of λ and its stability can be easily determined from the differential 

equation for r. Namely, in the case 𝜆 <  0, we have �̇�  =  𝜆𝑟 − 𝑟3 <  0, hence r is strictly decreasing and converges to zero, 

therefore the solutions tend to the origin. However, for 𝜆 >  0 and 𝑟 <  √𝜆 we have 𝑟 ̇  =  𝑟(𝜆𝑟 − 𝑟2)  >  0, hence r is strictly 

increasing, therefore the originis unstable. Moreover, for 𝑟 =  √𝜆 we have𝑟 ̇ =  0, that is the circle with radius √𝜆 is a periodic 

orbit that is orbitally asymptotically stable, because inside the circle �̇� >  0 and outside �̇� <  0. This phenomenon is illustrated in 

Figure 1.6. In the Figure the behaviour of r is shown as λ is varied. The bifurcation is at 𝜆 =  0 and the values 𝜆 ≠  0 are regular. 

 
Figure 1.5: The bifurcation diagram with respect to 𝝀in the differential equation�̇�  =  𝝀𝒓 +  𝝈𝒓𝟑 for 𝓔 = −𝟏  

and for 𝓔 = 𝟏. 

The bifurcation in the two dimensional phase space is shown in Figure 1.7. If 𝜆 <  0, then the origin is globally asymptotically 

stable, while for 𝜆 >0 the origin is unstable and the stability is taken over by a stable limit cycle, the size of which is increasing as 

√𝜆. This bifurcation is called supercritical Andronov–Hopf bifurcation. Returning to the differential equation �̇�  =  𝜆𝑟 +  𝜎𝑟3,  

𝜑 ̇ =  1 consider the case of positive σ values, say let 𝜎 =  1. The origin is an equilibrium again the stability of which is changed in 

the same way with λ as before, however, the periodic solution now appears for 𝜆 <  0, and it is unstable. The origin loses its 

stability for 𝜆 >  0, however, in this case the periodic orbit does not take over the stability, the trajectories tend to infinity. If 𝜆 <
 0, then the origin is stable but its domain of attraction is only the interior of the periodic orbit. If 𝜆 >  0, then the origin is unstable 

and the trajectories tend to infinity. This bifurcation is called subcritical Andronov–Hopf bifurcation.  

In the previous examples the bifurcation occurred locally in the phase space, in a neighbourhood of an equilibrium. These kind 

of bifurcations are called local bifurcations. 

 
Figure 1.6: Bifurcation of the differential equation �̇�  =  𝝀𝒓 − 𝒓𝟑at 𝝀 =  𝟎. 

 
Figure 1.7: Supercritical Andronov-Hopf bifurcation, the origin looses its stability and 

a stable limit cycle is born. 

 

1.4 Necessary conditions of bifurcations 

The examples of the previous section show that local bifurcation may occur at non hyperbolic equilibria. This statement will be 

proved generally in this section. The notion of local bifurcation is defined first. Consider a general system of the form              

�̇�(𝑡)  =  𝑓(𝑥(𝑡), 𝜆), where𝑓 ∶  ℝ𝑛 × ℝ𝑘  → ℝ𝑛is a continuously differentiable function, and 𝜆 ∈ ℝ𝑘  is a parameter. 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162) 

JETIR1906S55 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 825 
 

Definition  

The pair (𝑥0, 𝜆0) is called locally regular, if there exist a neighbourhood 𝑈 ⊂ ℝ𝑛of 𝑥0 and 𝛿 >  0, such that for |𝜆 − 𝜆0|  <  𝛿 

the systems and
𝑓

𝑈
⁄ (·, 𝜆0) and 

𝑓
𝑈

⁄ (·, 𝜆)are topologically equivalent (that is the phase portraits are topologically equivalent in U). 

There is a local bifurcation at (𝑥0, 𝜆0), if (𝑥0, 𝜆0)is not locally regular. 

Proposition 1.4.1. 

If 𝑓(𝑥0, 𝜆0), ≠  0,then (𝑥0, 𝜆0), is locally regular. 

Proof. 

 For simplicity, the proof is shown for the case 𝑛 =  1. Without loss of generality one can assume that 𝑓(𝑥0, 𝜆0) >  0. Then the 

continuity of f implies that there exist a neighbourhood 𝑈 ⊂ ℝ𝑛of 𝑥0and 𝛿 >  0, such that in the set �̅� × [𝜆0 − 𝛿, 𝜆0  + 𝛿] the 

value of f is positive. Hence in this set the trajectories are segments directed upward, as it is shown in Figure 1.8. Hence the phase 

portraits are obviously topologically equivalent in U for all𝜆 ∈  (𝜆0 − 𝛿, 𝜆0  + 𝛿). (The homeomorphism taking the orbits into each 

other is the identity.)  

 
Figure 1.8: The trajectories in a neighbourhood U of a non-equilibrium point are the same for all values of the 

parameter λ. 

 

Proposition 1.4.2. 

If 𝒇(𝒙𝟎, 𝝀𝟎)  =  𝟎 and   𝝏𝒙𝒇(𝒙𝟎, 𝝀𝟎)is hyperbolic, then (𝒙𝟎, 𝝀𝟎)is locally regular. (Here 𝝏𝒙𝒇(𝒙𝟎, 𝝀𝟎) denotes the Jacobian 

matrix of f.) 

Proof. 

For simplicity, the proof is shown again for the case n = 1. Without loss of generality one can assume that  𝝏𝒙𝒇(𝒙𝟎, 𝝀𝟎) <
 𝟎. Then according to the implicit function theorem there exist 𝜹 >  𝟎 and a differentiable function 𝒈 ∶  (𝝀𝟎 − 𝜹, 𝝀𝟎  + 𝜹)  →
 ℝ, for which g(𝝀𝟎) = 𝒙𝟎 and f(𝒈(𝝀), 𝝀)  ≡  𝟎 for all 𝝀 ∈  (𝝀𝟎 − 𝜹, 𝝀𝟎  + 𝜹), moreover, there is neighbourhood U of 𝒙𝟎, such 

that in other points of the set 𝑼 × (𝝀𝟎 − 𝜹, 𝝀𝟎  + 𝜹) thefunction f is nonzero. Since f is continuously differentiable, the 

number δ can be chosen so small that  𝝏𝒙𝒇(𝒈(𝝀), 𝝀)  <  𝟎 holds for all 𝝀 ∈  (𝝀𝟎 − 𝜹, 𝝀𝟎  + 𝜹). Hence for these values of λ 

there is exactly one stable equilibrium in U and the trajectories tend to this point as it is shown in Figure 1.9. Therefore the 

phase portraits are obviously topologically equivalent in U for all 𝝀 ∈  (𝝀𝟎 − 𝜹, 𝝀𝟎  + 𝜹). (The homeomorphism taking the 

orbits into each other is a translation taking the steady states to each other). 

