πgs*g-CLOSED SETS AND QUASI s*g-NORMAL SPACES

Jitendra Kumar Department of Mathematics S.S.M.V. (P.G.) College Shikarpur-203395 (U.P.) India

Abstract: In this paper, we introduce a new class of sets called πgs^*g -closed sets in topological spaces. Also we study and investigate the relationship with other existing closed sets. Moreover, we introduce some functions such as s^*g -closed, πgs^*g -closed, almost s^*g -closed, almost πgs^*g -closed, πgs^*g -continuous and almost πgs^*g -closed, almost study a new class of normal space called, quasi s^*g -normal space. The relationships among normal, π -normal, quasi normal, softly normal, mildly normal, α -normal, quasi α -normal, softly α -normal, mildly α -normal, s*g-normal, πs^*g -normal, softly s^*g -normal and mildly s^*g -normal spaces are investigated. Further we show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. Utilizing πgs^*g -closed sets and some functions, we obtained some characterizations and preservation theorems for quasi s^*g -normal spaces.

2010 AMS Subject classification : 54D15, 54D10, 54A05, 54C08.

Keywords : π -open, s*g-open, π gs*g-open, π -closed, s*g-closed, and π gs*g-closed sets; π gs*g-closed, almost π gs*g-closed, π gs*g-continuous and almost π gs*gcontinuous functions; quasi s*g-normal spaces.

1. Introduction

In this paper, we introduced the concept of quasi s*g-normal spaces in topological spaces by using s*g- open sets due to M. Khan, T. Noiri and M. Hussain [6] and obtained several properties of such a space. M. Khan [6] introduced the concepts of s*g-closed sets in topological spaces. We introduced the concepts of g s*g-closed, π gs*g-closed sets, s*g-closed, gs*g-closed, π gs*g-closed, almost s*g-closed, almost gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, mgs*g-closed, almost π gs*g-closed, almost π gs*g-closed, π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, π gs*g-closed, π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, π gs*g-closed, π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, π gs*g-closed, π gs*g-closed, π gs*g-closed, π gs*g-closed, π gs*g-closed, almost π gs*g-closed, almost π gs*g-closed, π gs*g-closed,

normal space in topological spaces and obtained several properties of such a space. Recently, Hamant Kumar and M.C.Sharma [5] introduced the concept of $\pi g\gamma$ -closed sets as weak form of πg -closed sets due to Dontchev [4]. and introduced the concept of quasi γ -normal spaces and by using $\pi g\gamma$ -closed sets and obtained a characterization and preservation theorems for quasi γ -normal spaces. Further show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. The relationship among of normal, π -normal, p-normal, $\pi\gamma$ -normal, $\pi\gamma$ – normal, quasi -normal, quasi p- normal, quasi γ -normal, mildly p- normal, mildly γ -normal are investigated.

2. Preliminaries

2.1 Definition. A subset A of a topological space X is said to be

1. g-closed [7] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

2.*a*-closed [10] if $cl(int(cl(A))) \subset A$.

3. α -open [11] if $A \subset int(cl(int(A)))$.

3. ag-closed [9] if α -cl(A) \subset U whenever A \subset U and U is open in X.

4. ga-closed [9] if α -cl(A) \subset U whenever A \subset U and U is α -open in X.

5. s-open [8] if $A \subset cl(int(A))$.

6. generalized semi-closed [2] (briefly, gs-closed) if $s-cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

7. semi-generalized closed [2] (briefly, sg-closed) s-cl(A) \subset U wnenever A \subset U and U is s-open in X.

6. s*g-closed [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi-open in X.

- 7. **gs*g-closed** if $s*g-cl(A) \subset U$ whenever $A \subset U$ and U is s*g- open in X.
- 8. πg -closed [4] if cl(A) \subset U whenever A \subset U and U is π -open in X.
- 9. π ga-closed [1] if α -cl(A) \subset U whenever A \subset U and U is π -open in X.
- 10. **\pigs-closed [3]** if s-cl(A) \subset U whenever A \subset U and U is π -open in X.
- 11. π **gs*g-closed** if s*g-cl(A) \subset U whenever A \subset U and U is π -open in X.

12. The finite union of all regularly open sets is said to be π - open [14]. The complement of **g-closed** (resp. α -closed, s^*g -closed, gs^*g -closed, πgs^*g -closed) set is called **g-open** (resp. α -open, s^*g -open, gs^*g -open, πg -open, πg -open, πg -open, πg -open) set and the complement of π -open is called π -closed. The intersection of all s^*g -closed sets containing A is called the **s^*g-closure of A** and denoted **s^*g-cl(A)**. The union of all s^*g -open subsets of X which are contained in A is called the **s^*g-interior of A** and denoted by **s^*g-int(A**).

We have the following implications for the properties of subsets :

Where none of the implications is reversible as can be seen from the following examples.

2.2.Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$.Let A ={c}.Then A is πgs^*g -closed set but not πg -closed set in X.

2.3. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then the set $A = \{a\}$ is πgs^*g -closed set not gs^*g -closed set in X.

