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Abstract :  Mining massive and high-speed data streams among the main contemporary challenges in now days. This calls for 

methods displaying a high computational efficacy, with ability to continuously update their structure and handle ever-arriving big 
number of instances. In this work, we present a new distributed classifier based on the popular nearest neighbor concept. This 

method includes a technique to perform a search operation with the help of keyword. Additionally, we propose an efficient 

incremental instance selection method for massive data streams that continuously update and remove outdated examples from the 

case-base. This alleviates the high computational requirements of the original classifier, thus making it suitable for the considered 

problem. Experimental study conducted on a set of real-life massive data streams proves the usefulness of the proposed solution 

and shows that we are able to provide the first efficient nearest neighbor solution for high-speed big and streaming data. 

 

IndexTerms – Nearest Neighbor, Data streams, Keyword Search. 

I. INTRODUCTION 

The massive volume of information gathered by contemporary systems became omnipresent, as many research activities require 

collecting increasingly huge amounts of data. For instance, Large Hadron Collider experiments1 generates 30 peta bytes of 
information per year. Potential applications for massive data analysis techniques could be found in each human activity domain. 

Enterprises would like to discover interesting client behavior characteristics, e.g., on the basis of sensor or Internet data. Works on 

personalized medical treatment for individual patients based on his/her clinical records, such as medical history, genomic, 

cellular, and environmental data may serve as another example. We are surrounded by enormous volumes of data arriving 

continuously from different sources. Therefore, one may say that we are living in the big data era. Big data is usually 

characterized by the so-called 5V’s (volume, velocity, variety, veracity, and value), describing its massive volume, dynamic 

nature, diverse forms, different qualities, and usefulness for human beings. In many cases we do not deal with static data 

collections, but rather with dynamic ones. They arrive in a form of continuous batches of data, known as data streams. In such 

scenarios, we need not only to manage the volume but also the velocity of data, thus constantly updating and adapting our 

learning. To add a further difficulty, many modern data sources generate their outputs with very short intervals, thus creating the 

issue of high-speed data streams. Massive data must be explored efficiently and converted into valuable knowledge which could 
be used by enterprises (among others) to build their competitive advantage. 

               However, there exist a considerable gap between contemporary processing and storage capacities, which demonstrates 

that our ability to capture and store data has far outpaced to process and utilize it. Moore’s law says that processing capacity 

double every 18 months, while disk storage capacity doubles every 9 months (storage law). This leads to creation of the so-called 

data tombs, i.e., volume of data which are stored but never analyzed. Therefore, we have to develop dedicated tools and 

techniques which are able to mine enormous volumes of incoming data, while additionally taking into consideration that each 

record may be analyzed only once to reduce the overall computing costs. 

 

 

II. LITERATURE REVIEW 

 

 “Data mining with Big Data” 

Wu.zhu[19] and every in this paper have discussed concept of big data related terms and sources of data. They presented HACE 

theorem to characterize the features of big data. Depending on these features big data processing model deigned which deals with 

data mining. One more model is developed for aggregation of information from distributed sources. Paper doesn’t include 

algorithms for processing a data rather it consider the challenges in big data and analyze the issues.  
 

 “Scalable Nearest Neighbor Algorithm For High Dimensional Data” 

Muja and Lowe[22] , has developed to new algorithms namely randomized  k-d forest and priority search means tree to find 

nearest neighbor matches to high dimensional vectors in training data, as well as, In this paper distributed nearest neighbor 

matching framework is used for algorithms to work on large datasets paper address an issue related to scaling very large size data 

sets. 

 

 “Nearest Keyword Set Search in Multi-Dimensional Datasets” 

Singh , Zong[36] and every in paper “Nearest Keyword Set Search in multi-dimensional Datasets” considered objects which are 

tagged with keywords. They have proposed a method called ProMish. Which uses random projection and hash based structures. 

