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ABSTRACT:

A topological index is the graph invariant numerical descriptor calculated
from a molecular graph representing a molecule. Classical Zagreb and Wiener indices
and the recently introduced Zagreb coindices are topological indices related to the atom —
atom connectivity of the molecular structure represented by the graph G. We explore
here their basic mathematical properties and present explicit formulae for these new

graph invariants under several graph operations.
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INTRODUCTION:

Graph theory is a branch of mathematics started by Euler as early as
1736. It took a hundred years before the second important contribution of Kirchhoff had been made for
the analysis of electrical networks. Cayley and Sylvester discovered several properties of special types
of graphs known as trees. Poincare defined in principle what is known nowadays as the incidence

matrix of a graph.
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DEFINITION

Definition 1

The Cartesian product GxH of graphs G and Hisa graph such that
V(GxH)=V(G)xV(H) and any two vertices (a,b) and (u,v) are adjacent in GxH if and only if either a=u
and b is adjacent with v, or b=v and a is adjacent with u.

Definition 2

For a product GxH, the projection p;: GXH — G is defined by
pg: (g h) » g, geG and heH. It is clear what we mean by py. Under the projections pg or py, the
image of an edge is an edge or a single vertex. Such mappings are weak homomorphisms (Wilfried
1941).

Definition 3
For a path P of GxH consisting of a single edge e, we clearly have
‘E(P)‘:‘E(pGP)H‘E(pHP)‘
because either psP or pyP consists of a single vertex. If P is not a single edge, it may happen that two

edges e and f of P have the same projection into one of the factors. Thus,

‘E(P)‘ Z‘E(pGP)H‘E(pHP)‘

SOME THEOREMS BASED ON WIENER TYPE INVARIANTS
Lemma :1

GxH is connected if and only if G and H are connected.

Proof

Suppose GxH is connected. We have to prove that both G and H are
connected. Clearly, it suffices to prove it for G.

Let a and b be any two vertices of G, and let ceH be arbitrary. Then there
is a path P in GxH from (a,c) to (b,c), and psP &G contains a path from a to b.

Conversely, assume that G and H are connected. We have to show that
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there is a path between any two arbitrarily chosen vertices (a,c) and (b,d) of GxH. Let R be a a,b-path
and S be c,d-path. Then,

(Rx{c})u({b}xS) isa (ac),(b,d) is apath.

Hence GxH is connected.

Lemma :2

Let G and H be graphs. If ((@,c).(b.d)) € \V(GxH) then we have, 9 ((8¢):(0:d))=ds (ab)+d;, (c.d).

Proof

We know that, d;(a, b) is the distance between two vertices a and b of a
graph G and dy(c, d)is the distance between two vertices ¢ and d of a graph H. i.e. dg(a,b) is the
number of edges on a shortest a,b-path and dy (c, d) is the number of edges on a shortest c,d-path.
Let P be a shortest ((a,c),(b,d)) path in GxH. By Definition 5.1.4,

de ((a.C).(bd)) = dg (a,b)+d,, (c.d) (5.1)
Furthermore, if R is a shortest ab-path in G and S is a shortest c,d-path in H. Then
(Rx{c})u({b}xS) isa (ac),(b.d)—path of length d, (ab)+d,, (c.d).

Hence,  Jow ((ac).(bd))<ds (ab)+d, (c.d) (5.2)
From (5.1) and (5.2) we get,
de ((ac).(b.d))=d (ab)+d,, (c.d).

Lemma :3

Suppose G and H are connected graphs, |[V(G)| = m, [V(H)| = n and X is a positive integer. Then

w, (GXH):mZWk(H)+2@jW(G)WH (H)+z@w2 (G)W,, (H)

Proof

Suppose (uy,u,, ...,uy) and (vq4,v,,...,v,) are vertices of G and H respectively. Given G and H are

connected graphs. By definition of W,
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L (GxH) ZdeH

W, (GxH) ——(Z Z deH( UV, (uj,v,))

u Vk)(u vI

= 25 20 (00, 6 ()
@ & (u,, )5 (vk,v,){ J dg (U0, )ds' (Vv )+ _
LSS o o | (00 )0k )
i (0.

