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l. Introduction
The first fundamental result of fixed point theory is Banach contraction principle, which introduced in 1922 by Banach [1] as the

following theorem:-

Theoreml. Let (X, d)be a complete metric space and let T: X — Xbe Banach contraction mapping, if there exist a constant a €
[0,1) such that
d(Tx,Ty) < ad(x,y), forall x,y € X.
Then T has a unique fixed point. It is one of the famous and traditional theorems in modern mathematics which is widely applied
in many other branches of science and applied science.
In 1968 and 1969, Kannan [2, 3] introduced the concept of Kannan mappings as follows:-Theorem2. Let (X, d)be a complete
metric space and let T: X — Xbe Kannan contraction mapping, if there exist a constant b € [0, %) such that
d(Tx,Ty) < a[d(x,Tx) +d(y, Ty)], forall x,y € X.
Then T has a unique fixed point.
Chatterjea [4], introduced the concept of chatterjea contraction mapping in 1972, as follows:-
Theorem3. let T: X — Xbe Chatterjea contraction mapping on complete metric space (X, d) and if there exist a constant ¢ € [0, é)
such that
d(Tx,Ty) < c[d(x,Ty) + d(y,Tx)] , forall x,y € X.
Then T has a unique fixed point.
In 1972, Zamfirescu [5], Introduced the concept of Zamfirescu mapping as follows:

Theorem4. Let (X, d)be a complete metric space and let T: X — Xbe a Zamfirescu contraction mapping, if there exist a constant
a€[0,1),p€ [0, %) andy € [0, é) such that at least one of the following conditions is true.
(z) d(Tx, Ty) < ad(x,y),

(z,) d(Tx,Ty) < B[d(x,Tx) + d(y,Ty)],
(z3) d(Tx,Ty) < y[d(x,Ty) + d(y,Tx)], forall x,y € X.
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Then T has a unique fixed point. In The same way, this principle have studied and generalized by several authors in various
directions in the same literature.

The notion of Cone metric spaces was introduces in 2007 byHuang and Zhang [6] , which is generalization of metric space. He
replaced real number system by ordered Banach space and showed some fixed point theorems of different type of contractive
mappings on cone metric spaces. Subsequently, many authors generalized and studied fixed and common fixed point results in
cone metric spaces for normal and non normal cone see for instance ([7-32]). Afterwards, Subramanyan [33] gave introduced and
called Banach operator of type k and obtained the fixed point in complete metric space. Recently, Chen and Li[34] extended the
concept of Banach operator of type k to Banach operatoe pair and proved various best approximation results using common fixed
point theorems for f- non expansive mappings. Al-thagafi and Shahzad[35] and Hussain [38] generalized the results of Chen and
Li[33]. In [36], authors have proved some common fixed point theorems for a Banach pair of mapping satisfying T-Hardy Rogers
type contraction condition in cone metric spaces. In sequel, Ozturk and Basarir [40], proved some common fixed point theorems f-
contraction mappings in cone metric spaces without the assumption of normality condition of the cone. In 2014, Dubey et al. [39]
generalized the results of [36] and proved some common fixed point theorems for generalized T-Hardy Rogers contraction
condition in cone metric spaces to the case of Banach operator pair. In sequel, Raghvendra et al. [37] have proved common fixed
point theorems for two Banach pairs of mapping which satisfying contraction conditions in cone metric spaces.

The aim of this paper is to prove common fixed point theorems for two Banach pair of mappings which satisfying contraction

conditions in cone metric spaces, which is generalization of results of [27,41]by assumption of normality condition of the cone.
1. PRELIMINARY NOTES
First, we recall some standard notations and definitions which we needed them in the sequel.

Definition 2.1([6]): Let E be a real Banach space and P be a subset of Eand Odenote to the zero element in E, then P is called a

cone ifand only if :

(i) P isanon-empty set closed and P # { 0},

(if) If a, b are non-negative real numbers and x,y € P,then ax + by € P,
(i) xePand —x€P=x=0< PN(-P) = {0}.

Given a cone P c E, we define a partial ordering < on E with respect to P by x < y ifand only if y —x € P.We shall write x < y
if y —x € intP(where int P denotes the interior of P). If intP # @, then cone P is solid. The cone P called normal if there is a

number K > 0 such that for all x,y € E,
0<x=<y=>lxlI<klyl
The least positive number k satisfying the above is called the normal constant of P.