 
 

Figure 1.9: The phase portraits in a neighbourhood U of a hyperbolic equilibrium are 

the same for all values of the parameter 𝝀. 

 

 

II. Stability 

2. 1. Structural stability 

In the course of studying bifurcations, a system of differential equations �̇�(𝑡)  =  𝑓(𝑥(𝑡)) was considered to be a member of a k 

parameter family �̇�(𝑡)  =  𝑓(𝑥(𝑡), 𝜆) and it was investigated how the phase portrait is changing as the k dimensional parameter λ is 

varied. Here a more general approach is shown, where all 𝐶1 perturbations are investigated together with the system               

�̇�(𝑡)  =  𝑓(𝑥(𝑡)), that is the right hand side f is considered as an element of a function space. In the case of bifurcations a value of 

the parameter was called regular if the corresponding system was topologically equivalent to all other systems belonging to nearby 

parameter values. The generalization of this is the structurally stable system that is topologically equivalent to all other systems that 

are sufficiently close in the 𝐶1 norm.  
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For formulating the definition in abstract terms let X be a topological space and let ∼⊂  𝑋 × 𝑋 be an equivalence relation. In 

our case the topological space will be a suitable function space with the 𝐶1 topology and the equivalence relation will be the 

topological equivalence. 

Definition 2.1.1 

 An element 𝑥 ∈  𝑋 is called structurally stable, if it has a neighbourhood 𝑈 ⊂  𝑋, for which 𝑦 ∈  𝑈 implies 𝑥 ∼  𝑦.  

An element 𝑥 ∈  𝑋 is called a bifurcation point, if it is not structurally stable.  

In other words, we can say that 𝑥 ∈  𝑋 is structurally stable, if it is an interior point of an equivalence class, and it is bifurcation 

point if it is a boundary point of an equivalence class. This interpretation enables us to define the co-dimension of a bifurcation. The 
co-dimension of a bifurcation is the co-dimension of the surface that forms the boundary in a neighbourhood of the given 

bifurcation point.  

In Figure 2.1 the point A is structurally stable, point B is a one co-dimensional bifurcation point and point C is a two co-
dimensional bifurcation point. This can also be formulated as follows. There is a curve through B that intersects both domains that 

are separated by the border containing B, while there is no such curve through C. The classes touching C can be reached by a two 

parameter family, i.e. a surface in the space. This is formulated rigorously in the following definition. 

 
Figure 2.1: Structurally stable (A), one co-dimensional (B) and two co-dimensional (C) 

bifurcation points in a topological space X. 

Definition 2.1.2 

 A bifurcation point 𝑥 ∈  𝑋 is called k co-dimensional, if there is a continuous function 𝑔 ∶  ℝ𝑘  →  𝑋, for which 𝑔(0)  =
 𝑥 and the point x has a neighbourhood U and it has an open dense subset V , such that for all 𝑦 ∈  𝑉 there is an 𝛼 ∈ ℝ𝑘 satisfying 

𝑔(𝛼)  ∼  𝑦, and k is the smallest dimension with these properties.  

2.2. Structural stability of one dimensional system 

 Let us introduce the space 𝑋 =  𝐶1(𝑆1, ℝ) that consists of continuously differentiable functions 𝑓 ∶  ℝ →  ℝ, which are 

periodic with period 1, that is 𝑓(𝑥 +  1)  =  𝑓(𝑥) for all𝑥 ∈ ℝ. This space will be endowed with the norm  
‖𝑓‖1  =  max

[0,1]
|𝑓| +  max

[0,1]
|𝑓′| 

It will be shown that those systems are structurally stable, for which all equilibria are hyperbolic. Introduce the following 

notation for these systems.  

𝐺 =  {𝑓 ∈  𝑋 ∶  𝑓(𝑥)  =  0 ⇒ 𝑓′(𝑥)  ≠  0} 
In the proof of the theorem the following notion and lemma are crucial. 

Definition 2.2.1 

 Let 𝑓 ∶  ℝ →  ℝ  be a continuously differentiable function. The value y is called a regular value of f, if 𝑓(𝑥)  =  𝑦implies 

𝑓′(𝑥)  ≠  0. In the higher dimensional case when 𝑓 ∶  ℝ𝑛  →  ℝ𝑛the assumption is that 𝑓(𝑥)  =  𝑦 implies 𝑑𝑒𝑡𝑓′(𝑥)  ≠  0.If y is 

not a regular value, then it is called a critical value of f. 

Lemma 2.2.1 (Sard). 

 If 𝑓 ∶  ℝ𝑛  →  ℝ𝑛  is a continuously differentiable function, then the set of its critical values has measure zero. 

Using the lemma the following proposition can be proved. 

Proposition 2.2.1. 

 The above set G of dynamical systems having only hyperbolic equilibria is dense in the space 𝑋 =  𝐶1(𝑆1, ℝ). 
Proof. 

 A function is in the set G, if and only if 0 is its regular value. Let 𝑓 ∈  𝑋 and 휀 >  0 be arbitrary. It has to be shown that there 

exists g ∈ G, for which ‖𝑓 − 𝑔‖1 <  휀. If 0 is a regular value of f, then 𝑔 =  𝑓 is a suitable choice, since then 𝑓 ∈  𝐺. If 0 is not a 

regular value, then chose a positive regular value 𝑐 <  휀. The existence of this c is guaranteed by Sard’s lemma. Then let 𝑔 =
 𝑓 − 𝑐, therefore ‖𝑓 − 𝑔‖1 = 𝑐 <  휀and 𝑔(𝑥)  =  0 implies 𝑓(𝑥)  =  𝑐, hence the regularity of c yields 𝑓′(𝑥)  ≠  0 which directly 

gives 𝑔′(𝑥)  ≠  0. Thus 0 is a regular value of g, that is 𝑔 ∈  𝐺.  