2.4. Theorem. A subset A of a topological space X is πgs^*g -open iff $F \subset s^*g$ -int (A) whenever F is π -closed and $F \subset A$.

3. Quasi s*g- Normal Spaces

3.1.Definition. A topological space X is said to be **quasi s*g-normal** if for every pair of disjoint π -closed subsets H, K, there exist disjoint s*g-open sets U, V of X such that H \subset U and K \subset V.

3.2.Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a\}$ and $V = \{b, c, d\}$ are disjoint s*g-open sets such that $A \subset U$ and $B \subset V$. Hence X is quasi-normal as well as quasi s*g-normal because every open set is s*g-open set.

By the definitions and examples stated above, we have the following diagram: normal

 \Rightarrow quasi-normal \Rightarrow quasi s*g-normal.

3.3.Theorem. For a topological space X, the following are equivalent :

- (a) X is quasi s*g-normal.
- (b) For any disjoint π -closed sets H and K, there exist disjoint gs*g-open sets U and V such that H \subset U and K \subset V.
- (c) For any disjoint π -closed sets H and K, there exist disjoint $\pi g \alpha^*$ -open sets U and V such that $H \subset U$ and $K \subset V$.
- (a) For any π -closed set H and any π -open set V containing H, there exists a gs*g-open set U of X such that $H \subset U \subset s^*g\text{-cl}(U) \subset V$.
- (b) For any π closed set H and any π open set V containing H, there exists
 - a πgs^*g open set U of X such that $H \subset U \subset s^*g$ -cl(U) $\subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (d) \Rightarrow (e), (c) \Rightarrow (d), and (e) \Rightarrow (a). (a) \Rightarrow (b). Let

X be quasi s*g-normal. Let H, K be disjoint π - closed sets of X. By assumption, there exist disjoint s*g-open sets U, V such that H \subset U and K \subset V. Since every s*g-open set is gs*g-open, U, V are gs*g-open sets such that H \subset U and K \subset V.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exist gs*g-open sets U and V such that H \subset U and K \subset V. Since gs*g-open set is π gs*g-open, U and V are π gs*g-open sets such that H \subset U and K \subset V.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exists a gs*g-open set U of X such that

 $H \subset U \subset s^*g\text{-cl}(U) \subset V$. Since every gs^*g -open set is πgs^*g -open, there exists a πgs^*g -open set U of X such that $H \subset U \subset s^*g\text{-cl}(U) \subset V$.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist π gs*g-open sets U and W such that H \subset U and

 $X - V \subset W$. By **Theorem 2.4**, we get $X - V \subset s^*g$ -int(W) and

 $s*g-cl(U) \cap s*g-int(W) = \phi$. Hence $H \subset U \subset s*g-cl(U) \subset X - s*g-int(W) \subset V$.

(e) \Rightarrow (a). Let H, K be any two disjoint π -closed set of X. Then H \subset X – K and X – K is

 π -open. By assumption, there exists a π gs*g-open set G of X such that $H \subset G \subset s$ *g-

 $cl(G) \subset X - K$. Put U = s*g-int(G), V = X - s*g-cl(G). Then U and V are disjoint s*g-int(G).

open sets of X such that $H \subset U$ and $K \subset V$.

3.4. Definition. A function $f: X \to Y$ is said to be

1. s*g- closed (resp. gs*g- closed , π gs*g- closed) if f (F) is s*g-closed (resp.

gs*g-closed , π gs*g-closed) in Y for every closed set F of X

2. rc - preserving [12](resp. almost closed [13], almost s*g- closed, almost

gs*g-closed, almost π gs*g- closed) if f (F) is regularly closed (resp. closed, s*gclosed, gs*g- closed, π gs*g- closed) in Y for every $F \in RC(X)$.

- 3. π -continuous[4](resp. almost π -continuous[4]) if $f^{-1}(F)$ is π -closed in X for every closed (resp. regular closed) set F of Y.
- 4. almost πgs^*g -continuous if $f^{-1}(F)$ is $\pi g\alpha^*$ -closed in X for every regular closed set F of Y.

From the definitions stated above, we obtain the following diagram:

closed \Rightarrow s*g-closed \Rightarrow gs*g-closed \Rightarrow π gs*g-closed \downarrow \downarrow \downarrow

al. closed \Rightarrow al. s*g-closed \Rightarrow al. gs*g-closed \Rightarrow al. π gs*g-closed \Rightarrow al. π gs*g-closed where al. = almost.

Where none of the reverse implications are true as can be seen from the following examples :

3.5. Example. $X = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{a, b, d\}, X\}$ and $\sigma = \{\phi, \{a\}, \{d\}, \{c, d\}, \{a, d\}, \{a, c, d\}, X\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is πgs^*g -closed but not πg -closed. Since $A = \{c\}$ is not πg -closed in (X, σ) .

3.6. Example. Let $X = \{a, b, c, d\}$ $\tau = \{\phi, \{c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function Then f is almost πgs^*g -closed but not πgs^*g -closed. Since $A = \{c\}$ is not πgs^*g -closed.

