
© 2019 JETIR June 2019, Volume 6, Issue 6                                                              www.jetir.org (ISSN-2349-5162)  

JETIR1906V15 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 100 
 

Channel Estimation for Massive MIMO 

Communication Systems 

Based on Compressive sensing 
 
                                                         Ravikanth Sivangi 1, M. Vinod kumar reddy2 B. Shanker3,    

1 Asst. Prof., CVR College of Engineering, ECE Dept, Hyderabad 
2 Asst. Prof., CVR College of Engineering, ECE Dept, Hyderabad 
3 Asst. Prof., CVR College of Engineering, ECE Dept, Hyderabad. 

 

 

 

ABSTRACT Massive multiple-input multiple-output 

(MIMO) is believed to be a key technology 
 to get 1000x data rates in wireless communication systems. 

Massive MIMO occupies a large number of antennas at the 

base station (BS) to serve multiple users at the same time. It 

has appeared as a promising technique to realize high-

throughput green wireless communications. Massive MIMO 

exploits     the higher degree of spatial freedom, to extensively 

improve the capacity and energy efficiency of the   system. 

Thus, massive MIMO systems have been   broadly accepted 

as an important enabling technology for 5th Generation (5G) 

systems. In massive MIMO systems, a precise acquisition of 

the channel state information (CSI)is needed for 

beamforming, signal detection, resource allocation, etc. Yet, 
having large antennas at the BS, users have to estimate 

channels linked with hundreds of transmit antennas. 

Consequently, pilot overhead gets prohibitively high. Hence, 

realizing the correct channel estimation with the reasonable 

pilot overhead has become a challenging issue, particularly 

for frequency division duplex(FDD) in massive MIMO 

systems. In this paper, by taking advantage of spatial and 

temporal common sparsity of massive MIMO channels in 

delay domain,       non orthogonal pilot design and channel 

estimation schemes are proposed under the frame work of 

structured compressive sensing(SCS) theory that 
considerably reduces the pilot overheads for massive 

MIMOFDD systems.   

 

INDEX TERMS Compressive sensing, sparsity, CS 

acquisition strategies, random demodulator, CS 

reconstruction algorithms, MIMO, Massive MIMO. 

 
I. INTRODUCTION 

 

After the famous Shannon sampling theorem, introduction of 

compressive sensing (CS) is like a breakthrough in signal 

processing community. CS was introduced by Donoho, 

Candès, Romberg, and Tao in 2004. They have developed its 

mathematical foundation. CS is basically used for the 

acquisition of signals which are either sparse or compressible. 

Sparsity is the inherent property of those signals for which, 
whole of the information contained in the signal can be 

represented only with the help of few significant components, 

as compared to the total length of the signal. Similarly, if the 

sorted components of a signal decay rapidly obeying power 

law, then these signals are called compressible signals, refer 

Fig.1. A signal can have sparse/compressible representation 

either in original domain or in some transform domains like 

Fourier transform, cosine transform, wavelet transform, etc. 

A few examples  

of signals having sparse representation in certain domain are: 

natural images which have sparse representation in wavelet 

domain, speech signal can be represented by fewer 

components using Fourier transform, better model for 
medical images can be  

obtained using Radon transform, etc. Acquisition of sparse 

signals using traditional methods require: i) sampling using 

Nyquist-criterion, which results in too many samples 

compared to the actual information contents of the signal, ii) 

compressing the signal by computing necessary transform 

coefficients for all the samples, retaining only larger 

coefficients and discarding the smaller ones for 

storage/transmission purposes. Addressing the question 

``why to take too many samples, when most of them are to be 

discarded?'', CS simplifies the signal acquisition by taking far 

fewer random measurements. Fig.2 depicts the comparison 
between traditional sampling and CS sampling schemes. 

 
Another limitation of sampling using Nyquist-rate is that the 

rate at which sampling must be done, may not be practical 

always. For example, in case of multiband signals having 

wide spectral range, sampling rate suggested by Nyquist 
criterion 

may be orders of magnitude higher than the specifications of 

best available analog-to-digital converter (ADC). 

The sampling rate using Nyquist-criterion is decided by the 

highest frequency component present in signal, whereas, 

sampling rate in CS is governed by the signal sparsity. 

The CS measurements are non-adaptive, i.e., not learning 

from previous measurements. The resulted fewer 

compressive measurements can be easily stored or 

transmitted. 
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It gives an impression of compressing the signal at the time 

of acquisition only and hence the name `Compressive 

Sensing'. CS allows the faithful reconstruction of the original 

signal back from fewer random measurements by making use 

of some non-linear reconstruction techniques. Because of all 

these features, CS finds its applications especially in the areas 

i) where, number of sensors are limited due to high cost, e.g., 

non-visible wavelengths, ii) where, taking measurements is 

too expensive, e.g., high speed A/D converters, imaging via 

neutron scattering, iii) where, sensing is time consuming, e.g., 
medical imaging, iv) where, sensing is power constrained.  

 
II a) ACQUISITION MODEL 
 

CS works by taking fewer random measurements which are 
non-adaptive. The CS acquisition model can be described 

mathematically by (1) and is shown in Fig.3. 