Proposition 2.2.2 

 Let 𝑓 ∈  𝑋 and assume that for some 𝑥 ∈  (0,1) we have 𝑓(𝑥)  =  0 =  𝑓′(𝑥). Then for any 휀 >  0 𝑎nd 𝛼 >  0 there 

exists a function 𝑔 ∈  𝑋, for which the following statements hold. 

1. 𝑓(𝑦)  =  𝑔(𝑦) for all 𝑦 ∉  (𝑥 − 𝛼, 𝑥 +  𝛼), 
 

2. g is constant 0 in a neighbourhood of x,  

3. ‖𝑓 − 𝑔‖1 <  휀. 

Proof. 
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Let 𝜂 ∶  ℝ →  [0,1] be a 𝐶1 function (in fact it can be chosen as a 𝐶∞ function), that is constant zero outside the interval [−1,1] 

and constant 1 in the interval (−
1

2
,

1

2
).The maximum of |𝜂′| is denoted by M. The assumption on f implies that there exists a 

positive number 𝛽 <  𝛼, for which 

 

|𝑓(𝑦)| <
휀 

4𝑀
|𝑦 − 𝑥|                                                             (2.1) 

 

 (2.1) holds for all 𝑦 ∈  (𝑥 − 𝛽, 𝑥 +  𝛽). Let 𝛿 <  𝛽 be a positive number, for whichmax 

max
[𝑥−𝛿,𝑥+𝛿]

|𝑓| <
휀

2
 

and 

max
[𝑥−𝛿,𝑥+𝛿]

|𝑓′| <
휀

4
                                                      (2.2) 

Then let 𝑔 ∈  𝑋 be given as follows (𝑦)  =  𝑓(𝑦) (1 − 𝜂 (
𝑦−𝑥

𝛿
)) .  

Now it is checked that g satisfies the conditions. 

 If |𝑦 − 𝑥| ≥  𝛼, then |𝑦 − 𝑥| >  𝛿yielding 𝜂 (
𝑦−𝑥

𝛿
)  =  0, hence the first condition holds, i.e. 𝑔(𝑦) =  𝑓(𝑦). 

 𝐼𝑓  |𝑦 −  𝑥|  <  𝛿/2, then 𝜂((𝑦 − 𝑥)/𝛿) =  1, hence the second condition holds, i.e. g is constant zero in a neighbourhoodof x. 
In order to check the last condition we use that 

𝑓(𝑦) − 𝑔(𝑦)  =  𝑓(𝑦)𝜂 (
𝑦 − 𝑥

𝛿
)                                                                   (2.3) 

Therefore 𝑓 − 𝑔 is zero in [𝑥 − 𝛿, 𝑥 + 𝛿], hence it is enough to prove that for all𝑦 ∈  [𝑥 − 𝛿, 𝑥 + 𝛿] the following holds|𝑓(𝑦) −

𝑔(𝑦)|  <
2
 

and 

|𝑓′(𝑦) − 𝑔′(𝑦)| <
휀

2
                                                                                (2.4) 

This yields for 𝑦 ∈  [𝑥 − 𝛿, 𝑥 +  𝛿] that |𝑓(𝑦) − 𝑔(𝑦)|  <  |𝑓(𝑦)|  <
2
, where the first inequality of (2.3) was used. 

Differentiating (2.3)  

𝑓′(𝑦) − 𝑔′(𝑦)  =  𝑓′(𝑦)𝜂 (
𝑦 − 𝑥

𝛿
) +  𝑓(𝑦)𝜂′ (

𝑦 − 𝑥

𝛿
)

1

𝛿
 

Applying the second equation in (2.3), the inequality (2.3) and that M is the maximumof |η’| leads to 

|𝑓′(𝑦) − 𝑔′(𝑦)|  <
휀 

4
 +  

휀 

4𝑀
|𝑦 − 𝑥| 

𝑀 

𝛿
 

.Since 𝑦 ∈  [𝑥 − 𝛿, 𝑥 + 𝛿], we have|𝑦 − 𝑥| ≤  𝛿, hence the previous estimate can be continued as  

|𝑓′(𝑦) − 𝑔′(𝑦)| <
휀 

4
 +  

휀 

4𝑀
𝛿

𝑀 

𝛿
=  

휀

2
 

 . Hence the desired estimates in (2.3) are proved. 

Proposition 2.2.3 

If all the equilibria of the differential equation 𝑥 ̇ =  𝑓(𝑥) are hyperbolic, then there are at most finitely many of them in [0,1]. 
Proof. 

Assume that there are infinitely many equilibria in [0,1]. Then one can choose a convergent sequence of equilibria tending to a 

point 𝑥 ∈  [0,1].Then since f is continuously differentiable we have 𝑓(𝑥)  =  0and 𝑓′(𝑥)  =  0, that is x is not a hyperbolic 

equilibria, which is a contradiction. 

Now we turn to the characterisation of one dimensional structurally stable systems.  

Theorem 2.2.4. 

 The dynamical system belonging to the function 𝑓 ∈  𝑋 is structurally stable, if and only if all equilibria of f are hyperbolic, 

that is 𝑓 ∈  𝐺. Moreover, the set G of structurally stable systems is open and dense in the space X. 

Proof. 

Assume first that f is structurally stable and prove 𝑓 ∈  𝐺. Since f is equivalent to the systems in a neighbourhood and G is 

dense, there exists in this neighbourhood a function𝑔 ∈  𝐺. Hence all the roots of g are hyperbolic, implying that there are finitely 

many of them, therefore the equivalence of f and g implies that f has finitely many roots. We show that all of them are hyperbolic. 

