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Abstract :  The purpose of this paper is to present the effect of variable viscosity on unsteady laminar 

boundary layer flow and the heat transfer of a fluid over a stretching sheet that is studied numerical manner. 

It is expected that the unsteadiness is noticed by time dependent stretching velocity and a sudden growth in 

surface temperature. This is done by using similarity solutions of partial differential equations 

corresponding to the momentum and energy equations that are converted into highly non-linear ordinary 

differential equations. Numerical solutions of these equations are obtained with the help of an implicit finite 

difference scheme along with a quasi-linearization technique. It shows an increase in the unsteady parameter 

whenever skin friction and heat transfer coefficients increase, while fluid velocity and temperature keep 

decreasing with an increase in temperature dependent viscosity. Similar trends have been obtained for 

different Prandtl number for any fixed viscosity and unsteady parameter. 
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I. INTRODUCTION 

 

The analysis of the flow field in a boundary layer near the stretching sheet is an important part in fluid 

dynamics and also heat transfer occurring in a number of engineering processes such as extraction of plastic, 

rubber sheets, polymer processing and metallurgy. The quality of the final product depends on the rate of 

heat transfer on the stretching surface. The physical situation was discovered as a backward boundary layer 

problem by Crane [1] who studied the boundary-layer flow caused by a moving stretching surface 

maintaining a temperature i.e. a constant on the surface of the ambient fluid. He gave a resemblance solution 

for a closed analytical form of steady two dimensional incompressible boundary layer flows. The case study 

concerned the case of velocity linearly variation with distance chosen from a fixed point. Carragher and 

Crane [2] considered the influence of heat transfer on the flow over a stretching surface in the case of 

temperature difference arising between the surface and the ambient fluid. The numerical study of steady 

heat transfer over a stretching surface with a variable surface heat flux and uniform heat flux subjected to 

injection and suction is conducted by Elbashbeshy [3]. In this study he has considered the case of steady 

flow and heat transfer. However, the effect of variable viscosity on flow and heat transfer to a continuous 

moving flat plate studied by Ioan Pop [4]. The influence of variable viscosity on the flow and heat transfer 

on a continuous stretching surface is carried by A. Hassanien [5]. The results further on the variable 

viscosity on flow and heat transfer to a continuous moving flat plate studied by Pantokratoras A [6]. The 

work extended the dimension of the problem of heat transfer due to stretching sheet on unsteady laminar 

mixed convection boundary layer flow and heat transfer due to a stretching vertical surface by Ishak et al. 
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[7]. The effect is included the flow characteristics are seen to change substantially when compared to 

constant viscosity assumption carried by Gary et al. [8] and Mehta and Sood [9]. The effects of variable 

viscosity and thermal conductivity on a thin film flow over a stretching sheet is studied by Yasir Khan et al. 

[10]. The unsteady boundary layer flow and heat transfer due to stretching sheet for the especial distribution 

of the stretching velocity and surface temperature investigated by Sharidan et al. [11]. 

All the above said studies confined their discussions to assuming uniformity of fluid viscosity. However, it 

is accepted that the physical properties of the fluid may change significantly with a change in temperature. 

The increase of temperature leads to an increase locally in the transport phenomena due to reducing the 

viscosity across the momentum boundary layer and then the rate of heat transfer at the wall is also affected. 

Therefore, to predict the flow behavior accurately, it is necessary to take into account the viscosity variation 

for incompressible fluids.  

The present work deals with unsteady fluid flow and heat transfer over a stretching sheet with temperature 

dependent viscosity. Fluid viscosity is assumed to vary as inverse functions of temperature. Similarity 

variable and similarity solutions are obtained and using them, a third order and a second order ordinary 

differential equation corresponding to momentum equation is derived. These equations are solved 

numerically by an implicit finite difference scheme along with quasi-linearization technique. The effects of 

different parameters viz. unsteadiness, temperature-dependent fluid viscosity on velocity and temperature 

fields are investigated and analyzed with the help of their graphical representations. 

