A COMMON FIXED POINT THEOREM IN 2-BANACH SPACE FOR NON EXPANSIVE MAPPING

Dr.P.S.MEENAKSHI.,

Head, Department of Mathematics,

Nethaji Subash Chandra Bose College, Thiruvarur,

Tamilnadu, India.

Abstract

In this paper our aim is to discuss about fixed point theory in 2-Banach Space through the concept of non expansive mapping.

Keywords: Normed space, 2-Normed Space, 2- Banach Space, Non expansive mapping.

1. INTRODUCTION

Let X be a set and F be a function from X to X. A fixed point of F is an element $x \in X$, such that F(x) = x. A fixed point theorem is a theorem that assets that every function that satisfies some given property must be a fixed point.

The concept of two Banach Space firstly introduced by Gahler[2] .This space was subsequently been studied by Mathematician (Kirk 1981). Recently A.S.Saluja, A.K.Dhakde [5], Shefali vijay vargiya, sonal Bharti [6] and Shukla D.P, Vivek Tiwari [7] also worked Common fixed point theorem in 2-Banach Spaces for self mapping and D.K.Mali, R.K.Gujetiya, Mala Hakwadhiya [1] and V.Gupta, A.K.Tripathi [8] also proved fixed point theorem in 2-Banach Space for non expansive mapping. In the paper I prove a common fixed point theorem in 2–Banach Space by taking non expansive mapping.

2. PRELIMINARIES

Definition 2.1 [1]

Let X be a real linear space and $\|...\|$ be a non negative real valued function defined on X satisfying the following conditions.

- (i) ||x, y|| = 0 if and only if x and y are linear independent.
- (ii) ||x, y|| = ||y, x|| for all $x, y \in X$
- (iii) ||x,ay|| = |a|||x,y||, a being real for all $x, y \in X$
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||$, for all $x, y, z \in X$

Then $\|\cdot,\cdot\|$ is called a 2-norm and the pair $(X, \|\cdot,\cdot\|)$ is called a linear 2-normed space. So a 2-norm $\|x, y\|$ always satisfies $\|x, y + ax\| = \|x, y\|$ for all $x, y \in X$ and all scalar a.

Definition 2.2 [1]

A sequence $\{x_n\}$ in a 2- normed linear space $(X, \|.,.\|)$ is said to be convergent sequence if there is a point $x \in X$ such that $\|x_n - x, a\| = 0$ as $n \to \infty$ and for all $a \in X$. If x_n converges to x, we write $x_n \to x$ as $n \to \infty$.

Definition 2.3 [1]

A sequence $\{x_n\}$ in a 2-normed space $(X, \|...\|)$ is called a Cauchy sequence if $\|x_m - x_n, a\| = 0$ as $m, n \to \infty$ and for all $a \in X$.

Definition 2.4 [1]

A linear 2 normed space is said to be complete if every Cauchy sequence is convergent to an element on X.A complete 2-normed space X is called 2- Banach Spaces.

Definition 2.5 [1]

Let X be a 2-Banach space and T be a Self mapping of X. T is said to be continuous at x if every sequence $\{x_n\}$ in X, $\{x_n\} \rightarrow x asn \rightarrow \infty$ implies $\{T(x_n)\} \rightarrow T(x) asn \rightarrow \infty$.

Definition 2.6 [1]

Let X be a 2-Banach space and C be a non empty bounded closed and convex subset of X. A mapping $T: C \to X$ is said to be non expansive if $||T(x) - T(y), a|| \le ||x - y, a||$ where $x, y \in C$.

3. THEOREM

Let F and G be two non expansive mapping of a 2-Banach space X into itself. F and G satisfy the following condition:

(1). FG=GF=I, where I is identity mapping.

$$(2). \|Fx - Gy, a\| \le \alpha \left[\frac{\|x - Gy, a\| \|y - Fx, a\|}{\|x - Fx, a\| + \|x - y, a\|} \right] + \beta \left[\frac{\|x - Fx, a\| \|y - Fy, a\| \|x - Gy, a\| + \|x - y, a\|^{3}}{\|y - Gy, a\| + \|x - y, a\|^{2}} \right] + \gamma \left[\|x - Fx, a\| + \|y - Gy, a\| \right] + \delta \|x - Gy, a\| + \|y - Fx, a\| + \eta \|x - y, a\|$$

Where $\alpha, \beta, \gamma, \delta, \eta \ge 0$ for all $x, y \in X$, Where $\alpha + 5\beta + 4\gamma + 4\delta + \eta \le 2$ and $\alpha + \beta + 2\delta + \eta < 1$. Then F and G have a unique common fixed point.