Definition: 2.2([6]): Let Xbe a non-empty set. Suppose E is a real Banach space, P is a cone with intP # @ and < is a partial

ordering with respect to P.If the mapping d: X X X — E satisfies
(i) 0<d(x,y)forallx,y € X and (x,y) = Oifand only if x = y,
(i) dCc,y)=dy,x)forallx,y € X,

(il) d(x,y) <d(x,z) +d(z,y)forallx,y,z € X.

JETIR1906Z06 ‘ Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 44


http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

Then d is called a cone metric on X, and (X, d) is called a cone metric space .The concept of cone metric space is more general
than that of a metric space.

Example2.3: Let E = R%,P = {(x,y) € E:x,y = 0}, X = Rand d: X X X - E defined by d(x,y) = (|x—y|,a|x—y|),where

a > 0 is a constant. Then (X, d) is a cone metric space.
Definition: 2.4([20]): Let (X, d) be a cone metric space, x € X and {x, },,»1 be a sequence inX. Then,

1) {x, }n=1 Converges to x whenever for everyc € E with 8 « ¢, if there is anatural Number N such
That d(x,,x) < c forall n = N. We denote this by lim,,_,x,, = xorx, > x,(n - o)
2 {x, }n=11S Said to be a Cauchy sequence if for every ¢ € E with 8<< c,if there is Natural number N such
that d (x,,, x,,,) < c foralln.m > N.
3) (X, d) is called a complete cone metric space if every Cauchy sequence in X is Convergent.
Definition 2.5: A self mapping T of a metric space (X, d) is a said to be contraction mapping. If there exist a real number 0 < k <
1 such that for all x,y € X.
d(Tx,Ty) < kd(x,y).
The following definition is given by Beiranvand et ai. [16].
Definition: 2.6([42]): Let T and f be any two self mapping of a metric space(X, d). The self mapping f of X is said to be T-
contraction, if there exist a real number 0 < k < 1 such that
d(Tfx,Tfy) < kd(Tx,Ty) forall x,y € X.
If T= I, the identity mapping, then the definition 2.6 reduce to Banach contraction mapping.
Example 2.7: Let X = [0, c0)be with the usal metric. Let define two Mappings T, f: X — Xas
fx=pBx,>1
Tx = :—z,a € R.

It is clear that, f is not contraction but f is T- contraction, since

d(Tfx,Tfy) <

X —_—

o 1
o "l 51T =Tyl

Definition 2.8 ([42]): Let(X, d) be a metric space, and let T : X — X be self mapping in X. Then

i) A mapping T is said to be sequentially convergent if the sequence {yn} in X is convergent whenever
{Ty:} is also convergent.

i) A mapping T is said to be sub sequentially convergent, if {y,} has whenever {Tyn} is Convergent.

Definition 2.9([33]): Let T be a self mapping of a normed space X. Then T is called a Banach operator of type Kk if

[IT?x — Tx|| < k||Tx — x||, for some k = 0 and for allx € X.

This concept was introduced by Subrahmanyam|[33], then Chen and Li[34]extended this as following:

Definition 2.10([34]): Let T and f be any two self mapping of a non empty subset M of a normed space X. Then(T, f) is a Banach

operator pair, if any one of the following conditions is satisfied:

(). T(F(f) € F(f) i.e F(f) is T-invariant.

(ii). fTx = Tx for each x € F(f).

(iii). fTx = Tfx for each x € F(f).

(iv). ITfx — fx|l < kllfx — x|| for some k = 0.

Remark 2.11([16]): If ¢ € intP,0 < a,, and a,, = 0, then there exist n, such that a,, « c for all

n>n,.