Since the roots are isolated, if one of them were not be hyperbolic, then according to Proposition 2.2.2 an arbitrarily small 𝐶1 

perturbation would make it constant zero. That would mean that arbitrarily close to f there is a function, which is zero in an 

interval, hence it is not equivalent to f contradicting to the fact that f is structurally stable. This proves the first implication. 

 Assume now that 𝑓 ∈  𝐺 and prove that f is structurally stable. Proposition 2.2.3 yields that f has finitely many roots. If it has 

no zeros at all, then the functions close to f in the 𝐶1norm cannot have zeros, hence they are equivalent to f. If f has zeros, then it 

can be easily seen that functions close to f has the same number of zeros and the sign changes at the zeros are the same as those for 

f. This implies that their phase portraits are equivalent to that belonging to f. 

 

2.3 Structural stability of higher dimensional systems 

In the previous section it was shown that in a one dimensional system the phase portrait can change only in a neighbourhood of 

non-hyperbolic equilibrium. In two dimensional systems there are bifurcations that are not related to equilibria, namely, the fold 

bifurcation of periodic orbits, the homoclinic and heteroclinic bifurcation. 

Theorem 6.8.(Peixoto). 

The dynamical system given by the vector field 𝑓 ∈  𝑋 isstructurally stable if and only if 

 there are finitely many equilibria and all of them are hyperbolic, 

 there are finitely many periodic orbits and all of them are hyperbolic, 
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 there are no trajectories connecting saddle points (heteroclinic or homoclinic orbits). 

Moreover, the set of structurally stable systems is open and dense in the space X. We note that the theorem was proved in a 

more general way for compact two dimensional manifolds. For this general case an extra assumption is needed for structural 

stability. Even in the case of a torus one can give a structurally unstable system that do not violates any of the assumption of the 

theorem. In the general case it has to be assumed that the non-wandering points can only be equilibria or periodic points. The 

general formulation of the theorem can be found in Perko's book [16] and in the book by Wiggins [12]. 

Based on the cases of one and two dimensional systems one can formulate a conjecture 

about the structural stability of systems with arbitrary dimension. This conjecture motivated the following definition of Morse - 

Smale systems. 

Definition 2.3.1 

A dynamical systems is called a Morse–Smale system, if  

• there are finitely many equilibria and all of them are hyperbolic, 

 • there are finitely many periodic orbits and all of them are hyperbolic,  

• their stable and unstable manifolds intersect each other transversally,  

• the non-wandering points can only be equilibria or periodic points. 

It can be shown that Morse–Smale system are structurally stable, however, the opposite is not true for more than two 
dimensional systems, as it was shown by Smale in 1966. If the phase space is at least three dimensional, then there are structurally 

stable systems with strange attractors as non-wandering sets, containing chaotic orbits. Moreover, it can be proved that in the case 

of at least three dimensional systems the space of 𝐶1systems contains open sets containing only structurally unstable systems. That 

is the structurally stable systems do not form a dense and open subset, moreover, the set of them cannot be given as the intersection 

of open dense sets, that is the structurally stable systems are not generic among three or higher dimensional systems. This means 

that topological equivalence does not divide the space of 𝐶1systems into open sets.as it is shown in Figure 2.1.  

The investigation of structural stability in higher dimensional systems is based on a two dimensional map introduced by Smale 

and named as Smale horseshoe. This map is dealt with in detail in the book by Guckenheimer and Holmes [3] and in Wiggins’s 

monograph [12]. 

 

III. Local Theory 

3.1 The Implicit Function Theorem 

One of the most important analytic tools for the solution of a nonlinear problem, 

 

𝐹(𝑥, 𝑦) =  0                                                                                         (3.1) 

whereF is a mapping 𝐹 ∶  𝑈 ×  𝑉 →  𝑍 with open sets 𝑈 ⊂ 𝑋, 𝑉 ⊂ 𝑌 , andwhere 𝑋, 𝑌, 𝑍are (real) Banach spaces, is the 

following Implicit FunctionTheorem: 

Theorem 3.1.1 

Let (3.1) have a solution (𝑥0, 𝑦0)  ∈ 𝑈 ×  𝑉such that the Fr´echet derivative of F with respect to x at (𝑥0, 𝑦0) is bijective: 

𝐹(𝑥0, 𝑦0)  =  0, 
𝐷𝑥𝐹(𝑥0, 𝑦0) ∶  𝑋 →  𝑍is bounded (continuous)                                                                                                                     (3.2) 

with a bounded inverse (Banach’s Theorem). 

Assume also that F and 𝐷𝑥𝐹are continuous: 

𝐹 ∈  𝐶(𝑈 ×  𝑉, 𝑍), 

𝐷𝑥𝐹 ∈  𝐶(𝑈 ×  𝑉, 𝐿(𝑋, 𝑍)), 𝑤ℎ𝑒𝑟𝑒 𝐿(𝑋, 𝑍)                                          (3.3) 
denotes the Banach space of bounded linear operatorsfrom X into Z endowed with the operator norm. 

Then there is a neighborhood 𝑈1 × 𝑉1𝑖𝑛𝑈 ×  𝑉 𝑜𝑓 (𝑥0, 𝑦0)and a mapping𝑓 ∶ 𝑉1 →  𝑈1 ⊂ 𝑋such that𝑓(𝑦0)  =  𝑥0, 
𝐹(𝑓(𝑦), 𝑦) =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝑉1                                                            (3.4) 

Furthermore, f is continuous on V1: 

𝑓 ∈ 𝐶(𝑉1, 𝑋)                                                                                  (3.5) 

Finally, every solution of (3.1) in 𝑈1 ×  𝑉1is of the form (𝑓(𝑦), 𝑦). 
Let us consider Y as a space of parameters and X as a space of configuration (a phase space, for example). Then the Implicit 

Function Theorem allows the following interpretation: The configuration described by problem (3.1) persists for perturbed 

parameters if it exists for some particular parameter, and it depends smoothly and in a unique way on the parameters. In other 

words, this theorem describes what one expects: A small change of parameters entails a unique small change of configuration. Thus 

“dramatic” changes in configurations for specific parameters can happen only if the assumptions of Theorem 3.1 are violated, in 

particular, if 

𝐷𝑥𝐹(𝑥0, 𝑦0): 𝑋 →  𝑍is not bijective                                                                                                                                            (3.6) 

 Bifurcation Theory can be briefly described by the investigation of problem(3.1) in a neighborhood of (𝑥0, 𝑦0) where (3.6) 

holds. 