 

II. MATHEMATICAL FORMULATION 

 

Consider an unsteady two-dimensional boundary layer flow and heat transfer over a continuous stretching 

sheet embedded in a moving viscous, incompressible, fluid in the region y > 0, as shown in Fig.1 

 

Fig.1 The Geometry and coordinate system. 

Keeping the origin steady, two equal and opposite forces are suddenly applied along the x-axis, which result 

in stretching of the sheet that causes flow generation. At the same time, the wall temperature Tw(t, x) of the 

sheet is suddenly raised from  𝑇∞ to Tw(t, x) (>  𝑇∞). As stated in the introduction, property variations with 

temperature are limited to density and viscosity. However, variations in the density are taken into account 

only in so far as its effect on the buoyancy term in the momentum equation is concerned. 

The basic unsteady boundary layer equations governing momentum and heat transfer is given by 

                                                                  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                       (1) 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝜌

𝜕

𝜕𝑦
(𝜇

𝜕𝑢

𝜕𝑦
)                           (2) 

                                                      
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2                                                     (3) 

Subject to the initial conditions 

                                                   𝑡 < 0; 𝑢 = 𝑣 = 0, 𝑇 = 𝑇∞     𝑓𝑜𝑟 𝑎𝑛𝑦  𝑥, 𝑦 

                                                 𝑡 ≥ 0; 𝑢 = 𝑢𝑤(𝑡, 𝑥), 𝑣 = 0                                                            (4) 

                                            𝑇 =  𝑇𝑤(𝑡, 𝑥)     𝑢 → 0,   𝑇 → ∞ at 𝑦 → ∞ 

In the present investigation, a semi-empirical formula for the viscosity of the form 

                                                                      
 

 
1

1
 

 


TT


                                               (5) 

                             

 

as developed by Ling and Dybbs [12] has been adopted, where μ is the viscosity of the ambient fluid.  

Here u and v are velocity components along x and y- directions, respectively, where t is the time, 𝜎,  and 𝜗 

denote respectively, electrical conductivity, density and kinematic viscosity. T is the temperature, 𝛼  is the 

thermal diffusivity and k is the thermal conductivity. Here, we assume that, the velocity of the sheet 

is  𝑢𝑤(𝑡, 𝑥) and the sheet temperature 𝑇𝑤(𝑡, 𝑥) have the following form. 

 

                                                 (𝑡, 𝑥)  =
𝑐𝑥

1−𝛾𝑡
 ,        𝑇𝑤(𝑡, 𝑥) = 𝑇∞ +

𝑐

2𝜗𝑥2(1−𝛾𝑡)
3

2⁄
                                       (6) 

Where c is the stretching rate being a positive constant and 𝛾 is a positive constant which measures the 

unsteadiness of heat transfer quantity. We introduce now the following new variables 

𝜂 = √
𝑐

𝜗(1 − 𝛾𝑡)
 𝑦, 𝜓 = √

𝑐𝜗

(1 − 𝛾𝑡)
 𝑥𝑓(𝜂) 

                         𝑇 = 𝑇∞ +
𝑐

2𝜗𝑥2(1−𝛾𝑡)
3

2⁄
𝜃(𝜂)                             (7) 

Where 𝜓 is the stream function which is defined as 

𝑢 =
𝜕𝜓

𝜕𝑦
   and  𝑣 = −

𝜕𝜓

𝜕𝑥
 ,    𝜃 =

𝑇−𝑇∞

𝑇𝑊−𝑇∞
  

Substituting the transformations given in (6) and (7) into Equations (1)-(3), we obtain the following 

ordinary differential equations 

              𝑓′′′ − (
𝜀

1+𝜀𝜃
) 𝜃′𝑓′′ − (1 + 𝜀𝜃)𝐴 (𝑓′ +

1

2
𝜂𝑓′′) − (1 + 𝜀𝜃)𝑓′2 + (1 + 𝜀𝜃)𝑓𝑓′′ = 0           (8) 