. Main Results.
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In 2018, Petwal and Dimri proved [41] the following theorem:
Theorem 3.1: Let T and f be two continuous self-mappings of a complete cone metric space (X,d). Assume that T is an injective
mapping and P is a normal cone with normal constant. If the mappings T and f satisfying

d(TPfx,TPfy)< ald(TPx,TP fx)+d(TPy,TPfy)] (3.1)
for all x, y € X, where p is a positive integer and a€(0,1/2). Then f has a fixed point in X. Moreover, if (T, f) is a Banach pair,

then T and f have unique common fixed point in X.
Next we generalize and extend this theorem in cone metric spaces as the theorems 3.2, 3.3, 3.4 &3.5.
Theorem 3.2: Let (X, d)be cone metric spaces and let T, T;, T,: X — X be any three continuous self mappings on X. Assume that
T is an injective maps and P is a normal cone with normal constant. If the mapping T, T, and T, satisfy the condition
d(TPTyx, TPTyy) < A[d(TPx, TPTyx)+ d(TPy, TPTy)]... oo, (3.2.1)
for allx, y € X where p is a positive integer and «€ [0,%). Then T; and T,have an unique common fixed point in X. Moreover, if
(T, T, ) and (T, T, ) are Banach pair, then T, T; and T, have a unique common fixed point in X.
Proof: Let x, be an arbitrary point in X. We define the iterative sequence{x,,} and {x,,.1}by
Xomsr = TiXon = Ty Kge oot e (3.2.2)
and
Xonsz = ToXone1 = T 2 g oo (3.2.3).
Then from (3.1.1) we have
A(TPx3n41,TPx2,) = A(TPTy X3, TPT, X0_1)
< A[d(TPx5, TPTy%0) + (TP X301 TP TyXpp_1)]
< (TP TPXgn11) + d(TPXon_1, TP%z0)]

IA

So, d(TPx3n41,TPX2,) 1f_)1 d(TPxn_1,TPx5y)
SLA(TPxyn, TP Xy 1) e (3.2.4)
Where = =L < 1.
1-1
In general, by induction we have
A(TPxy041TPx20,) < LA(TPX50,TPXpp 1) Seoviiiiiiiiniins, <L?"d(TPx, T?x,), for n > 0.

So, for m,n € N with n > m we have

d(TPXpn, TPXpm) <A(TPXpn TPXpn_1) + d(TPXop-y TPXpn_3) +..occtd(TP X1 TPXm)

ST H L2 4 e+ LA (TP, TPxy),
e TEAE 2% L2 S YOS (3.25)
Since P is normal cone with normal constant, so by (3.1.5) we get
1A (TP 00, TPl <2 1A (TP, TP (3.2.6)

Since ke (0,1)= k—0 as n—w. Therefore ||d(TPx,, TPx,n,)|| —0 as m, n —. Thus {T?x,,} is a Cauchy sequence in X. Since
(X, d)is a complete cone metric spaces, there exist u € X Such that
HM TPXop = Uit e (3.2.7)

n—-oo

Since TPis subsequently convergent, {x,,} has a convergent subsequence {x,,, } such that

HM TPXp = TPVt e, (3.2.8)
m-—-coo
Since T is injective, then by (3.1.8), we obtain
HM X = TPV, e e (3.2.9)

m-—-oo

By the uniqueness of the limit,
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U STV i ... (3.2.10).
Since T;nd T, are continuous. So,

lim T,x,, =T,v and lim T?x,,, = T;v.Again ,SinceT is continuous, so, lim T?T,x,,, = TPT,v and
m-oo m-oo m-—o

lim T?T,x,,, = TPT,v. Thus, if mis odd. Then,

Mmoo
lim TPTyXppsy = TPTyv (3.2.11)
So, now consider,
d(TPT,v, TPv) < d(TPT,v, TPx5p41) + d(TPXyp41, TPV)
<Ad(TPT,v, TPTyxm41) + A(TPXp041 TPy T,v) | +d(TP X301 TPV).
<M [d(TPv, TPv) + d(TPXpn11 TPXgn42) | +A(TP X541 TPV).
S0, d(TPT,v, TPv) < == d(TPx, TP) +—d (TP, TPXz41).
Since P is normal cone with normal constant K.So, we get
ld(TP Ty, TP) [ < K[ || d(TP 50 TP0)|| +=5 1d(TP, TPx5041 )] = O
Hence ||d(T?T,v,TPv) || =0. This impliesT?T,v = TPv. Since T is injective. So,
v = T,v.Thus v is the fixed point ofT,.
Similarly, it can be established that, v is also fixed point of T;, that means, v is common fixed point of T;and T5.
Now to prove uniqueness: Suppose that w is another common fixed point of T;and T,, then T,w = w = T,w.
Now, d(T?v, TPw) = d(TPT,v, TP T,w)
< A[d(TPv, TPT,v) + d(TPw, TPT,w)]
d(TPv, TPw) <0

