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Abstract: Nowadays we are used to perform many filtering 

tasks which in the not so distant past were performed 

almost exclusively by analog filters and are replacing the 

traditional analog filters in many applications. Along with 

the advantages, such as, high accuracy and reliability, small 

physical size and reduced sensitivity to component 

tolerances or drift, digital implementations helps to achieve 

certain characteristics not possible with analog designs such 

as exact linear phase and multirate operation. They are 

applied to very low frequency signals, such as those 

occurring in biomedical and seismic applications very 

efficiently. In addition, the characteristics of digital filters 

can be changed or adapted by simply changing the content 

of a finitenite number of registers, thus multiple filtering 

tasks can be performed by one programmable digital filter 

without the need to replicate the hardware. With the ever 

increasing number of applications involving digital filters, 

the variety of requirements that have to be met by them is 

increased. Consequently design techniques that are capable 

of satisfying sophisticated design requirements are 

becoming an impregnable necessity.  

 

Keywords-Pass band, Stop band ripples, PSO, Velocity 

formula. 

 

1. Introduction: 

A filter is a frequency selective circuit that allows a certain 

frequency to pass while attenuating the others. Filters could be 

analog or digital. Analog filters use electronic components such 

as resistor, capacitor, transistor etc. to perform the filtering 

operations. These are mostly used in communication for noise 

reduction, video/audio signal enhancement etc. In contrast, 

digital filters use digital processors which perform 

mathematical calculations on the sampled values of the signal 

in order to perform the filter operation. A computer or a 
dedicated digital signal processor may be used for 

implementing digital filters. Filters mostly find their use in 

communication for noise reduction, audio/video signal 

enhancement etc.  

Any time varying signal C=x(t) sampled at a sampling interval 

of h has input signals x0, x1, x2, x3,…………, xn in intervals 

0, h, 2h, 3h, ……….. , nh. These inputs have corresponding 

outputs y0, y1, y2, y3, …………, yn depending upon the kind 

of operation performed. Thus, the order of the filter is 

determined by the number of the previous input terms used to 

calculate the current output. The a0, a1, a2 terms appearing in 
the following equations are called the filter coefficients and 

determine the operation of the filter. These determine the 

characteristics of the filter. Various filter parameters which 

come into picture are the stopband and passband normalized 
frequencies (ωs, ωp), the passband and stopband ripple (δp) and 

(δs), the stopband attenuation and the transition width. This has 

been shown in Fig. 1. 

 

 

 
Figure 1. Illustration of filter parameters. 

 

2. Related Work: 

Several investigators have attempted to adapt PSO parameters 

in response to information from the environment. Techniques 

from evolutionary computation and other methods have been 

borrowed by particle swarm researchers as well. 

Angeline [2] produced one of the first intentionally hybridized 

particle swarms. In his model, selection was applied to the 

particle population; “good” particles were reproduced with 
mutation, and “bad” particles were eliminated. Angeline’s 

results showed that PSO could benefit from this modification. 

Miranda and Fonseca (2002) borrowed an idea from evolution 

strategies. In that paradigm, points are perturbed by the addition 

of random values distributed around a mean of zero; the 

variance of the distribution is evolved along with function 

parameters. Those researchers used Gaussian random values to 

perturb χ, φ1, and φ2, as well as the position of the 

neighborhood best—but not the individual best—using 

selection to adapt the variance. The evolutionary self-adapting 

particle swarm optimization method, a hybrid of PSO and 

evolutionary methods, has shown excellent performance in 
comparison to some standard particle swarm methods. Miranda 

has used it for the manufacture of optical filters as well as in the 

optimization of power systems (Miranda and Fonseca 2002). 

Loøvbjerg et al. (2001) use “breeding”, borrowed from genetic 

algorithms, in a recent particle swarm study. Some selected 
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particles were paired at random, and both positions and 

velocities were calculated from weighted arithmetic averages of 

the selected particles’ parameters. Those researchers also 

divided the particle swarm into subpopulations in order to 

increase diversity, with some probability that individuals would 

breed within their own subpopulation or with a member of 
another. Results were encouraging, though the model as 

reported was not clearly superior to standard PSO or GA. 

Wei et al. (2002) took a different tack, embedding velocity 

information in an evolutionary algorithm. They replaced 

Cauchy mutation with a version of PSO velocity in a fast 

evolutionary programming (FEP) algorithm, to give the FEP 

population direction. Their published results indicate that the 

approach is very successful on a range of functions; the new 

algorithm found global optima in tens of iterations, compared 

to thousands for the FEP versions tested. 