For later use we need the following addition to Theorem 3.1: 

If the mapping F in (3.1) is k-times continuously differentiable on U × V , 

 i.e.,𝐹 ∈ 𝐶𝑘(𝑈 ×  𝑉, 𝑍), then the mapping fin (3.4) is also k-times continuously differentiable on  𝑉1; i.e., 𝑓 ∈ 𝐶𝑘(𝑉1, 𝑋), 𝑘 ≥
 1. 

If the mapping F is analytic, then the mapping f is also analytic. 

For a proof we refer again to [13]. 

3.2. The Method of Lyapunov–Schmidt 

This method describes the reduction of problem (3.1) (which is high- or infinite-dimensional) to a problem having only as many 

dimensions as the defect (3.6). To be more precise, we need the following definition: 
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Definition 3.2.1  

A continuous mapping 𝐹 ∶  𝑈 →  𝑍, where 𝑈 ⊂ 𝑋is openand where X,Z are Banach spaces, is a nonlinear Fredholm operator if 

it is Fr´echet differentiable on U and if 𝐷𝐹(𝑥)fulfills the following: 

(i) 𝑑𝑖𝑚𝑁(𝐷𝐹(𝑥))  < ∞ (𝑁 =  𝑘𝑒𝑟𝑛𝑒𝑙), 
(ii) 𝑐𝑜𝑑𝑖𝑚𝑅(𝐷𝐹(𝑥))  < ∞ (𝑅 =  𝑟𝑎𝑛𝑔𝑒), 
(iii)𝑅(𝐷𝐹(𝑥)) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑍. 
The integer 𝑑𝑖𝑚𝑁(𝐷𝐹(𝑥)) − 𝑐𝑜𝑑𝑖𝑚𝑅(𝐷𝐹(𝑥)) is called the Fredholm index of 𝐷𝐹(𝑥). 
 

Theorem 3.2.2 

There is a neighborhood 𝑈2 × 𝑉2 of (𝑥0, 𝑦0)) in 𝑈 × 𝑉 ⊂ 𝑋 × 𝑌such that the problem 

𝐹(𝑥, 𝑦) =  0 𝑓𝑜𝑟 (𝑥, 𝑦) ∈ 𝑈2 × 𝑉2                                                        3.2.1 

is equivalent to a finite-dimensional problem 

𝛷(𝑣, 𝑦)  =  0 𝑓𝑜𝑟 (𝑣, 𝑦)  ∈ �̃�2 × 𝑉2 ⊂ 𝑁 ×  𝑌, where 

𝛷 ∶  �̃�2 × 𝑉2 →  𝑍0is continuous 

and 

𝛷(𝑣0, 𝑦0) =  0, (𝑣0, 𝑦0) ∈ �̃�2 × 𝑉2                                                                       3.2.2 

The function Φ, called a bifurcation function.  

3.3 An Implicit Function Theorem for One-Dimensional Kernels: Turning Points 

In this section we consider mappings 𝐹 ∶  𝑈 ×  𝑉 →  𝑍with open sets ⊂  𝑋, 𝑉 ⊂ 𝑌, where X and Z are Banach spaces, but 

where this time 𝑌 =  𝑅. 
Following a long tradition, we change the notation and denote parameters in R by λ.  

We assume𝐹(𝑥0, 𝜆0)  =  0 for some (𝑥0, 𝜆0)  ∈ 𝑈 ×  𝑉 , 
𝑑𝑖𝑚𝑁(𝐷𝑥𝐹(𝑥0, 𝜆0) =  1   (3.3.1) 

Obviously, the Implicit Function Theorem, Theorem 3.1.1, is not directly applicable. 

 We assume now the hypotheses of the Lyapunov−Schmidt reduction for F with the additional assumption that the Fredholm 

index of 𝐷𝑥𝐹(𝑥0, 𝜆0) is zero; 

i.e., by (3.31) 

𝑐𝑜𝑑𝑖𝑚𝑅(𝐷𝑥𝐹(𝑥0, 𝜆0)) =  1                                                                        (3.3.2) 

Since 𝑌 =  𝑅, we can identify the Fr´echet derivative 𝐷𝜆𝐹(𝑥, 𝜆) with anelement of Z, namely, by 

𝐷𝜆𝐹(𝑥, 𝜆)1 =  𝐷𝜆𝐹(𝑥, 𝜆) ∈ 𝑍, 1 ∈ 𝑅                                                                      (3.3.3) 

Theorem 3.3.1  

Assume that F : U × V → Z is continuously differentiableon 𝑈 ×  𝑉 ⊂ 𝑋 ×  𝑅,  

i.e.,𝐹 ∈ 𝐶1(𝑈 ×  𝑉, 𝑍), (3.3.4) and (3.3.1), (3.3.2), (3.3.3), and that 

𝐷𝜆𝐹(𝑥0, 𝜆0))  ∉ 𝑅(𝐷𝑥𝐹(𝑥0, 𝜆0))                                                     (3.3.5) 

Then there is a continuously differentiable curve through (𝑥0, 𝜆0); that is, thereexists 

{(𝑥(𝑠), 𝜆(𝑠))|𝑠 ∈ (−𝛿, 𝛿), (𝑥(0), 𝜆(0)) =  (𝑥0, 𝜆0)}                             (3.3.6) 

such that 

𝐹(𝑥(𝑠), 𝜆(𝑠)) =  0 𝑓𝑜𝑟 𝑠 ∈ (−𝛿, 𝛿),                                    (3.3.7) 

and all solutions of F(x, λ) = 0 in a neighborhood of (𝑥0, 𝜆0) belong to thecurve (3.3.6). 

Corollary 3.3.2  

The tangent vector of the solution curve (3.3.6) at (𝑥0, 𝜆0)is given by 

  

(𝑣0, 0)  ∈ 𝑋 ×  𝑅                                                                                                                                 (3.3.8) 
i.e., (3.3.6) is tangent at (𝑥0, 𝜆0) to the one-dimensional kernel of 𝐷𝑥𝐹(𝑥0, 𝜆0). 