3.7.Theorem. A surjection $f : X \to Y$ is almost πgs^*g -closed if and only if for each subset S of Y and each $U \in RO(X)$ containing $f^{-1}(S)$, there exists a πgs^*g -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Necessity. Suppose that f is almost πgs^*g -closed. Let S be a subset of Y and $U \in RO(X)$ containing f⁻¹(S). If V = Y - f(X - U), then V is a πgs^*g -open set of Y such that $S \subset V$ and f⁻¹(V) $\subset U$.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y-f(F)) \subset X - F$ and $X - F \in RO(X)$. There exists a πgs^*g - open set V of Y such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}(Y - V)$. Hence we obtain f(F) = Y - V and f(F) is πgs^*g -closed in Y which shows that f is almost πgs^*g -closed.

4. Preservation Theorems

4.1.Theorem. If $f: X \to Y$ is an almost πgs^*g -continuous rc-preserving injection and Y is quasi s^*g -normal then X is quasi s^*g -normal.

Proof. Let A and B be any disjoint π -closed sets of X. Since f is a

rc-preserving injection, f (A) and f (B) are disjoint π -closed sets of Y. Since Y is quasi s*g-normal, there exist disjoint s*g-open sets U and V of Y such that f (A) \subset U and f (B) \subset V. Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are regular open sets such that f (A) \subset G and f (B) \subset H. Since f is almost π gs*g-continuous, f⁻¹(G) and f⁻¹(H) are disjoint π gs*g-open sets containing A and B respectively which shows that X is quasi s*g-normal.

4.2.Theorem. If $f: X \to Y$ is π -continuous almost s*g-closed surjection and X is quasi s*g-normal space then Y is s*g-normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint π -closed sets of X. Since X is quasi s*g-normal, there exist disjoint s*g-open sets of U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Let G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. Set K = Y - f(X - G), L = Y - f(X - H). Then K and L are s*g-open sets of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$, $f^{-1}(L) \subset H$. Since G and H are disjoint, K and L are disjoint. Since K and L are s*g-open and we obtain $A \subset s*g-int(K)$, $B \subset s*g-int(L)$ and s*g-int(K) \cap s*g- int(L) = ϕ . Therefore Y is s*g - normal.

4.3.Theorem. Let $f : X \to Y$ be an almost π -continuous and almost π gs*g-closed surjection. If X is quasi s*g-normal space then Y is quasi s*g-normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π continuous, f⁻¹(A), f⁻¹(B) are disjoint closed subsets of X. Since X is quasi-s*g-normal, there exist disjoint s*g-open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset$ V. Put G = int(cl(U)) and H = int(cl(V)).Then G and H are disjoint regular open sets of X such that f⁻¹(A) \subset G and f⁻¹(B) \subset H. By **Theorem 3.7**, there exist π gs*g-open sets K and L of Y such that A \subset K, B \subset L, f⁻¹(K) \subset G and f⁻¹(L) \subset H. Since G and H are disjoint. So are K and L by **Theorem 2.4**, A \subset s*g-int(K), B \subset s*g-int(L) and s*g-int(K) \cap s*g-int(L) = ϕ . Therefore, Y is quasi-s*g-normal.

4.4.Corollary. If $f: X \to Y$ is an almost continuous and almost closed surjection and X is a normal space, then Y is quasi s*g-normal.

Proof. Since every almost closed function is almost πgs^*g -closed so Y is quasi s^*g -normal.

REFERENCES

- 1. Arockiarani and C. Janaki, πgα-closed set and Quasi α-normal spaces, Acta Ciencia Indica Vol. **XXXIII** M. no. **2**, (2007), 657-666
- S. P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math;
 21(1990), 717-719.
- A. Aslim, A. Caksu Guler and T. Noiri, On πgs-closed sets in topological spaces, Acta. Math. Hungar; 112(2006), 275-283.
- 4. J. Dontchev and T. Noiri, Quasi-normal spaces and πg closed sets. *Acta Math. Hungar*. **89**(3)(2000), 211 219.
- Hamant Kumar and M. C. Sharma ,Quasi γ-normal spaces in topological spaces, *Internat. J. of Advanced Res. in Sci. and Engg.*, 5(2016),no.8. 451-458.

6. M. Khan, T. Noiri and M. Hussain, s*g-closed sets and s*-normal spaces in topological spaces, JNSMAC Vol. 48, No. 1 and 2, (2008) PP 31-41.

 N. Levine, Generalized closed sets in topology. *Rend. Circ. Math. Palermo* (2)19(1970), 89-96.

8. N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, **70**(1963), 36-41.

9. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α -ciosed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., **5**(1994), 51-63.

10. A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α -open mappings, Acta. Math. Hungar., **41**(1983), 213-218.

11. O. Njastad, On some classes of nearly open sets, Pacific J. Math., **15**(1965), 961-970.

12. T. Noiri, Mildly-normal spaces and some functions. *Kyungpook Math. J.* **36** (1996),183 - 190.

 M. K. Singal and A. R. Singal, Almost continuous functions, Yokohama Math.J. 16(1968), 63-73.

14. V. Zaitsev, On certain classes of topological spaces and their bicompactifications. *Dokl. Akad. Nauk SSSR* **178**(1968),778 -779.