Proof:

Suppose x is any point in 2 Banach space X.

Taking
$$y = \frac{1}{2}(F+I)x$$
, $z=G(y)$ and $u=2y-z$ then
 $||z-x,a|| = ||Gy-GFx,a||$

Now using (1) and (2), we have

$$\begin{split} \|z - x, a\| &\leq \alpha \bigg[\frac{\|y - GFx, a\| \|Fx - Gy, a\|}{\|y - Gy, a\| + \|y - Fx, a\|} \bigg] + \beta \bigg[\frac{\|y - Gy, a\| \|Fx - GFx, a\| \|y - GFx, a\| + \|y - Fx, a\|^{2}}{\|Fx - GFx, a\| + \|y - Fx, a\|^{2}} \\ &+ \gamma \big[\|y - Gy, a\| + \|Fx - GFx, a\| \big] + \beta \bigg[\frac{\|y - Gy, a\| \|Fx - x, a\| \|y - x, a\| + \|y - Fx, a\|^{2}}{\|Fx - Gy, a\|} \bigg] \\ &\leq \alpha \bigg[\frac{\|y - x, a\| \|Fx - Gy, a\|}{\|Fx - Gy, a\|} \bigg] + \beta \bigg[\frac{\|y - Gy, a\| \|Fx - x, a\| \|y - x, a\| + \|y - Fx, a\|^{2}}{\|Fx - x, a\| + \|y - Fx, a\|^{2}} \bigg] \\ &+ \gamma \bigg[\|y - Gy, a\| + \|Fx - x, a\| \bigg] + \delta \bigg[\|y - x, a\| + \|Fx - y, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \alpha \bigg[\frac{\|y - x, a\| \|Fx - Gy, a\|}{\|Fx - x, a\|} \bigg] + \delta \bigg[\|y - x, a\| + \|Fx - y, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \bigg[\frac{\|y - Gy, a\| \|Fx - x, a\| \frac{1}{2} \|x - Fx, a\| + \frac{1}{2} \|x - Fx, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \bigg[\frac{1}{2} \|x - Fx, a\|^{2} \|y - Gy, a\| + \frac{1}{8} \|x - Fx, a\|^{3} \bigg] \\ &+ \gamma \bigg[\|y - Gy, a\| + \|Fx - x, a\| \bigg] + \delta \bigg[\|x - Fx, a\| + \frac{1}{2} \|x - Fx, a\|^{3} \bigg] \\ &+ \gamma \bigg[\|y - Gy, a\| + \|Fx - x, a\| \bigg] + \delta \bigg[\|x - Fx, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \bigg[\frac{1}{2} \|y - Gy, a\| + \frac{1}{2} \|x - Fx, a\|^{3} \bigg] \\ &+ \gamma \bigg[\|y - Gy, a\| + \|Fx - x, a\| \bigg] + \delta \bigg[\|x - Fx, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \bigg[2\|y - Gy, a\| + \frac{1}{2} \|x - Fx, a\| \bigg] \\ &+ \gamma \big[\|y - Gy, a\| + \|Fx - x, a\| \bigg] + \delta \bigg[\|x - Fx, a\| + \|y - Gy, a\| \bigg] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \bigg(\frac{\alpha}{2} + \frac{\beta}{2} + \gamma + \delta + \frac{\eta}{2} \bigg) \|x - Fx, a\| + (2\beta + \gamma + \delta) \|y - Gy, a\| \bigg] + \frac{\eta}{2} \bigg\| x - Fx, a\| \\ &\leq \bigg(\frac{\alpha}{2} + \frac{\beta}{2} + \gamma + \delta + \frac{\eta}{2} \bigg) \|x - Fx, a\| + (2\beta + \gamma + \delta) \|y - Gy, a\| \end{bmatrix}$$

||u-x,a|| = ||2y-z-x,a|| = ||Gy-Fx,a||

Now using (1) and (2)