The algorithm implemented hase is go time speedup over tree based technique. ProMish has provided solution for top-k nearest 

keyword set search in multi-Dimensional datasets. Totally based on index in which ProMish finds optimal subset of points and 

ProMish- A search near optimal results. 
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 “Fuzzy Based Scalable Clustring Algorithms For Handling Big Data Using Apache Spark” 

Bharill , Tiwari[37] and every in this paper concerned clustering framework by Apache spark and developed algorithm scalable 

Random sampling with iterative optimization Fuzzy C-means which implemented on Apache Spark cluster. This algorithm 

handles challenges in big data clustering. The algorithm basically works on strategy of dividing data into chunks and then process 

the data points within the chunks in parallel. The author focused on big data processing in terms of clustering.   

 

 

 Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark 

Krawczyk , Garcia[40] and every in the paper ‘Nearest Neighbor Classification for High-Speed Big Data Streams Using Spark’ 

has given approach incremental and distributed classifier for mining massive and high speed data strems, they have provided 

solution using Apache Spark which includes DS-RNGE solution for processing massive streams. The DS-RNGE includes 

instance selection technique to improve performance by allowing insertion of correct example and removes outdates ones. 

III. METHODOLOGY 

The Methodology can be seen by fallowing Architectural Designed for Insertion of new arriving element in database.The first part 

shows how top tree is built. Ex. In first initialization there are two partitions e1 and e2 called partition -1 and partition -2 

respectively. In the next step suppose a new data element arrived called as e3 then decision needs to be taken where to insert this 

newly arrived element. The nearest neighbor search is performed at top tree then it’s been decided weather to root that element to 
left or to right partition of root i.e Top Tree. The Nearest neighbor algorithm gives result for insertion of a newly arrived element. 

At the end element is inserted to nearest neighbor partition. Whenever a new data arrives its first compared with top tree. 

 

                   

      Figure: Architectural View 

There are a lot of use cases for a system described in the introduction, but the focus of this post will be on data processing – more 

specifically, batch processing. Batch processing is an automated job that does some computation, usually done as a periodical job. 

It runs the processing code on a set of inputs, called a batch. Usually, the job will read the batch data from a database and store the 

result in the same or different database. Dataset D, Maximum Iterations Imax, L list of n elements with records, T Target value. 

IV. RESULT 

The project work can only be seen by analyzing the results. Here in Fallowing results aggregated based on number of files 

keywords with search time of keyword. The Lines with the blue showing graph for Document search and the line with black 

showing result for Image search. In the above graph, Initial result are generated as per number of files and time. Initially we have 

added of files to our database, the files are document as well as Image files there is an Hike in graph after insertion of 10-20 files. 
In the next step, we again have made insertion of few more file. Now, we can observe there is hike in graph between 20 to 30 the 

graph is decreased. For document search the same observations carried out for image search. 
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                                   (a)                                                                                  (b) 

 

      (c) 

Finally we can make a conclusion that even though the files are incremented, after a peak point we are getting constant search 

time for document as well as Image search, in spite of increase in number of files. 
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In this paper, we propose an efficient nearest neighbor solution classify high-speed and   massive data streams. Our algorithm 

consists of a distributed case base and an instance selection method that enhances its performance and effectiveness. A distributed 

metric tree has been designed to organize the case-base and consequently to speed up the neighbor searches. This distributed tree 

consists of a top-tree that routes the searches in the first levels and several leaf nodes that solve the searches in next levels through 
a completely parallel scheme. Performance is further improved by a distributed edition-based instance selection method, which 

only inserts correct examples and removes the noisy ones. Up to the best of our knowledge, this is the first lazy learning solution 

in dealing with large-scale, high-speed, and streaming problems. 

 

CONCLUSION 

 

we presented  a new incremental and distributed classifier based on the popular nearest neighbor algorithm, adapted to such a 

demanding scenario. This method, includes a distributed metric-space ordering to perform faster searches. Additionally, we 

propose an efficient incremental instance selection method for massive data streams that continuously update and remove 
outdated examples from the case-base. In many cases we do not deal with static data collections, but rather with dynamic ones. 

They arrive in a form of continuous batches of data, known as data streams. In such scenarios, we need not only to manage the 

volume but also the velocity of data, thus constantly updating and adapting our learning. To add a further difficulty, many modern 

data sources generate their outputs with very short intervals, thus creating the issue of high-s peed data streams. 
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