Robinson et al. (2002), trying to optimize a profiled corrugated 
horn antenna, noted that a GA improved faster early in the run, 

and PSO improved later. As a consequence of this observation, 

they hybridized the two algorithms by switching from one to 

the other after several hundred iterations. They found the best 

horn by going from PSO to GA (PSO-GA) and noted that the 

particle swarm by itself outperformed both the GA by itself and 

the GA-PSO hybrid, though the PSO-GA hybrid performed best 

of all. It appears from their result that PSO more effectively 

explores the search space for the best region, while GA is 

effective at finding the best point once the population has 

converged on a single region; this is consistent with other 

findings. 
Krink and Loøvbjerg (2002) similarly alternated among several 

methods, but they allowed individuals in a population to choose 

whether to belong to a population of a genetic algorithm, a 

particle swarm, or to become solitary hill-climbers. In their self-

adaptive search method, an individual changed its stage after 50 

iterations with no improvement. The population was initialized 

as PSO particles; the “LifeCycle” algorithm outperformed all 

three of the methods that comprised it. Krink and Loøvbjerg’s 

graphs show interesting changes in the proportion of 

individuals in each state for various problems. 

A hybrid between a PSO and a hill-climber was proposed by 
Poli and Stephens (2004) who considered swarms of particles 

sliding on a fitness landscape rather than flying over it. The 

method uses particles without memory and requires no book-

keeping of personal best. Instead it uses the physics of masses 

and forces to guide the exploration of fitness landscapes. Forces 

include: gravity, springs, and friction. Gravity provides the 

ability to seek minima. Springs provide exploration. Friction 

slows down the search and focuses it. 

Clerc’s recent experiments (Clerc 2006b) have shown that 

adaptation of the constriction factor, population size, and 

number of neighbors can produce improved results. His studies 

found that best performance were obtained when all three of 
these factors are adapted during the course of the run. Clerc 

used three rules: (a) Suicide and generation: a particle kills itself 

when it is the worst in its neighborhood and generates a new 

copy of itself when it is the best; (b)Modifying the coefficient: 

good local improvement caused an increase in the constriction 

coefficient, while poor improvement caused its decrease; (c) 

Change in neighborhood: the locally best particle could reduce 

the number of its neighbors, while poorly performing particles 

could increase theirs. Adaptive changes were not made on every 

iteration, but only occasionally. 

 

3. Methodology: 
Particle Swarm Optimization (PSO) is an evolutionary 

computation technique, which is inspired by flocks of birds and 

shoals of fish (Kennedy and Eberhart, 1995). In PSO, a number 

of simple entities ( the particles) are placed in the space of some 

problem and each evaluates its fitness as its current location. 

Each particle determines its movement through the space by 

considering the particle which had the best fitness and the 

history of its own, then it moves with a velocity. Finally, the 

swarm is likely to move close to the best location. The velocity 

and position of each particle is adjusted by the following 

formulas: 

Vid=w×Vid+c1×rand()×(Pid-Xid) +c2×Rand()×(Pgd-Xid)   (1) 

Xid= Xid+Vid           (2) 

 

where c1 and c2 are termed the cognitive and social learning 

rates. These two parameters control the relative importance of 

the memory of the particle itself to the memory of the 

neighborhood. The variable rand() and Rand() are two random 

functions that is uniformly distributed in the range [0,1]. Xi = 

(Xi1, Xi2, … , XiD) represents the ith particle. Pi = (Pi1, Pi2, 

…, PiD) represents the best previous position of the ith particle. 

The symbol g represents the index of the best particle among all 
the particles. Vi = (Vi1, Vi2, … , ViD) represents the velocity 

of the ith particle. Variable is the inertia weight. The general 

process of PSO is as follows. 

Calculate fitness of particle 

Update pbest if the current fitness is better than pbest 

Determine nbest for each particle: choose the particle with the 

best fitness value of all the neighbors as the nbest 

For each particle Calculate particle velocity according to (1) 

Update particle position according to (2) 

While maximum iterations or minimum criteria is not attained 

Since the introduction of the PSO algorithm, several 
improvements have been suggested. In 1998, inertia weight was 

first proposed by Shi and Eberhart [11]. The function of inertia 

weight is to balance global exploration and local exploitation. 

In the following year, Clerc proposed the constriction factors to 

ensure the convergence of PSO [12]. Eberhart and Shi 

compared inertia weight with constriction factors and found 

that the constriction factors was better convergence than inertia 

weight [12]. 

In DAPSO2, if there were many particles far away from the 

global best position, then the velocities should be given a larger 

value. If there were many particles near from the global best 

position, then the velocities should be given a smaller value. 
DAPSO1 only adjusts the velocity of the certain particle, but in 

DAPSO2, the velocities of all particles are adjusted together.  

The general flow of DAPSOs and the flowchart of DAPSO are 

shown as follows. 