$$\begin{split} \|Gy - Fx, a\| &\leq \alpha \left[\frac{\|y - Fx, a\| \|x - Gy, a\|}{\|y - Gy, a\| + \|y - x, a\|} \right] + \beta \left[\frac{\|y - Gy, a\| \|x - Fx, a\| \|y - Fx, a\| + \|x - y, a\|^{3}}{\|x - Fx, a\| + \|y - x, a\|} \right] \\ &+ \gamma \left[\|x - Fx, a\| + \|y - Gy, a\| \right] + \delta \left[\|y - Fx, a\| + \|x - Gy, a\| \right] + \eta \|y - x, a\| \\ &\leq \alpha \left[\frac{\|y - Fx, a\| \|x - Gy, a\|}{\|x - Gy, a\|} \right] + \beta \left[\frac{\|y - Gy, a\| \|x - Fx, a\| \frac{1}{2} \|x - Fx, a\| + \frac{1}{8} \|x - Fx, a\|^{3}}{\|y - Fx, a\| \|^{2}} \right] \end{split}$$

$$\begin{split} &+ \gamma \Big[\|x - Fx, a\| + \|y - Gy, a\| \Big] + \delta \Big[\frac{1}{2} \|x - Fx, a\| + \|x - y, a\| + \|y - Gy, a\| \Big] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \Big[\frac{1}{2} \frac{\|y - Gy, a\| \|x - Fx, a\|^{2} + \frac{1}{8} \|x - Fx, a\|^{3}}{\frac{1}{4} \|x - Fx, a\|^{2}} \Big] \\ &+ \gamma \Big[\|x - Fx, a\| + \|y - Gy, a\| \Big] + \delta \Big[\frac{1}{2} \|x - Fx, a\| + \frac{1}{2} \|x - Fx, a\| + \|y - Gy, a\| \Big] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \frac{\alpha}{2} \|x - Fx, a\| + \beta \Big[2 \|y - Gy, a\| + \frac{1}{2} \|x - Fx, a\| \Big] \\ &+ \gamma \Big[\|x - Fx, a\| + \|y - Gy, a\| \Big] + \delta \Big[\|x - Fx, a\| + \|y - Gy, a\| \Big] + \frac{\eta}{2} \|x - Fx, a\| \\ &\leq \Big(\frac{\alpha}{2} + \frac{\beta}{2} + y + \delta + \frac{\eta}{2} \Big) \|x - Fx, a\| + (2\beta + \gamma + \delta) \|y - Gy, a\| \\ &\leq \Big(\frac{\alpha}{2} + \frac{\beta}{2} + y + \delta + \frac{\eta}{2} \Big) \|x - Fx, a\| + (2\beta + \gamma + \delta) \|y - Gy, a\| \\ &= (4) \\ \|z - u, a\| \leq \|z - x, a\| + \|x - u, a\| \\ \\ \text{Therefore by using 3 and 4, we get} \\ \|z - u, a\| \leq (\alpha + \beta + 2\gamma + 2\delta + \eta) \|x - Fx, a\| + (4\beta + 2\gamma + 2\delta) \|y - Gy, a\| \\ &= (2 - 4\beta - 2\gamma - 2\delta) \|y - Gy, a\| \leq (\alpha + \beta + 2\gamma + 2\delta + \eta) \|x - Fx, a\| \\ &+ (2\beta - 2\gamma - 2\delta) \|y - Gy, a\| \leq (\alpha + \beta + 2\gamma + 2\delta + \eta) \|x - Fx, a\| \\ &\|y - Gy, a\| \leq \frac{\alpha + \beta + 2\gamma + 2\delta + \eta}{2 - 4\beta - 2\gamma - 2\delta} \|x - Fx, a\| \\ \end{aligned}$$

 $\left\| y - Gy, a \right\| \le q \left\| x - Fx, a \right\|$

Where $q = \frac{\alpha + \beta + 2\gamma + 2\delta + \eta}{2 - 4\beta - 2\gamma - 2\delta} \le 1$ and $\alpha + 5\beta + 4\gamma + 4\delta + \eta \le 2$

Let
$$T = \frac{1}{2}(F+I)$$
 then for any $x \in X$

$$\left\|T^{2}(x) - Tx, a\right\| = \left\|TT(x) - Tx, a\right\|$$

$$||Ty - y, a|| = \left||\frac{1}{2}(F + I)y - y, a|| = \frac{1}{2}||y - Fy, a||$$

 $\Rightarrow \frac{1}{2} \|FGy - Fy, a\| \le \frac{1}{2} \|Gy - y, a\|, \text{ because F is nonexpansive function.}$

$$\left\|T^{2}(x) - Tx, a\right\| \leq \frac{q}{2} \left\|x - Fx, a\right\|$$
, by definition of q,

we claim that $T^n x$ is a Cauchy sequence in X.

Also by completeness $T^n x$ converges to T(x).