3.4. Center Manifold Theory 

The Hartman-Grobman Theorem, which showed that, in a neighborhood of a hyperbolic critical point 𝑥0  ∈  𝐸, the nonlinear 

system 

�̇�  =  𝑓(𝑥)                                                                                          (3.4.1) 
   

 is topologically conjugate to the linear system  

�̇� = 𝐴𝑋                                                                              (3.4.2) 
       

with 𝐴 =  𝐷𝑓(𝑥0), in a neighborhood of the origin. The Hartman-Grobman Theorem therefore completely solves the problem of 

determining the stability and qualitative behavior in a neighborhood of a hyperbolic critical point of a nonlinear system.  

In this section, we present the Local Center Manifold Theorem, which generalizes Theorem to higher dimensions and shows 

that the qualitative behavior in a neighborhood of a non hyperbolic critical point 𝑥0 of the nonlinear system (3.4.1) with 𝑥 ∈  𝑅𝑠 is 

determined by its behavior on the center manifold near 𝑥0. Since the center manifold is generally of smaller dimension than the 

system (3.4.1), this simplifies the problem of determining the stability and qualitative behavior of the flow near a non hyperbolic 

critical point of (3.4.1).  

Theorem 3.4.1.  (The Local Center Manifold Theorem). 

Let 𝑓 ∈  𝐶′(𝐸), where E is an open subset of R" containing the origin and 𝑟 >  1. Suppose that 𝑓(0) =  0 and that 𝐷𝑓(0) has 

c eigenvalues with zero real parts and s eigenvalues with negative real parts, where 𝑐 +  𝑠 =  𝑛. The system (3.4.1) then can be 

written in diagonal form       �̇�  =  𝐶𝑥 +  𝐹(𝑥, 𝑦) 

 𝑦 ̇ =  𝑃𝑦 +  𝐺(𝑥, 𝑦), 
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where (𝑥, 𝑦)  ∈  𝑅𝑐  × 𝑅𝑠, C is a square matrix with c eigenvalues having zero real parts, P is a square matrix with s 

eigenvalues with negative mat parts, and 𝐹(0)  =  𝐺(0)  =  0,      𝐷𝐹(𝑂)  =  𝐷𝐺(𝑂)  =  0; furthermore, there exists 𝑎 𝛿 >  0 and 

a function ℎ ∈  𝐶′(𝑁𝛿(0)) that defines the local center manifold  

𝑊𝑙𝑜𝑐
𝑐  (0)  =  {(𝑥, 𝑦)  ∈  𝑅𝑐  ×  𝑅𝑠  / 𝑦 =  ℎ(𝑥) 𝑓𝑜𝑟 |𝑥| < 𝛿} 

and satisfies 

𝐷ℎ(𝑥)[𝐶𝑥 +  𝐹(𝑥, ℎ(𝑥))]  −  𝑃ℎ(𝑥)  −  𝐺(𝑥, ℎ(𝑥))  =  0  
for |𝑥|  <  𝛿; and the flow on the center manifold W°(0) is defined by the system of differential equations 

�̇�  =  𝐶𝑥 +  𝐹(𝑥, ℎ(𝑥))  
for all 𝑥 ∈ 𝑅𝑠 with |𝑥|  <  𝛿. 

3.5. Normal Form Theory 

The Hartman-Grobman Theorem shows us that in a neighborhood of a hyperbolic critical point, the qualitative behavior of a 

nonlinear system 

�̇�  =  𝑓(𝑥)                                                                                  (3.5.1) 

where 𝑥 ∈  𝑅𝑛 is determined by its linear part. we know that the linear part of                   (3.5.1) can be put into Jordan 

canonical form �̇�  =  𝐽𝑥, which makes it easy to solve the linear system. The Local Center Manifold Theorem in the previous 

section showed us that, in a neighborhood of a nonhyperbolic critical point, determining the qualitative behavior of (3.5.1) could be 

reduced to the problem of determining the qualitative behavior of the nonlinear system 

�̇�  =  𝐽𝑥 +  𝐹(𝑥)                                                                                       (3.5.2) 

on the center manifold. Since the dimension of the center manifold is typically less than n, this simplifies the problem of 

determining the qualitative behavior of the system (3.5.1) near a non hyperbolic critical point. However, analyzing this system still 

may be a difficult task. The normal form theory allows us to simplify the nonlinear part, F(x), of (3.5.2) in order to make this task 

as easy as possible. This is accomplished by making a nonlinear, analytic transformation of coordinates of the form 

𝑥 =  𝑦 +  ℎ(𝑦),                                                                   (3.5.3) 
where ℎ(𝑦)  =  0(|𝑦|2) as |𝑦|  →  0. 

 

IV. Global Theory 

4.1 A Global Implicit Function Theorem 

We consider a continuous mapping 𝐹 ∶ 𝑋 ×  𝑅 →  𝑍, where 𝑋 ⊂ 𝑍is continuouslyembedded, and we assume a solution 

𝐹(𝑥0, 𝜆0)  =  0.              (4.1.1) 

Apart from the assumptions (3.1.2) and (3.1.3) for the local Implicit FunctionTheorem, Theorem 3.1.1, we need a setting such 

that a degree for 𝐹(·, 𝜆)can be defined. 

The Leray–Schauder degree is applicable if 𝑋 =  𝑍, 𝐹(𝑥, 𝜆)  =  𝑥 +  𝑓(𝑥, 𝜆),and 𝑓 ∶  𝑋 ×  𝑅 →  𝑋is completely continuous. 

The degree for Fredholm operators can be used if 𝐹 ∈ 𝐶2(𝑋 × 𝑅, 𝑍), 𝐷𝑥𝐹(𝑥, 𝜆)  ∈ 𝐿(𝑋, 𝑍) is admissibleaccording to the following 

Definition 4.1.1, and F is proper on every closed and boundedsubset of X × R according to the following Definition 4.1.2(iii). 