Hence d(T*v, T?w) = 0 which implies that, T?v = TPw. As Tis injective, v = w is the unique common fixed point of T,and T,.
Since we have assumed that {T, T;} and {T, T,} are Banach pair {T,T;} and {T,T,} Commutes at the fixed point of T;and T,
respectively. This implies that, TT,v = T, Tv for v € F(T;). So, Tv = T, Tv, which gives that Tv is another fixed point of T; It is
also true for T,.By the uniqueness of fixed point of T;, Tv = v. Hence v = Tv = T, v = T,v. Therefore v is the unique common
fixed point of T, T;and T, in X. This completes the proof of theorem.

Theorem 3. 3: Let (X, d)be cone metric spaces and let T, T;, T,: X — X be any three continuous self mappings on X. Assume that
T is an injective maps and P is a normal cone with normal constant. If the mapping T, T; and T, satisfy the condition

d(TPT,x, TPT,y) < A[d(TPx, TPT,y)+ d(TPY, TPTiX)] ... coveeereeeieeeeeeneeen, (3.3.1)

for allx, y € X where p is a positive integer and <& [0%). Then T, and T,have an unique common fixed point in X. Moreover, if

(T, T,) and (T, T, ) are Banach pair, then T, T; and T, have a unique common fixed point in X.
Proof: Let x, be an arbitrary point in X. We define the iterative sequence{x,, } and {x,,,,}by
Xomer = TiXon = Ty Ky oot e, (3.3.2)
and
Xonsz = ToXoner = T 2™ xg.ii, (3.3.3).
Then x = x,, and y = x,,,_,from (3.1.1) we have
A(TPX541,TPX25) = d(TPTy X2, TPT, X39-1)
< Ad(TPx,, TPTyxpn_1) + A(TPX g0 1 TP Tyx5,)]
< Ad(TPx3, TP X3 41) + A(TPXp_1 TP X3)]

So,  d(TPxzn41,TPX2,)

IA

A
Py d(TPxp- 1,Tpx2n)
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SLA(TPX00,TPXg0 1) i (3.3.4)
Where :_a =L<1
So, for m,n € N with n > m we have
d(TPXn, TPXpm) <A(TPXpn TPXpn_1) + d(TPXpn 1 TPXpn_3) +.oooetd(TP Xgpmer TP X))
S (L4 L2772 e+ L2 A(TPx, TPx,),

2n
ST d(TPATPXQ), oo .(3.3.5)

Since P is normal cone with normal constant, so by (3.1.5) we get

ld(TPxzm, TP2am)|| < <= ||d(T7”x1 TPx ||, .(3.3.6)

Since ke (0,1)= k—0 as n—oo. Therefore ||d(T?x,,, TPx;y)| —0 as m, n —o0. Thus {T?x,,,} is a Cauchy sequence in X. Since
(X, d)is a complete cone metric spaces, there exist u € X Such that
HM TP = Uit e, (3.3.7)

n—oo
Since T?is subsequently convergent, {x,,} has a convergent subsequence {x,,,} such that
T A T L (3.3.8)

m-oo

Since T is injective, then by (3.1.8), we obtain
HM X = TPV i e .(3.3.9)

m—oo

By the uniqueness of the limit,
U= TV e (3.3.10).
Since T;nd T, are continuous. So,

lim T,x,, =T,v and lim T?x,, = T,v.Again ,SinceT is continuous, so, lim TPT,x,,, = TPT,v and
m—oo m— oo m—oo

lim TPT, x,,, = TPT,v. Thus, if mis odd. Then,

m-—oo

llm TpT2x2n+1 = TpTzv ....................................... (3.3.11)