                                                            
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ + 2𝑓′𝜃 −

1

2
𝐴(3𝜃 + 𝜂𝜃′) = 0                  (9) 

Subject to the boundary conditions (4), which becomes, 

                                                             𝑓(0) = 0, 𝑓′(0) = 1,  𝑓′(∞) = 0  

                                                              𝜃(0) = 1   or  𝜃(∞) = 0                                       (10) 

where  [= (Tw -T)] is termed as the viscosity variation parameter, that is positive for heated surface and 

negative for a cooled surface. Here 𝜂 is taken as the transformed dimensionless independent variable, f is the 

dimensionless stream function and 𝑓′  is the dimensionless velocity. Where Pr is the Prandtl number, 𝜃 is 
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dimensional temperature, 𝐴 =
𝛾

𝑐 
 is a non-dimensional constant which measures unsteadiness of the flow and 

heat transfer and the prime(′) denotes the differentiation with respect to the similarity variable 𝜂. The 

parameter of engineering interest is the skin friction coefficient (𝑐𝑓) and heat transfer coefficient in terms of 

local Nusselt number(𝑁𝑢𝑥) is given by 

                                                                 𝑐𝑓√(𝑅𝑒𝑥) =
𝜏𝑤

𝜌(𝑢𝑤)2 =
𝜇(

𝜕𝑢

𝜕𝑦
)𝑦=0 

𝜌(𝑢𝑤)2 =
𝑓′′(0)

(1+𝜀𝜃)
                                    (11) 

where  𝜇 being the dynamic viscosity, w  is the skin friction and 𝑞𝑤  is the heat transfer from the sheet. 

                                                 
𝑁𝑢𝑥

√𝑅𝑒𝑥
=

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
=

−𝑥𝑘(
𝜕𝑢

𝜕𝑦
)𝑦=0 

𝑘(𝑇𝑤−𝑇∞)
= −𝜃′(0)                                    (12) 

where  𝑅𝑒𝑥 =
𝑢𝑤𝑥

𝜗
   is the local Reynolds number. 

 

III. NUMERICAL SOLUTION 

 

The system of coupled, nonlinear partial differential equations (8) and (9) along with the boundary 

conditions (10) using the relations (11) - (12) has been solved numerically employing an implicit finite 

difference scheme using quasilinearization technique. A unique feature of the quasilinear implicit finite 

difference scheme is quadratic convergence and monotonicity, which has been found superior to the built in 

iteration of the upwind technique or finite amplitude technique. The efficiency and accuracy of this method 

has been illustrated through its applications in many boundary value problems, mentioned in the book by 

Bellman and Kalaba [13]. 

Applying the quasilinearization technique to the non-linear coupled partial differential equations (8) and (9) 

having boundary conditions (10) are replaced by the following sequence of linear ordinary differential 

equations 

                                        (k+1)𝑓′′′ +(k) X1
 (k+1)𝑓′′ +(k) X2

 (k+1)𝑓′ +(k) X3
 (k+1)𝜃′ +(k)X4

 (k+1)𝜃 = (k) U1                           (13)   

              

                                                                            (k+1)𝜃′′ +(k) Y1
 (k+1)𝜃′ +(k) Y2

 (k+1)𝜃+ =(k) U2                                                                 (14) 

 

The coefficient functions with iterative index k are known and the functions with iterative index      (k + 1) 

are to be determined. The corresponding boundary conditions given by 

                                                                 (k+1)𝑓′ = 0,              (k+1)𝜃 = 1                 𝑎𝑡     𝜂 = 0 

                                                                 (k+1)𝑓′ = 0,              (k+1)𝜃 = 0                 𝑎𝑡     𝜂 = ∞                                   (15) 

  The coefficients of equations (13) and (14) are given by  

(k)X1=− (
𝜀𝜃′

1+𝜀𝜃
) − 𝐴(1 + 𝜀𝜃) (

𝜂

2
) + (1 + 𝜀𝜃)𝑓 

(k)X2= −𝐴(1 + 𝜀𝜃) − 2𝑓′(1 + 𝜀𝜃) 