Definition 4.1.1 

A class of linear operators 𝐴 ∈ 𝐿(𝑋, 𝑍) is called admissible if the following hold: 

(i) A is a Fredholm operator of index zero. 

(ii) 𝐴 ∶  𝑍 →  𝑍with domain of definition 𝐷(𝐴)  =  𝑋is closed. 

(iii) The spectrum 𝜎(𝐴) 𝑖n a strip (−∞, 𝑐)  × (−𝑖휀, 𝑖휀)  ⊂ 𝐶 for some 𝑐 > 0, ε >0 consists of finitely many eigenvalues of 

finite algebraic multiplicity. 

Their total number (counting multiplicities) in that strip is stable under small perturbations in the class of A in 𝐿(𝑋, 𝑍). 
Definition 4.1.2  

Let 𝑈 ⊂ 𝑋be open and bounded. 

An operator 𝐹 ∶  𝑈 →  𝑍is called admissible if 

(i) 𝐹 ∈ 𝐶2( 𝑈, 𝑍), 𝑈 ⊂ 𝑈,where𝑈is open in X, 

(ii) The class {𝐷𝐹(𝑥)|𝑥 ∈ 𝑈}  ⊂ 𝐿(𝑋, 𝑍)is admissible according to DefinitionII.5.1, 

(iii) F is proper; i.e., the inverse image in U of a compact set in Z is compact in X. 

A Global Implicit Function Theorem then reads as follows: 

 

Theorem 4.1.3 

Assume the preceding properties of 𝐹 ∶  𝑋 ×  𝑅 →  𝑍and (4.1) such that 

𝐷𝑥𝐹(𝑥0, 𝜆0)  ∈ 𝐿(𝑋, 𝑍) 
is bijective and 

𝐷𝑥𝐹 ∈ 𝐶(𝐵𝑟(𝑥0) × (𝜆0 − 𝜌, 𝜆0 + 𝜌), 𝐿(𝑋, 𝑍)) for some 𝑟, 𝜌 > 0 (4.1.2) 

Let S denote the set of all solutions of 𝐹(𝑥, 𝜆)  =  0 𝑖𝑛 𝑋 ×  𝑅and let Cbe the (connected) component of S that contains the 

local solution curve 

{(𝑥(𝜆), 𝜆)|𝜆 ∈ (𝜆0 − 𝛿, 𝜆0 + 𝛿)} through (𝑥0, 𝜆0)  =  (𝑥(𝜆0), 𝜆0) given by Theorem3.1.1. Then 

(i) 𝐶 =  {(𝑥0, 𝜆0)} ∪ 𝐶+ ∪ 𝐶−, 𝐶+ ∩ 𝐶− =  ∅, and 𝐶+, 𝐶−are each unbounded,or 

(ii) 𝐶\{(𝑥0, 𝜆0)} is connected 

Proof. 

Assume that 𝐶\{(𝑥0, 𝜆0)}is not connected. Then𝐶 =  {(𝑥0, 𝜆0)}  ∪ 𝐶+ ∪ 𝐶−, where              𝐶+ ∩ 𝐶− =  ∅, and let 𝐶+ denote 

the component of 

{(𝑥(𝜆), 𝜆)|𝜆 ∈ (𝜆0, 𝜆0 + 𝛿)} 𝑖𝑛 𝑆\{(𝑥0, 𝜆0)}. 
Assume that 𝐶+ is bounded.  

By known theorem, the bounded and closed set𝐶+ ∪ {(𝑥0, 𝜆0)}. =  𝐶+ iscompact.  

we can construct a bounded open set U ⊂ X × R such that 
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𝐶+ ⊂ 𝑈 𝑎𝑛𝑑 𝜕𝑈 ∩  𝑆 =  {(𝑥0, 𝜆0)}                                                 (4.1.3) 

Setting as before 𝑈𝜆 =  {𝑥 ∈ 𝑋|(𝑥, 𝜆)  ∈ 𝑈}, we can also assume that 

�̅�𝜆0
∩  �̅�𝑟(𝑥0)  =  ∅ and �̅�𝜆0

∪ �̅�𝑟(𝑥0)   =  (�̅�)𝜆0
                             (4.1.4)    where 𝑟 > 0 is so small that𝑥 =  𝑥0 is an isolated 

solution of 𝐹(𝑥, 𝜆0)  =  0 
in �̅�𝑟(𝑥0). (Note that (4.1.4)1 denotes the closure of the fiber in X, whereas (4.1.4)2 denotes the fiber of the closure in 𝑋 ×

 𝑅. )Then the additivity and the homotopy invariance of the respective degree imply 

𝑑(𝐹(·, 𝜆0), 𝐵𝑟(𝑥0), 0) +  𝑑(𝐹(·, 𝜆0), 𝑈𝜆0
, 0) =  𝑑(𝐹(·, 𝜆), 𝑈𝜆 , 0)𝑓𝑜𝑟 𝜆 ≥  𝜆0, 

=  0, 𝑠𝑖𝑛𝑐𝑒 𝑈𝜆 =  ∅𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝜆 > 𝜆0                (4.1.5). 
     

On the other hand, if 𝑈𝜆0 ≠ ∅, 
𝑑(𝐹(·, 𝜆0), 𝑈𝜆0

, 0)  =  𝑑(𝐹(·, 𝜆), 𝑈𝜆 , 0) 𝑓𝑜𝑟 𝜆 ≤  𝜆0, 

                                                                   = 0, since 𝑈𝜆= ∅for large λ <𝜆0 (4.1.6) 

This proves (𝑑(𝐹(·, 𝜆0), 𝐵𝑟(𝑥0), 0)  =  0 (4.1.7) 

But𝐷𝑥𝐹(𝑥0, 𝜆0)  ∈ 𝐿(𝑋, 𝑍) is bijective and the local degree (4.1.7) is the 

index𝑖(𝐹(·, 𝜆0), 𝑥0)  ∈  {−1, 1}; This contradictionproves that 𝐶+ is unbounded, and the unboundedness of 𝐶−is provedin the 

same way. 

