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Abstract

In this paper our aim is to discuss about fixed point theory in 2-Banach Space through the concept
of non expansive mapping.
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1. INTRODUCTION

Let X be a set and F be a function from X to X. A fixed point of F is an element x € X , such that
F(x) =x. A fixed point theorem is a theorem that assets that every function that satisfies some given
property must be a fixed point.

The concept of two Banach Space firstly introduced by Gahler[2] .This space was subsequently
been studied by Mathematician (Kirk 1981). Recently A.S.Saluja, A.K.Dhakde [5], Shefali vijay
vargiya,sonal Bharti [6] and Shukla D.P, Vivek Tiwari [7] also worked Common fixed point theorem in 2-
Banach Spaces for self mapping and D.K.Mali, R.K.Gujetiya, Mala Hakwadhiya [1] and
V.Gupta,A.K.Tripathi [8] also proved fixed point theorem in 2- Banach Space for non expansive
mapping. In the paper | prove a common fixed point theorem in 2 — Banach Space by taking non expansive

mapping.
2. PRELIMINARIES
Definition 2.1 [1]
Let X be a real linear space and |..| be a non negative real valued function defined on X satisfying

the following conditions.

Q) X, y|=0if and only if x and y are linear independent.

iy PYI=1yA foran xyeX

(iii) [x.ay| =lal|x, ¥], a being real for all %y € X

(iv) [x.y+7<[xy[+[x2] foran xy,zeX

Then |||| is called a 2-norm and the pair (X, ||||) is called a linear 2-normed space. So a 2-norm

Y always satisfies I y+ax| =[xy forall X.Y€X and all scalar a.
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Definition 2.2 [1]

A sequence {xn} in a 2- normed linear space (X, |..|) is said to be convergent sequence if there is a

point xe X such that |x, —x,a]=0 as n—>oc and for all ae X .If X, converges to x ,we write

X, > X asn—w.
Definition 2.3 [1]

A sequence {xn} in a 2-normed space (X, |...|) is called a Cauchy sequence if |x,, —X,,a|=0as
m,n— o and forall ae X

Definition 2.4 [1]

A linear 2 normed space is said to be complete if every Cauchy sequence is convergent to an
element on X.A complete 2-normed space X is called 2- Banach Spaces.

Definition 2.5 [1]

Let X be a 2-Banach space and T be a Self mapping of X .T is said to be continuous at x if every
sequence {X»} in X, {x, }—> xasn — o implies{T(x,)} >T(x)asn—>w

Definition 2.6 [1]

Let X be a 2-Banach space and C be a non empty bounded closed and convex subset of X. A
mapping T :C — X is said to be non expansive if [T(x)-T(y).a|<|x-y.a| wherex,yeC

3. THEOREM

Let F and G be two non expansive mapping of a 2-Banach space X into itself. F and G satisfy the
following condition:

(1). FG=GF=I, where I is identity mapping.

@) [Fx—Gy. < { [x=Gy.ally- Fx,an} {nx Fxally - Fy.alfc Gy.al +[x- y.af

[x=Fx.af +[x~y.a] ly-6y.a+|x-y.a|f
+7lx=Fxa+]y-Gy.all+ )x~Gy.a + [y - Fx.a] +7lx - v.2]

Where «,f,7,6,n=>0 for all x,ye X, Where a+58+4y+45+n<2 and a++25+n<1 .Then
F and G have a unique common fixed point.

Proof:

Suppose X is any point in 2 Banach space X.
Taking y:%(F + 1)x, z=G(y) and u=2y-z then

|z —x, 8| =[Gy —GFx, 3|

Now using (1) and (2) ,we have
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l2-xa]< O{Hy —GFx, a||Fx -Gy, a||} . ly — Gy, al||Fx—GFx,al||ly —GFx,a| +|y - Fx, a||3
ly—Gy.a|+|y-Fx.q [IFx—GFx,a|+|y - Fx,a|f

+7[ly -Gy, a| +|Fx - GFx, a|]+ 5[|y - GFx, a| + |Fx - Gy, a]]+ 7|y - Fx. 4|

Sa[||y—x,a||||Fx—ey,a||} ly-Gy.allFx—xally -+ |y~ Pl
[Fx-Gy.a] [IFx—xal+y—F.alf

7y~ Gy.al +1Px-wall olly -xal [Fx- el +ly-Gy.all+ Zlx- Pl

1 1
|y=Gy.aflFx—x.a] [x—Fx,a|+Jx~Fx.al

a
£E||X—Fx,a||+ﬂ ||x—y,a||2

1 1
+ yﬂ|y_ey,a||+||Fx-x,a||]+5[§||x- P+ Lfx- Fx,a||+||y—Gy,a||}+g||x— Fx,al

1 T
- Pxalfly -Gyl - Pl

<Z|x—Fx,a|+ s
2 ‘11||x— Fx,a||2

+ ymy —Gy, a]+|Fx—x, a||]+ 5H|x —Fx,a|+[y -Gy, a||]+g||x —Fx, 4|

< %”x— Fx,a| +ﬂ[2||y—Gy, a||+15\||x— FX, a||}
+yﬂ|y —Gy, a|+|Fx—x, a||]+ 5H|x— Fx,a|+|ly -Gy, a||]+%||x— Fx,a