(k)X3= − (
𝜀𝑓′′

1+𝜀𝜃
) 

(k)X4= (
𝜀2𝜃′𝑓′′

1+𝜀𝜃
) − 𝜀𝐴(𝑓′′ (

𝜂

2
) + 𝑓′) − 𝜀𝑓′2 + 𝜀𝑓𝑓′′  
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(k)U1= −𝑓′2(1 + 𝜀𝜃) − (
𝜀𝑓′′𝜃

1+𝜀𝜃
) + 𝑋4𝜃 

(k)Y1= 𝑓𝑃𝑟 − 𝑃𝑟𝐴(
𝜂

2
) 

(k)Y2= 2𝑓′𝑃𝑟 − (
3

2
)𝑃𝑟𝐴 

(k)U2= 0 

Since the method is presented for ordinary differential equations by Inouye and Tate [14] and for partial 

differential equations recently reported by Srinivasa and Eswara [15, 16], its description omitted here for the 

sake of brevity. At each iteration step, the sequence of linear partial differential equations (13) and (14) 

along with the boundary conditions (15), were expressed in difference form using the central difference 

scheme in the -direction. Thus at each step, the resulting equations were deduced to a system of linear 

algebraic equations with a block tri-diagonal matrix, which can be solved by Varga`s algorithm [17].  

 
IV. RESULTS AND DISCUSSION 

 

The transformed Equation consisting of (8) and (9) when subjected to the boundary condition (10) is 

solvable in a numerical manner by using a stable finite difference method in addition to quasilinearization 

technique. The results obtained are presented through the graphs for velocity and temperature profiles in 

different values of unsteadiness parameter (A) and Prandtl number (Pr) and is as shown in Figs.2 – 5 have 

been computed and these have been compared with the different values of variable viscosity. The computed 

results have been compared with those of Sharidan et al. [11], for both skin friction and heat transfer as is 

given coefficients in Table 1, Pr =0.01, 0.1 and 1.0. Our results are found to be in good agreement with 

those of [11] correct to four decimal places of accuracy.  

 

 

 

 

 

 

 

Table 1. Comparison results for the values of the heat transfer [𝜽′(𝟎)] and skin friction coefficient [𝒇′′(𝟎)] for various 

values of A and Pr [11]. 

𝜀 = 0 

A 0.8 1.2 2 

 Present Previous Present Previous Present Previous Present Previous Present Previous Present Previous 

Pr 𝜃′(0) 𝜃′(0) −𝑓′′(0) −𝑓′′(0) 𝜃′(0) 𝜃′(0) −𝑓′′(0) −𝑓′′(0) 𝜃′(0) 𝜃′(0) −𝑓′′(0) −𝑓′′(0) 

0.01 0.2091 0.2092 1.2591 1.2610 0.2175 0.2174 1.3747 1.3777 0.2338 0.2331 1.5816 1.5873 

0.1 0.2630 0.2629 1.2591 1.2610 0.3305 0.3306 1.3747 1.3777 0.4457 0.4387 1.5816 1.5873 

1 0.4722 0.4712 1.2591 1.2610 0.7890 0.7882 1.3747 1.3777 1.2445 1.2437 1.5816 1.5873 

    

Table 2.Given below are the values obtained as results for the heat transfer [𝜽′(𝟎)]  and skin friction coefficient [𝒇′′(𝟎)] 
for various values of A and Pr with 𝜺 = 0.5 

 

 

 

 

 

 

 

 

𝜀 = 0.5 

A 0.8 1.2 

Pr 𝜃′(0) −𝑓′′(0) 𝜃′(0) −𝑓′′(0) 

0.1 0.2812 1.5627 0.3452 1.7074 

0.72 0.4788 1.5815 0.7284 1.7351 
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Table 2. gives the effect of skin friction and heat transfer coefficients for a fixed variable viscosity          

(𝜀 = 0.5). In this we see an increase occurring for skin friction  as well as heat transfer increase for various  

Prandtl number (Pr) with time parameter (A). The percentage of increased skin friction coefficient is 

14.47 % and heat transfer is about 6.40 % for A = 0.8 to 1.2. 