n—-oo

So, now consider,
d(TPTyv, TPv) < d(TPTyv, TPxy,) + d(TPx,,, TPV)
<Ad(TPv, TP Tyxpn-1) + d(TPXpn_y TPT,v)] +d(TP x5, TPV).
<A [d(TPv, TPx,,) + TPA(TP X551 Tyv)] +d (TP, TPV).
<Nd(TPv, TPx,,) + d(TPT,v, TPv) + d(TPx5,_ Tyv)] + d(TPx,, TP V).
So, d(TPT,v,TPv) < ﬁ [d(TPx,, TPv) + d(TPxpp_1 Ty )] +id(Tpv, TPx,,).
Since P is normal cone with normal constant K.So, we geT
Id(T?Tv, TP) | <K[= (| d(TP200,TPV)|| + [|d(TP220-1 TiV) )+ ||d(Tpv TPXyns1)|[1 = 0
Hence ||d(T?T,v, TPv) || = 0. This impliesT?T,v = T?v. Since T is mjective. So,
v = T,v.Thus v is the fixed point ofT;.
Similarly, it can be established that, v = T,v . Hence T,v = v = T,v . v is common fixed point of T;and T5,.
Now to prove uniqueness: Suppose that w is another common fixed point of T;and T,, then T,w = w = T,w.
Now, d(T*v, T?w) = d(TPT,v, TP T,w)
< A[d(TPv, TPTyv) + d(TPw, TPT,w)]
d(T?v, TPw) <0

Hence d(T*v, TPw) = 0 which implies that, T?v = TPw. As Tis injective, v = w is the unique common fixed point of T, and T,
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Since we have assumed that {T, T,} and {T, T,} are Banach pair{T,T,} and {T,T,} Commutes at the fixed point of T;and T,,
respectively. This implies that, TT,v = T, Tv for v € F(T;). So, Tv = T, Tv, which gives that Tv is another fixed point of T, It is
also true for T,.By the uniqueness of fixed point of T;, Tv = v. Hence v = Tv = Ty v = T,v. Therefore v is the unique common
fixed point of T, T;and T, in X. This completes the proof of theorem.
Theorem 3.4: Let (X, d)be cone metric spaces and let T, T;, T,: X — X be any three continuous self mappings on X. Assume that
T is an injective maps and P is a normal cone with normal constant. If the mapping T, T, and T, satisfy the condition

d(TPT,x, TPT,y) < kd(TPx, TPTyy)*L d(TPX, TPY) ... wecooereeeeeererrsrrenne .(34.1)
for allx, y € X where p is a positive integer and k, L € [0,1) is constant. Moreover, if (T, T, ) and (T, T, ) are Banach pair, then
T,T, and T, have a unique common fixed point in X. whenever k + L < 1.
Proof: Let x, be an arbitrary point in X. We define the iterative sequence{x,,,} and {x,,,}by

Xomsr = TiXon = Ty Kge oot e, (3.4.2)
and

Zntly P ... (3.4.3).
Then x = x,, and y = x,,,_,from (3.1.1) we have

A(TP X1 TP %) = A(TPTy X0, TPT, Xpn_1)

Xonsz = DXonp1 = T,

< kd(TpxzmTpszZn—J + Ld(TPx25, TP X25-1)
=Ld(TPx53, TPX3n1)]
So, A(TPx5n41.TPX25) < LF d(TPXTPXG) et (3.4.4)

So, for m,n € N with n > m we have
d(TPxyp, TPXpm) <A(TPXpn TPXpn_1) + d(TPXppn_1 TPXpp_3) +-oootd(TPX g1 TPX )
S H L2 4 e LY (TP Xy TPx),

2n
ST (TP, TPXG), oo (3.4.5)

Since P is normal cone with normal constant, so by (3.1.5) we get

2n
la(TP 0, TPxm)|| <= A TP, TP oo (3.4.6)

Since ke (0,1)= k—0 as n—oo. Therefore ||d(TPx, TPX5p)| —0 as m, n —o0. Thus {T?x,,,} is a Cauchy sequence in X. Since
(X, d)is a complete cone metric spaces, there exist u € X Such that
HM TP = Uit e (3.4.7)