Remark 4.1.4 

The proof of Theorem 4.1.3 shows that the assumption (4.1.2) can be reduced to (4.1.2)1. Note that the local Implicit Function 

Theorem does not hold without assumption (II.6.2)2, which means that there is not necessarily a unique local curve of solutions 

{(x(λ), λ)} through (𝑥0, 𝜆0). 

But the nonzero local degree (4.1.7) and the homotopy invariance of the degree imply that the solution (𝑥0, 𝜆0) is continued for 

λ ∈ (𝜆0− δ, 𝜆0 + δ). Let C denote the component in S containing (𝑥0, 𝜆0). Then the same alternative (i), (ii) holds, and in any case, 

𝐶\{(𝑥0, 𝜆0)}  =  ∅. 
Remark 4.1.5 

The possibility of a global extension of the local solution curve given by the Implicit Function Theorem is also called Global 

Continuation. It gives solutions of 𝐹(𝑥, 𝜆)  =  0for all λ ∈R, provided that (𝑥0, 𝜆0) is the only solution for 𝜆 =  𝜆0and that there is 

an a priori estimatefor solutions x for all λ in finite intervals of R. This possibility motivated Leray and Schauder to extend the 

Brouwer degree to infinite dimensions in order to solve nonlinear elliptic partial differential equations. 

 

V. Applications 

5.1. Center Manifold Reduction 

A center manifold at a given non hyperbolic equilibrium is an invariant manifold of the considered differential equation which 

is tangent at the equilibrium point to the (generalized) eigen space of the neutrally stable eigenvalues. As the local dynamic 

behavior transverse to the center manifold is relatively simple, the potentially complicated asymptotic behaviours of the full system 

are captured by the flows restricted to the center manifolds. 

Center manifold theory plays an important role in the study of the stability of dynamical systems when the equilibrium point is 

not hyperbolic. The combination of this theory with the normal form approach was used extensively to study parameterized 

dynamical systems exhibiting bifurcations. The center manifold theorem provides, in this case, a means of systematically reducing 

the dimension of the state spaces which need to be considered when analyzing bifurcations of a given type. In fact, after 

determining the center manifold, the analysis of these parameterized dynamical systems is based only on the restriction of the 

original system on the center manifold whose stability properties are the same as the ones of the full order system. 

5.2. Normal form theory 

Normal forms theory provides one of the most powerful tools in the study of nonlinear dynamical systems, in particular, in the 

stability and bifurcation analysis. In the context of finite-dimensional ordinary differential equations (ODEs), this theory can be 

traced back as far as Euler. The basic idea of normal form consists of employing successive, near-identity ,nonlinear 

transformations, which leads to a differential equation in a simpler form, qualitatively equivalent to the original system in the 

vicinity of a fixed equilibrium point, thus hopefully greatly simplifying the dynamics analysis.  

As we develop the method, three important characteristics should become apparent. (i) The method is local in the sense that the 

coordinate are generated in a neighborhood of a known solution. For our purposes, the known solution will be an equilibrium. (ii) 

In general, the coordinate transformations will be nonlinear of the dependent variables. However, the important point is that 

coordinate transformations are found by solving a sequence of problems. (iii) The structure of the norm form is determined entirely 

by the linear part of the vector field. A key notion in normal form reduction is that of resonance. In particular, the Jacobian matrix 

of the system, evaluated at the equilibrium point determines which monomials in the formal expansion of the system are resonant 

and cannot be removed by any smooth coordinate transformation. 

5.3. Lyapunov-Schmidt Reduction 

Generally, particular types of solutions of a differential equation, such as a fixed point, relative equilibrium, or a periodic orbit 

can be found by determining the zeros of an appropriate map F and applying the Lyapunov-Schmidt procedure. The Lyapunov-

Schmidt reduction results in the so-called bifurcation equations, a finite set of equations, equivalent to the original problem. This 

finite set of equations may inherit the symmetry properties of the original system if the reduction is done properly.  

For example, if we are looking for periodic solution, the map F has a natural symmetry group 𝑆1 representing phase shifts along 

the periodic solution.It would be interesting to know for what values of parameter, say, solutions of the bifurcation equation 

disappear or are created. These particular values of are called bifurcation values. 

It provides a classification of the various cases based on co dimension. The reason this is possible is that the co dimension k sub 

manifolds in the space of all smooth functions having zeros can be described algebraically by imposing conditions on derivatives of 

the functions. This gives us a way of classifying the various possible bifurcations and of computing the proper un  foldings. 

Lyapunov-Schmidt reduction is a very effective method to investigate the phenomenon of Hopf bifurcation, which concerns the 

birth of a periodic solution from an equilibrium solution through a local oscillatory instability. 
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5.4. Degree theory 

Many applications, including some bifurcation problems of functional differential 

equations, lead to the problem of finding all zeros of a mapping 𝑓: 𝑈 ⊆ 𝑋 → 𝑋, where X is some (real) Banach space. The 

basic idea of degree theory is as follow. Given a (sufficiently smooth) domain U with enclosing Jordan curve 𝜕𝑈, we have defined 

a degree 

𝑑𝑒𝑔(𝑓; 𝑈;  𝑧0)  =  𝑛(𝑓(𝜕𝑈);   𝑧0)  =  𝑛(𝑓(𝜕𝑈) −   𝑧0;  0)  ∈ 𝑍, 
which counts the number of solutions of 𝑓(𝑧)  =  𝑧0 inside U. The invariance of this degree with respect to certain deformations 

of fallowed us to explicitly computed eg (𝑓; 𝑈;  𝑧0) even in nontrivial cases. Degree theory has been developed for various classes 

of mappings. Generalized Brouwer degree theory to an infinite Banach space and established the so-called the Leray-Schauder 

degree. It turns out that the Leray-Schauder degree is very powerful tool in proving various existence results for nonlinear 

differential equations. 

 

 There are several important application areas of bifurcation theory and this theory has also been applied in the study of 

several theoretical examples which are difficult to access experimentally. 

In recent years many types of bifurcations of flow and maps have been studied and classified including saddle node, Hopf, 

umbilic, zip, homoclinic tangencies, period doubling and 

cusp bifurcations. It is our belief that in the years to come the bifurcation theory plays a more active role in various application 

domains of Science and Technology. 
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