0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

, 0.5, 1.0

C
f

Pr = 0.72

 

 

A

(a)

 0.5 1.0 1.5 2.0

0.0

0.5

1.0

, 0.5, 1.0

Pr = 0.72

 

 

N
u

A

(b)

 
Fig. 2(a) Skin friction and (b) Heat transfer coefficient for different values of  

 

The variable viscosity effect () on skin friction [𝑐𝑓] and heat transfer [𝑁𝑢] coefficients for fixed Prandtl 

number (Pr = 0.72) is displayed in the Fig. 2(a) and 2(b). It is found that both [𝑐𝑓] and [𝑁𝑢]  increase 

whenever there is an increase in the variable viscosity parameter. The percentage of increase in [𝑐𝑓] is 

61.92% and [𝑁𝑢] is 5.99%.   

0 1 2 3 4 5

0.0

0.5

1.0



f'

A=1.0

Pr = 0.72

 

 

, 0.5, 1.0

(a)

      0 1 2 3 4 5

0.0

0.5

1.0

, 0.5, 1.0



 

 

A=1.0

Pr = 0.72



(b)

 
Fig. 3(a) The velocity and (b) temperature profiles for different values of 𝜀 with A = 1.0 

 

Fig. 3 represents the impact of variable viscosity (𝜀) on the corresponding profiles of velocity and 

temperature profiles for a fixed Pr =0.72 and A = 1.0. These show that both velocity and temperature 

decreases with a rise of 𝜀.  
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 = 0.5

N
u

A

(b)

 
Fig. 4(a) Skin friction and (b) Heat transfer coefficient for different values of Pr 
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The impact of variable viscosity on skin friction [𝑐𝑓] and heat transfer [𝑁𝑢]   coefficients for different 

Prandtl numbers (Pr = 0.01, 0.7, 1.0) when  =0.5 is individually represented, in the Figs. 4(a) and 4(b). It is 

noticed that both [𝑐𝑓] and [𝑁𝑢]  increase whenever there is a increase of Pr. The percentage of increase in 

[𝑐𝑓] is 3.65% and [𝑁𝑢] is 45.97%.   

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

 = 0.5

 

  

A=1.0



f'

Pr = 0.01, 0.7, 1.0

(a)

    
0 1 2 3 4 5

0.0

0.5

1.0



Pr = 0.01, 0.7, 1.0

 = 0.5

A=1.0

 

 



(b)

 
          Fig. 5 (a) The velocity and (b) temperature profiles for different values of Pr with 𝜀 =0.5 and A=1.0 

 

Fig.5 represents the variation of velocity and temperature for different values of the Prandtl number (Pr) 

using fixed parameter    A = 1.0 and 𝜀 =0.5. It shows that there is a decreases in the both the velocity and 

temperature as the Prandtl number increases for fixed value of 𝜂. The temperature decreases as the distance 

away from the sheet increases and it becomes almost zero at 𝜂 = 5 which ends the boundary layer thickness. 

The temperature decreases with in the boundary layer for all values of Pr. This is consistent with the fact the 

boundary layer thickness decreases with an increase of 𝜂 but negligible amount in velocity. 

 

V. CONCLUSIONS 

 

For different values of relevant physical parameters, the effect of unsteady laminar flow and heat transfer 

over a screeching sheet with temperature dependent variable viscosity, from the present investigation the 

following conclusions may be drawn. 

i. Both the skin friction and heat transfer coefficient increases with the increase of variable viscosity 

parameter.  

ii. For the fixed Prandtl number velocity and temperature profile decreases with the increase of variable 

viscosity.                               

iii. Increase in Prandtl number both the skin friction and heat transfer coefficient increases. 

iv. The velocity and temperature decrease along the sheet with a corresponding increase of Prandtl 

number. 
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