NANOTUBES

Carbon nanotubes are hollow, cylindrical nanostructures composed of single sheet of

carbon atoms. Carbon nanotubes have exceptional electrical, physical and thermal
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properties. Carbon nanotubes are stronger than steel and 200 times lighter than steel. Carbon
nanotubes are 10,000 times thinner than human hair.

Example:1

Figure 5.3 C, Nanotubes

NANOTORUS OR NANOTORI

Nanotorous is theoretically describes as carbon nanotube bent into a
torus (doughnut shape). Nanotorus are predicted to have many unique properties such as magnetic

moments, thermal stability etc. vary widely depending on radius of the torus and the radius of the tube.

Example :1

—

\ 7

— |

Figure 5.3 C4, Nanotorus or Nanotori
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5.5TSZ OF C, NANTOUBES AND NANOTORUS OR NANOTORI

Corollary :1

The Tratch-Stankevich-Zefirov index of C, nanotubes and nanotori are computed as follows:
(i) If mis even then,
TSZ(PHXCm):im2n5+im2n4+im2n3-£m2n + L men? + L men?

120 24 18 360 384 24

+im4n3+ im“nz-im“n+im3n4 +im3n3-im3n.
144 48 144 96 24 24

Proof

Using corollary (5.2.4),

TSZ(P,xC,)=|V(C, )| TSZ(P,)+|V (P, | TSZ(C,, )+W (P, )W, (C,,)
+W, (P, )W(C,, )+2W (P, )W(C, )
TSZ(P,xC,, )=m?TSZ(P, )+n*TSZ(C, ) *W (P, )W, (C, )
+W, (P, )W(C, ) +2W (P, )W(C,,) (5.4)

If m is even then the wiener type invariant of cycle graph C,, is,

2 4
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(g5

= +
6 8
m*+2m?
W, (C_)=
2 (Cn) 24
i m)’ m
Ws(cm):m i3+(_)_
= 2 ) 2
I m V| m
=m| B+22+3+... +| —-1| |[+—
2 16
('m m -
(5
2 2 m
=m +
2 16
m®+4m?
W,(C )=
5 (Cn) 64

3 4 2 3
rsz(c, )= [ moram’ |, A mt e2m? ] 1fm?
6 64 2 24 3| 8

2

5 4 3
Tsz(cm):m_+m_+5m L
384 48 96 24

Then substituting the equation in (5.4),

TSZ(P XC )_mZ |:n5+5n4+5n3'5n2'6n:|+n2|: m5 m4 5m3 m2 :|

120 384 48 96 24
n®-n\( m*+2m? n*-n?)(m? m® \( n®-n
+ + — |+2| —
6 24 12 8 8 6
3.2

TSZ(PHXCm):im2n5+im2n4+im2n3-£m2n +L men? + L men
120 24 18 360 384 24

+im4n3+ im“nz-im“mim:‘}n4 +im3n3-im3n.
144 48 144 96 24 24
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Example :2
P;: e ° ° Cyl vy V3
Uq DY) Us
Vi \p)
P; X Cy:
(u1,V1) (u1,V2) (u1;V3 (u1,V4)
" -
/\
(ug, v~ (o v)? (uz;V3).\‘.(U-2;V4)
/\
@ .
(u3;V1) (us;Vz) (u3;V3) (u4, V4)