Step 1. Initialization of a population of particles with random 

positions and velocities 

Step 2. Evaluation of particles. 
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Step 3. Calculate the distance from each particle to the global 

best position and save the farthest distance in the memory. 

Step 4. Adjust particle’s velocity according to its distance from 

itself to the global best position. 

Step 5. Update particle’s position by the adjusted velocity. 

Step 6. Repeat Step.2~Step.5 until termination criteria are met. 
 

The frequency response of the FIR digital filter can be 

calculated as, 

H(ejwk)=∑ ℎ(𝑛)𝑒 − 𝑗𝑤𝑘𝑛𝑁
𝑛=0                      (3) 

 

Where 𝜔k =
2𝜋k

𝑁
; H(ejwk) is the Fourier transform complex vector. 

This is the FIR filter’s frequency response. The frequency is 

sampled in [0, π] with N points. Different kinds of error fitness 

functions have been used in different literatures. An error 

function given by (3) is the approximate error used in PM 
algorithm for filter design [13]. 

E(w)=G(w)[Hd(ejw)- Hi(ejw)]                  (4) 

 

where Hde(jω) is the frequency response of the designed 

approximate filter; Hie(jω) is the frequency response of the ideal 

filter; G(ω) is the weighting function used to provide different 

weights for the approximate errors in different frequency bands. 

For ideal LP filter, Hie(jω) is given as, 

  Hi(ejw) =  1 for 0≤  𝜔 ≤ 𝜔c ; (5) 

  0  otherwise 
where ωC is the cut-off frequency. The major drawback of PM 

algorithm is that the ratio of δp/ δs is fixed. To improve the 

flexibility in the error function to be minimized, so that the 

desired level of δP and δS may be specified, the error function 

given in (5) has been considered as fitness function in many 

literatures [14] [15]. The error fitness to be minimized using the 

evolutionary algorithms, is defined as: 

J3=max(|E(𝜔)|-𝛿P)+ max(|E(𝜔)|-𝛿S)                 (6) 

   𝜔≤𝜔P                          𝜔≥𝜔S 

 
where δP and δS are the ripples in the pass band and stop band, 

respectively, and p ω and s ω are pass band and stop band 

normalized cut-off frequencies, respectively. Since the 

coefficients of the linear phase positive symmetric even order 

filter are matched, the dimension of the problem is halved. This 

greatly reduces the computational burdens of the algorithms. In 

this paper, a novel error fitness function given by (5) has been 

adopted in order to achieve higher stop band attenuation and to 

have better control on the transition width. By using (6), it is 

found that the proposed filter deign approach results in 

considerable improvement over the PM and other optimization 

techniques. 

J4=∑ 𝑎𝑏𝑠[𝑎𝑏𝑠(| Hd(w) |-1)-𝛿p]+ ∑[𝑎𝑏𝑠(| Hd(w) |-𝛿s]    (7) 

 

For the first term of (7), ω ∈pass band including a portion of the 

transition band and for the second term of (3.68), ω ∈stop band 

including the rest portion of the transition band. The portions of 

the transition band chosen depend on pass band edge and stop 

band edge frequencies. 

 

4. Result and Discussion: 

In this section we have presented the simulations results 

performed in MATLAB for the design of FIR LP filter. The 

filter order (N) is taken as 20, which results in the number of 

coefficients as 21. The sampling frequency is taken to be fs = 

1Hz. The number of frequency samples is 128. Each algorithm 

is run for several times to obtain its best results. 
 

PSOP1 is classical method named as P1. 

PSOP2 is modified diversity control, dynamic& adjustable pso 

algorithm. 

These  algoritm are applied to get optimized solution of filter 

design. We have used four test function named as J1 J2 J3 J4.  

The parameters of the filter to be designed using the NPSO 

are: pass band ripple 𝛿P = 0.1, stop band 

ripple 𝛿s = 0.01. For the LP filter, pass band (normalized) edge 

frequency ωp= 0.45; stop band 
(normalized) edge frequency ωs = 0.55; transitiowidth=0.1. 

The filter has order 20. 

The parameters that are selected for pso algoritm are given 

Populationsize-75, 

iterationcycle =500,C1=2.05,C2=2.05, 

Vimin=0.01,Vimax=1.0, 

Wmax=1.0,Wmix=0.4, 

Z=100, 

We have taken both PSO algorithm PSOP1 & PSOP2 one by 

one for above mentioned filter parameters. The response are 

represented in term of four kind of plots. These plots are 
Convergence plot of PSO, Impulse response of filter, 

normalized frequency response & magnitude response of filter.    