S(%+§+7+5+gjllx-FX,a||+(Zﬂ+7+5]ly—€y'a||—(3)

ju—x.a] =2y ~2-xa| |6y~ Fx.d]

Now using (1) and (2)

or-puszd PO flor ol yal
ly—Gy.a|+|y—xa| U|x—Fx,a||+||y—x,a||]2

e - Fxal+ly -Gyl oly— P+ [x-Gyallenly —x.al

1 1

ly - Fx,a]|x—Gy,a| ly—Gy.alx- Fx,a||5||x —Fx.q +§||X_ F.al

<a + .
[x~Gy.a] [ly - Fx.al]
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1
- Pl ly-Gy.all o) Sl Pl - .al +ly~Gy.al |+ Lix- Pl

1 1
Ly -y.all P+ Ll

<Z|x-Fxa|+ s
2 JIx-Fxal’

1 1
. Fx,a||+||y_ey,a||]+5[5||x_ Pl + 2 Fx,a||+||y—Gy,a||}+g||x— Fx,al
1
<% Pal+ ﬂ[2||y—Gy,a||+§||x— Fx,aﬂ
ol el ly-Gy.all ol - Pxal ly= Gyl ix- Pl

S(g+§+y+5+g}||x_Fx,an+<zﬂ+7+51|y—ey,a||___<4>

J2-u.a|<|z-x.a]+[x-u.q]
Therefore by using 3 and 4, we get

|lz-u,a| <(a+B+2y+25+n)x—Fx,a|+(48+2y+25)y-Gy,a|
J2-u.a|=[Gy-2y+2.a|=2ly-Gy.q|
2ly-Gy.a| <(a+ B+2y+25+n)x—Fx,a|+(48+2y+25)y-Gy.d
(2-4p-2y-25)y-Gy,a|<(a+B+2y+25+n)x—Fx.a

a+p+2y+26+n

ly=Gy.al=< 2-45-2y-25

|x—Fx,a

ly—Gy.al < dlx—Fx.q

a+p+2y+26+n
2-4p-2y-26

Where q = <land a+58+4y+45+n<2

Let T :%(F+ I) then forany xe X
HT (%) —Tx,aH =TT (x)-Tx,a|

=5ly-Fy.a

1
Ty —v.a|= HE(F +Dy-vy,a

= %”FGy —Fy,a|< %”Gy —y,8|, because F is nonexpansive function.
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HT 2(x)=Tx, aH < %”x —Fx,a], by definition of g,

we claim that T "xis a Cauchy sequence in X.

Also by CompleteneSS T nX converges to T(X)

(ie) [imT "x =X,

nN—o0

F(X,) =X, X, Is fixed point of F.

Again HTZ(X)—T(X),aHS%”x—F(x),a||
S%”FGX— F(x).a]

<Jex-x,4
2
We conclude that G(x,) =X, X, is fixed point of G.

F(X,) =G(X,) =X,50 X, is a common fixed point of Fand G
Uniqueness:  Let y,(x, # Y,) be ananother common fixed point of Fand G.

Therefore by using (2),we get

1o — Yo.2] =||FGx, — FGy,.a| = |FGx, — GFy,. 4|

IGX, —GFy,,a][|Fy, — FGX,, 4| }

X, — Yo, q|f @
|| 0 0 ” L|GXO_FGx0,a||+||GXO—Fyo.a“

[”Gxo — FGX,, a[[|Fy, = GFY,, al[[GX, — GFy,, a|+[Gx, - Fy,, a||3]
[“Fy0 —GFy,, a||+[Gx, = Fy,, a||]2

+ 7[|GX, — FGX,, | + |Fy, — GFy,, a]+ 5[Gx, — GFy,, a| + 1|Gx, — Fys. 4|

[% = Yo, &[] yo = %o, ] } N [% =% alllYo = Yo, &llI%e = Yo, 2] + % — yo,a||3
[Xo = X5+ %, = ¥5.2] U|x0 ~ Yo a||]2

vl
+7U|X0 ~ %, 8+ ||Yo = Yo, a||]+ 5%, = Yo, a +77]x, = v, 4|

1o = Vo8| < (@ + B+25+1)|X, — .2

Since (a¢+f+20+n)<1

Which is contradiction, so x, =Yy, Hence X, is a uniqgue common fixed point of F and G.
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4.CONCLUSION

In this paper, | have discussed common fixed point theorem in 2-Banach Space through concept of
non-expansive mapping.
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