  Y=ΦX                                       (1) 

where, x Є  Rn or Cn
 is an input signal of length n, Φ 

Є RmXn or CmXn an mXn  random measurement matrix and is y Є 

Rm or Cm is the measurement vector of length m. The Input 

signal and the random measurement matrix are multiplied 

together to generate compressive measurements. Here, the 

number of measurements taken are much lesser than the 

length of input signal, i.e., m < n. The size of measurement 

matrix and hence the number of measurements is proportional 
to the sparsity of input signal. To further reduce the number 

of measurements which are necessary for perfect 

reconstruction, the measurement matrix must be incoherent 

with basis in which signal has sparse representation. 
II b) . RECONSTRUCTION MODEL 
The CS reconstruction model is shown in Fig.3.  

The signal x can be represented as a linear combination of 

columns of   or the basis vectors as 

the sparse coefficient vector of length n, having fewer 

Signiant nonzero entries. The original signal can be recovered 

back from compressive measurements by solving (1), which 

is an underdetermined system of linear equations and have 

infinitive number of possible solutions. 

In such cases, the unique solution can be obtained by posing 
the reconstruction problem as an `l0-optimization problem 

given by (3). The `l0-optimization problem searches for 

asolution having minimum `0-norm subject to the given 

constraints. 

This is equivalent to trying all the possibilities to findthe 

desired solution. 

 

Although `l0 is not a proper norm, it is a pseudonorm or 

quasinorm, which represents the number of non-zero 

elements of a vector. Searching for a solution of (3) by trying 

all possible combinations is computationally extensive 

exercise even for a medium sized problem. Hence, `l0-
minimization problem has been declared as NP-hard. 

Alternates have been proposed in literature, which can obtain 

a solution similar to the `l0-minimization for the above 

problem, in near polynomial time. One of the options is to use 

convex optimization and searching for a solution having 
minimum `l1-norm, as given by (4). This is considered as a 

feasible option because solvers available from linear 

programming can be used for solving the `1-minimization 

problems in near polynomial time. 

 

The output of CS reconstruction algorithm is an estimate of 

sparse representation of x, i.e., Os. The estimate of x, i.e., Ox 

can be obtained from Os by taking its inverse transform. 

 

 
III. CS RECONSTRUCTION APPROACHES 

CS reconstruction algorithms try to find out the sparse 

estimation of the original input signal, from compressive 

measurements, in some suitable basis or frame or dictionary. 
A lot of research has been done on this aspect of CS, to come 

up with better performing algorithms. The research driving 

factors in this area are ability to recover from minimum 

number of measurements, noise robustness, speed, 

complexity, performance guarantees, etc. [8]. The CS 

reconstruction algorithms are mainly classified under six 

approaches, as shown in Fig.3 

This section summarizes the popular algorithms under each 

approach. 

 

 

 

 

 

IV. MASSIVE MIMO 

 

Multiple-input multiple-output (MIMO) systems have 

multiple antennas at both the transmitter and receiver ends. 

By addition of multiple antennas, higher degree of freedom in 

wireless channels (in terms of time and frequency 

dimensions) can be obtained in order to achieve target of high 

data rates. For this reason, major performance progress can be 

attained in terms of system reliability and both spectral and 

energy efficiency. And also such higher degrees of freedom 

can be exploited using beamforming given that channel state 

information is available. There are large number of antenna 

elements (around tens or even hundreds) deployed 
at both sides, the transmitter and receiver. It is important to 

note that the transmit antennas may be distributed or co 
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located in different applications. Also, the huge number of 

receive antennas can be acquired by one device or distributed 

to many dev ices[1,2].Additionally, massive MIMO systems 
help in minimizing the effects of noise and fast fading, and 

also intracell interference can be reduced using straight 

forward detection and linear precoding methods. By 

appropriately implementing multiuser MIMO(MU-MIMO) 

in massive MIMO systems, the design of medium access 

control (MAC) layer can be more simplified by getting rid of 

complicated scheduling algorithms. One of the major issues 

in massive MIMO systems is the accurate acquisition of the 

channel state information (CSI)for beamforming, resource 

allocation, signal detection, etc. Due to large antennas placed 

at the BS, the estimation of channels linked with hundreds of 
transmit antennas is required at users which results in high 

pilot over head. Hence, the precise channel estimation with 

the low pilot over head is a challenging task. 

CS is being a growing field and a wide variety of applications 

has benefeted from this sensing modality.  

 

 V. Massive MIMO Channel Estimation Based on 

Compressive Sensing  

 

The basic idea presented by CS theory is to recover a signal 

which is sparse in some domain from extremely small amount 

of nonadaptive linear measurements by applying convex 
optimization. In a different opinion, it relates the precise 

recovery of a sparse vector of high dimension by reducing its 

dimension. From another point of view, the problem can be 

considered as calculation of a signal’s sparse coefficient with 

respect to an over complete system. The concept of 

compressed sensing was primarily applied for random 

sensing matrices, which allow for a reduced amount of 

nonadaptive, linear measurements. These days, the idea of 

compressed sensing has been generally replaced by sparse 

recovery. 