n-oo

The rest of proof is similar to the proof of theorem 3.1.
So, now consider,
d(TPTv, TPv) < d(TPTyv, TP x5,) + d(TP x5, TPV)
<kd(TPv,TPTyx5_1) + LA(TPv, TPX5y,_1) +d(TPxy, TPV).
<kd(TPv,TPx,,) + Ld(T?v, T?x3,_1) +d (TP x,, TPV).
Since P is normal cone with normal constant K.So, we get
Nd(TPTyv, TPv) | <K[ || d(TP2 TPV)|| + |d(TP20n—y Tyv)|| +|d(TPv, TPxne1)|I] = 0
Hence ||d(TPT,v,TPv) || = 0. This impliesT?T,v = TPv. Since T is injective. So,
v = T,v.Thus v is the fixed point ofT.
Similarly, it can be established that, v = T,v . HenceT,v = v = T,v . v is common fixed point of T,;and T,.
Now to prove uniqueness: Suppose that w is another common fixed point of T,and T,, then T,w = w = T,w.
Now, d(T?v, TPw) =d(TPT,v,TFT,w)
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< kd(TPv, TPT,w) + Ld(TPv, T?w)
= kd(T?v, TPw) + Ld(T?v, TP w)
= (k + L)d(TPw,TPv).Since 0 < k+1 < 1
Thus, ||d(TPv, TPw|| < 0. Hence d(T*v, TPw) = 0 which implies that, TPv = TPw. As Tis injective, v = w is the unique
common fixed point of T;and T,.
Since we have assumed that {T, T,} and {T, T,} are Banach pair{T,T,} and {T,T,} Commutes at the fixed point of T;and T,,
respectively. This implies that, TT,v = T, Tv for v € F(T;). So, Tv = T, Tv, which gives that Tv is another fixed point of T, It is
also true for T,.By the uniqueness of fixed point of T;, Tv = v. Hence v = Tv = T,v = T,v. Therefore v is the unique common
fixed point of T, T;and T, in X. This completes the proof of theorem.
Theorem 3.5: Let (X, d)be cone metric spaces and let T, T;, T,: X — X be any three continuous self mappings on X. Assume that
T is an injective maps and P is a normal cone with normal constant. If the mapping T, T, and T, satisfy the condition
d(T?T,x,T’T,y) < pd(TPx,TPy)+q d(TPx, TPT,x)+rd(T?y, T?T,y)
+s[d(TPx, TPTyx)+ d(TPy, TPT,y)] + t[d(TPx, TPT,y)+d(TPy, TPTix)] «evuenenenenn (3.5.1) forallx,y €
X where p is a positive integer and k, [, m,n € [0,1) is constant withp 4+ q + r + 25 + 2t < 1. Moreover, if (T,T; ) and (T, T; )
are Banach pair, then T, T; and T, have a unique common fixed point in X. whenever k + L < 1.
Proof: Let x, be an arbitrary point in X. We define the iterative sequence{x,,} and {x,,,}by
Xomer = TiXon = Ty Koo oot e, (3.5.2)
and
Xonsz = ToXoner = T 2 g o (3.5.3).
Then x = x,, and y = x,,,_,from (3.4.1) we have
A(TPxyn41,TPx2n) = A(TPTy X5, TP Ty Xop-1)
< pd(Tprn,Tprn—l) + qd(Tprn‘TpTlen)+ rd(TPxyn-1, TPTyX2n-1)
+ S[d(TP X0, TPTyXg0) + A(TP X301, TP Ty Xz 1)]
+t[d(TP x50, TP Ty X5n-1) + A(TPX g1 TP TyXp,)]
< pd(TP X0, TPXzn1) + qA(TP X0, TP X 11) + 7 (TP Xg0_g TP%;y,)
+ S[A(TP %20, TPXp40) + A(TPX -1, TP X5,)]
+t[d(TP X3, TP X3 ) + A(TPX -1, TP X341)]
d(TPxyn41,TPx2n) Spd(Tprn,Tprn—l) + qd(Tprn,TprrHl) +1d (TP X551, TP X2n)
+ S[A(TPx3, TPXp41) + A(TPXpn_q, TPX2)]
+t [d(TPXon11, TP X2n)+d(TP X0, X35 -1)]
<(q+ 5+ )d(TPxy, TPxyp 1 )*(@ + 7+ 5 + )A(TP X501 TP X5y,)
This implies that,

(p+r+s+t)

d(Tpx2n+1,Tpx2n) < 1-(q+s+t)

d (Tpx2n—1,Tpx2n)