(ie)
$$\lim_{n \to \infty} T^n x = x_0$$

 $F(x_0) = x_0, x_0$ is fixed point of F.

Again $||T^2(x) - T(x), a|| \le \frac{q}{2} ||x - F(x), a||$ $\le \frac{q}{2} ||FGx - F(x), a||$ $\le \frac{q}{2} ||Gx - x, a||$

We conclude that $G(x_0) = x_0 x_0$ is fixed point of G.

 $F(x_0) = G(x_0) = x_0$ so x_0 is a common fixed point of F and G

Uniqueness: Let $y_0(x_0 \neq y_0)$ be an another common fixed point of F and G.

Therefore by using (2), we get

$$\begin{aligned} |x_{0} - y_{0}, a|| &= ||FGx_{0} - FGy_{0}, a|| = ||FGx_{0} - GFy_{0}, a|| \\ ||x_{0} - y_{0}, a|| &\leq \alpha \left[\frac{||Gx_{0} - GFy_{0}, a||| ||Fy_{0} - FGx_{0}, a||}{||Gx_{0} - FGx_{0}, a|| + ||Gx_{0} - Fy_{0}, a||} \right] \\ &+ \beta \left[\frac{||Gx_{0} - FGx_{0}, a|| + ||Fy_{0} - GFy_{0}, a|| ||Gx_{0} - GFy_{0}, a|| + ||Gx_{0} - Fy_{0}, a||^{3}}{||Fy_{0} - GFy_{0}, a|| + ||Gx_{0} - Fy_{0}, a||^{2}} \right] \\ &+ \gamma \left[||Gx_{0} - FGx_{0}, a|| + ||Fy_{0} - GFy_{0}, a|| + ||Gx_{0} - GFy_{0}, a|| + \eta ||Gx_{0} - Fy_{0}, a|| \right] \\ ||x_{0} - y_{0}, a|| &\leq \alpha \left[\frac{||x_{0} - y_{0}, a|| ||y_{0} - x_{0}, a||}{||x_{0} - x_{0}, a|| + ||x_{0} - y_{0}, a||} \right] + \beta \left[\frac{||x_{0} - x_{0}, a|| ||y_{0} - y_{0}, a|| + ||x_{0} - y_{0}, a||^{3}}{||x_{0} - y_{0}, a||^{2}} \right] \end{aligned}$$

+
$$\gamma [||x_0 - x_0, a|| + ||y_0 - y_0, a||] + \delta ||x_0 - y_0, a|| + \eta ||x_0 - y, a||$$

$$||x_0 - y_0, a|| \le (\alpha + \beta + 2\delta + \eta) ||x_0 - y_0, a||$$

Since $(\alpha + \beta + 2\delta + \eta) < 1$

Which is contradiction, so $x_0 = y_0$ Hence x_0 is a unique common fixed point of F and G.

4.CONCLUSION

In this paper, I have discussed common fixed point theorem in 2-Banach Space through concept of non-expansive mapping.

REFERENCES

- [1] Dheeraj Kumari Mali, Gujetiya.R.K and Mala Hakwadiya. 2014. A Common fixed point theorem in 2-Banach Space for non expansive mapping. American International Journal of Research in Science, Technology, Engg and Mathematics, 7(3).192-195.
- [2] Gahlar.S .1964. 2-Metreche raume and ihre topologiscche structure, Math Nadh ,.26, 115-148.
- [3] Kirk.W.A.1983.Fixed point theorem for non expansive mapping, Contemporary mathematics, 18.121-140.
- [4] Kirk.W.A. 1981.Fixed point theorem for non expansive mapping, Lecture notes in mathematics, Springer-verlag, Berlin and newyork, 886,111-120.
- [5] Saluja.A.S, Alkesh Kumar Dhakde. 2013. Some fixed point and common fixed point theorem in 2-Banach Space. American Journal of Engineering Research, 2(5). 122-127.
- [6] Shefali Vijayvargiya, Sonal Bharti. 2017. Some fixed point result in Banach Spaces. Global Journal of pure and Applied mathematics.13(9).5871-5890.
- [7] Shukla.D.P and Vivek Tiwari.2014. Some fixed point and common fixed point theorem in 2-Banach Spaces. IOSR Journal of Mathematics,10(6). 32-37.
- [8] Vishal Gupta, Tripathi.A.K. 2011. A fixed point theorem in 2-Banach Space for non expansive mapping. Innovative system Design and Eng.2(4).71-74.