For channel estimation purpose we propose the SUCoSaMP 
algorithm derived from basic CoSaMP as described in 

Algorithm1. There will be 𝑁𝑔 similar parallel processing 

required for estimating the massive MIMO channels with 𝑁𝑔 

sub-antenna groups; i.e., the same algorithm will be working 

simultaneously with user to estimate channels of𝑁𝑔 

subgroups. There are many natural approaches of stopping the 

algorithm. We follow the following stopping criterion: 

if‖𝑣𝑘+1‖2> ‖𝑣𝑠−1‖2, the iteration is stopped [39]. The 

information of correct sparsity level 𝑆𝑧,𝑚,𝑛 is usually not 
available and also it is practically not possible to have prior 

knowledge of correct sparsity level, whereas information 

about sparsity level plays a significant role in compressive 

sensing problem of solving underdetermined system and it is 

also required as prior information by most of the CS based 

algorithms. The proposed SUCoSaMP algorithm does not 

require prior information of sparsity level because it 

adaptively acquires the sparsity level and avoids the 

unrealistic assumption of having prior information of correct 

sparsity level. 
 
V. CHALLENGES AND FUTURE SCOPE 

 

CS has gained a wider acceptance in a shorter time span, as a 

sampling technique for sampling the signals at their 
information rate. CS takes the advantage of sparsity or 

compressibility of the underlying signal to simultaneously 

sample 

and compress the signal. CS has a strong mathematical 

foundation also. But, the increasing popularity and 

acceptability of CS faces some challenges. We are 

highlighting some of the challenges, which also leads to some 

working directions in the field. There is need for a simple and 

efficient, universal CS acquisition strategy which is 

applicable to majority of the signals and also leads to faster 

acquisition. Similarly, a universal CS reconstruction 
algorithm, which is faster, robust, less complex and gives 

guaranteed convergence is needed. Searching a suitable basis, 

in which signal to be acquired has sparsest possible 

representation, is itself a tough task. If one can identify the 

basis in which signal has the sparsest possible representation, 

then it will help in faithful reconstruction from further 

reduced CS measurements. So, a system needs to be 

developed, which can determine the sparsifying basis of 

signal. 

Development of rigorous performance bounds for the issues 

like minimum number of measurements and reconstruction 
iterations required for perfect reconstruction, guaranteed 

convergence, stable recovery, etc., are also workable areas in 

this field. Also, research is being going on structured CS. The 

advantages of this approach are faster acquisition, lower 

complexity, easier to implement, etc. But the drawbackis that 

the faithful reconstruction requires more number of 

measurements. Also, it is difficult to have structured 

measurement matrices which obey RIP condition. Some 

proposals of RIPless CS have also been seen in literature, 

which can be worked further to take advantages of structured 

measurements in CS. 

 

 VIII. RESULTS 

Simulations have been performed in MATLAB in order to 

verify the effectiveness of the proposed methods. Mean 

square error performance of proposed scheme is compared 

with the conventional OMP, CoSaMP, Structured Subspace 

Pursuit (SSP), and Adaptive Structured Subspace Pursuit 

(ASSP) algorithms. Simulation parameters are mentioned in 

Table 3 for the proposed system. The BS has 1D 1x128  

antenna array (𝑀 = 128). The system bandwidth and carrier 

frequency are set to 𝐵 = 20MHz and 𝑓𝑐 = 2GHz, respectively. 

There are 𝑁𝑔 = 8 sub-antenna groups with 
16 transmit antennas in each group to ensure the spatial 

channel sparsity within group. The OFDM subcarriers are set 

as 𝑁 = 2048, guard interval is 𝑁𝐺 = 16 which could fight the 

delay spread up to 6.4 𝜇𝑠, and 16QAM modulation is used. 

The numbers of pilot subcarrier 𝑁𝑝 in OFDM 

symbol transmitted by each antenna in each antenna group 

and channel length 𝐿 are varied over a reasonable range to 
verify the performance of the proposed system. The pilot 

positions are uniformly distributed according to (16) and are 

identical for the entire antennas within one group. The 

number of multipath channels is randomly chosen and the 

channel multipath amplitudes and positions follow Rayleigh 

and random distribution, respectively. 
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VII. CONCLUSION 

 

Introduction of CS has revolutionized many areas in signal 

processing, where there were limited scopes. Some of the 

major contributions are faster MRI, high quality image and 
video acquisition using single pixel camera, acquisition of 

UWB signals while drastically reducing the power 

consumption, etc. This paper has presented a systematically 

review of CS. Considering its rigorous mathematics, which is 

sometimes a barrier for many young researchers, we 

presented a simplified introduction of CS. For an easy 

transition from theory with practicality, a summary of CS 

acquisition techniques and reconstruction approaches has also 

been presented. The CS acquisition approach may vary from 

signal to signal. Similarly, the reconstruction approach to be 
used is also highly signal dependent, which may further need 

to be modified to suit a particular situation. It will be highly 

beneficial to have a universal CS acquisition and 

reconstruction strategy. A review of major application areas 

where CS is currently being utilized has also been presented. 
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