Figure 5.5 Cartesian product of P; and C,

TSZ(Py X C4) = ==

(1) If mis odd then,
5 1 31

TSZ(P,xC, ):im2n5’+imzn“+—m2n3-—m2n2-—m2n+im5n2
120 24 144 16 720 384

AL e minze 2 menze L mtnte L mens L ment
384 48 192 144 144 96

1 .1 .1 .1 , 1
-——MmMn'+—mn -—mn" -—m~ n+—mn.
96 24 24 24 24
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Proof
Using corollary (5.2.4),

TSZ(P,xC, )=V (C, f TSZ(P,)+[V (P, ) TSZ(C, }+W(P, W, (C, )
#W, (P, )W(C, ) ¥2W (P, ) W(C,)

TSZ(Pn xC ) =m2TSZ(Pn )+n2TSZ(Cm )+W(Pn )W2 (Cm )
AW, (P, )W(C,, )+2W (P, )W(C,,) (5.5)

If m is odd then the wiener type invariant of cycle graph C,, is,

=m
2
m(m?-1
Wl(Cm): (8 )
m-1

=m

m-1
W, (C, )=m> ¢
i=1
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3
:m{13+23+...+[m—'1 }
2
-2
( m-lj( m-1 N 1)
2 2

64 2

24

5_om? m*(m?-1
rsz(c, )2 ﬂﬂ[ (m’-1)

5 4 3 2
TSZ(Cm):m—+m—+7m m- 15m

384 48 192 48 384
Then substituting the equation in (5.5),

n° +5n4 +5n3 _5n2 6n

Tsz(ancm):m{

L +n?
120 120 120 120 120}

m’,m’, 7’ m? 15m
1384 48 192 48 384

[l foe

2

TSZ(anCm):im2n5+imzn“+—mzns-imznz-ﬂmzmimf’n2
120 24 144 16 720 384
_&mn2+im4n2+i 2+ - 4n3__m4n+im3n4

384 48 192 144 144 96
-imn4 im3 3-imn3-—m3n+imn.
96 24 24 24 24

Example :3
P,

[ @ -

Uq Uz Uz
Cs: Vs

Vi V2
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P; X Cj:

(uy, v4) @(Upvg)
(uz, v1) UZ;VZ)’\(UZ»Vs)
=l N

(us,V1) (ussz (ug;Vg)

]

Figure 5.6 Cartesian product of P; and C;

TSZ(P; X C3) = %1

(iii) If m and n are even then,

TSZ(C,xC, ):imzn%im2n3+im2n4+im2n2+im5n2
384 16 48 12 384

Lt L min?e L minde L minte L mind,
16 48 192 192 32
Proof
TSZ(C,xC, )=|V(C,, ) TSZ(C,)*+|V(C, )| TSZ(C, )+W(C, )W, (C,,)
+W(C, )W, (C,)+2W(C, )W(C,)

TSZ(C,xC, )=m*TSZ(C, )+n?TSZ(C,, )+W(C, )W, (C,,)
AW(C,, )W, (C, )+2W(C, )W(C, ) (5.6)

Given m and are even,

m
Y (Cn)=g
m*+2m?
W, (Cp )= 24

5 4 3 2
TSZ(Cm):m_+m_+5m m
384 48 96 24
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Then substituting the equation in (5.6),

5 4 3 .2 5 4 3 )
TSZ(C,xC, )=m?| LI SN I e MO M, oM M
384 43 96 24| 384 48 96 24

i il b b

TSZ(C,xC, ):im2n5+im2n3+im2n“+im2n2+im5n2
384 16 48 12 384

+im3n2+im4n2+ im“n3+im3n4+im3n3.
16 48 192 192 32

CONCLUSION

In this dissertation, Basic concepts of graph theory and Introduction to
chemical graph theory have been discussed. Also Zagreb indices and Wiener coindices have been
explained and we have investigated their basic mathematical properties and obtained explicit formulae
for computing their values under several graph operations namely Cartesian product, Disjunction,
Composition, Tensor product and Normal product of graphs. Also studied the application of Tratch

Stankevich Zefirov index of C, nanotubes and nanotorus.
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