 

(a) Convergence plot-This plot is drawn in term of error 

value(cost) versus no. of iterations. for a good optimization 

method, this plot monotonically decreases & after a particular 

iteration, it become saturated. Lower the no. of iteration 

indicates, higher the speed of convergence of optimization 

technique. We have taken 500 iteration in above PSO 

algorithm. 

 

(b) Impulse Response-In this plot we are presented filter 
coefficient with respect to their weight in filter design 

differential equation.Since we have used a filter order of 

20,there are 21 samples of filter coefficient.This plot is in 

between h(n) versus n. 

 

(c) Normalized frequency Response-This plot is the 20log of 

the fourier transform of h(n).It indicates normalized 

frequency.It is in between 20log|H(j𝜔)|db versus f Hz.In this 

plot we have also shown pass band & stop band ripples 

additionally. 
 

(d) Magnitude Response-This plot represents pass band & 

stop band magnitude & ripples.It is in between   H(j𝜔) & 

frequency. 

In both plot (c) & (d)  X axis is frequency,since we have taken 

fs as 1,that is why the frequency on X- axis from 0 to 1. 

 

4.1.  Case1- 
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The PSO approach is PSOP1 and the test functions are 

J1,J2,J3,J4 taken one by one in this case & their results are 

discussed below. 

(A) PSO=PSOP1,Test function=J1   

The figure 1 shown below represents the result better obtain 

after running simuiation for several times but here shown only 
best 1. 

Figure 2(a)-It is convergence plot .In this figure we can see that 

error or cost function. Y-axis represents error in desired 

response. This error reduces as the no. of iteration increases. 

Initially the error is 3.5.After 400 iteration it is almost 

converges to zero. In this case we found error in between 

response obtain by PM algorithm & our desired response. This 

case is only to check the performance of our PSO technique. In 

fig 2(b),there are impulse response of both hpm  & hp1 ,where hpm 

is desired response obtained on applying PSOP1& hp1is 

optimized response obtained by PSOP1.However there are two 
plots of hpm[n] & hp1[n] but since our PSO has completely 

superimposed on desired response, so we are getting only single 

plot. 

This has occurred because in J1 test function we did not take 

any constraints on pass band & stop band. This indicates that 

PSO algorithm is capable of giving similar results as given by 

PM algorithm. Similar results are also found for figure 2(c) & 

2(d). 

We can see that Gain is high near about 0db or 1 for frequency 

less than 0.45 that is our passband in fig 2(c) & fig 2(d). 

Stop band is obtained after 0.55Hz in both figure. The middle 

plot of figure 2(c) represents stop band ripples. These stop band 
ripples range is 0.05.We want to get the stop band in range of 

0.01. 

Since the PM algorithm cannot minimize the result but in 

further cases we will minimize the result using constraints over 

the stop band for getting the optimized solution closer to ideal 

filter response. 

Table 1 shows value of filter coefficients obtain by PM 

algorithm. Since we have taken order of 20, due to this h(1) to 

h(10) is replicated as h(12) to h(21). 

 
Fig1(a): Converge plot for PSOP1 and test function J1 

 
Fig 1(b): Impulse response for PSOP1 and test function J1 

 
Fig 1(c): Normalized frequency response(dB)for PSOP1 

and test Function J1, (above)  passband, (below)  

stopband, Black-PM, Blue- PSOP1 

 

 

 
 

Fig 1(d): Magnitude response for PSOP1 and test function 

J1, Black-PM, Blue- PSOP1 

 

Table 1: value of filter coefficients 
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1 h(1) 0.0000 

2 h(2) 0.0481 

3 h(3) -0.0000 

4 h(4) -0.0369 

5 h(5) -0.0000 

6 h(6) 0.0573 

7 h(7) -0.0000 

8 h(8) -0.1022 

9 h(9) -0.0000 

10 h(10) 0.3170 

11 h(11) 0.5001 

 

5. Conclusion: 

In this work we have presented an optimal design of linear 

phase digital low pass finite impulse response (FIR) filter using 

Dynamic and Adjustable Particle Swarm 

Optimization(DAPSO) . DAPSO is an improved particle swarm 
optimization (PSO) that proposes a new definition for the 

velocity vector and swarm updating and hence the solution 

quality is improved. The distance from each particle to the 

global best position is calculated in order to adjust the velocity 

suitably of each particle. It is revealed that DAPSO has the 

ability to converge to the best quality near optimal solution and 

possesses the best convergence characteristics in much less 

execution times among the algorithms. The simulation results 

clearly indicate that DAPSO demonstrates the best performance 

in terms of magnitude response, minimum stop band ripple and 

maximum stop band attenuation with the narrowest transition 

width. It can be used as a good optimizer for obtaining the 
optimal filter coefficients in any practical digital filter design 

problem of digital signal processing systems. 
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