(p+r+s+t) _

14 p -
<Ld(T?x,,T Xn-1), Where 1-(q+s+t)

L<1
Proceeding further,

SO,  d(TPXypyy TPXpn) < LP d(TPXyTPXG)ooeoeiiseeeeeeeeee (3.5.4)

So, for m,n € N with n > m we have

d(TPx;, TPxpp) < d(T”xZn'T”xZn_l) + d(T”xZn_l_Tprn_z) e d(TP X301 TP X))
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S (LA 4 L2 p e+ P A(TPx, TPX,),
2n
SZo AT TPXQ), oo .(3.5.5)

Since P is normal cone with normal constant, so by (3.1.5) we get
L2n
(TP xzm, TP || < = (|ATP 20 TPxQ[- o (3.5.6)

Since ke (0,1)= k—0 as n—oo. Therefore ||d(T?x,,, TPx5y)| —0 as m, n —oo. Thus {T?x,,,} is a Cauchy sequence in X. Since
(X, d)is a complete cone metric spaces, there exist u € X Such that
Hm TPX,, = Ueeriiiiiiiiiiiiiiet e, .(3.5.7)

n—oo

The rest of proof is similar to the proof of theorem 3.1.
So, now consider,
d(TPT,v,TPv) < d(TPT,v,TPxy,) + d(TPx,,, TPv)
< d(TPTyv, TPTyx5n_q) +d(TP x5y, TPV)
<pd(TPv,TPxy,_1) + qd(TPv, TPTyv)+ rd(TPXy,-1 TP TyX5n—1)
+s[d(TPv, TPTyv)+ d(TP X1 TPTyX50-1)]
+t[d(TPv, TPTyxpn_1) + A(TPXxpp_1, TP Ti0)+ d(TP x5, TPV)
= pd(TPv,T?xy,_1) + qd(TPv, TPTyv)+ rd(T?Xxy,_1, TPX3,)
+ s[d(TPv, TPTv)+ d(TP Xpn_q TP X51,)]
+t[d(TPv, TPxy,) + d(TPxpp—1, TPTyV)+ d(TP x5, TPV)
< pd(TPv,TPxy,_1) +(q + 5) A(TPv, TPTyv) +(r + 5) d(TPx5p—1 TPX2,)
+ (1 +t) d(TPxyp, TPV) +td(TPx5p_1, TP T V)
Therefore,

(r+s)
1-(q+s)

d(TPT,v,TPv) < d(Tpv TPxyp ) + ———

T?v)

d(TPxn_1, TP T, V)

1- (q+s)
(r+s)
=1 (q+s) [d(TP, TPxzn) + d(TP X5, TP Xpn—1)] + T—(q+s) d(TPX3p-1,TPX2n)
ey AT Xon, TP+ [A(TPg0, TP X00) + A (TP, TPY) + A (TP, T7Ty0)]
Hence
d(TPTyv, TPv) < 722 (TP, TPxyp) + 2 d(TP x50 TP Xap)

Since P is normal cone with normal constant K.So, we get

1+p+2t
1-g-s-t

pHrs+t

la(T?T,v, TPv) || < K[ | (1725, TPv)|| + 22— ||d(TP x4, T v) ] = O.

1-q-s—t
Thus, ||d(TPTyv, TPv) || = 0. This impliesT?T,v = TPv. Since T is injective. So,
v = T,v.Thus v is the fixed point ofT.
Similarly, it can be established that, v = T,v . HenceT,v = v = T,v . v is common fixed point of T,and T,.
Now to prove unigqueness: Suppose that, if w is another common fixed point of T;and T,, then T;w = w = T,w.Now consider
d(TPv,TPw) =d(TPT,v, T T,w)
<pd(T?Pv, TPw)+qd(T?v, TPT,v) + rd(T?w, TP T,w)
+s[d(TPv, TPTyv) + d(TPw, TP T,w) ]+ t[d(TPv, TPT,w) + d(TPw, TPT,v)]
< pd(TPv, TPw) + 2td(TPv, TPw)
=(p + 26)d(T?v, TPw)
<(@+qg+r+s+0)d(TPv,TP)
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< d(TPv,TPw) asp+q+r+s+t<1l

Thus, ||d(TPv, TPwl|| < 0. Henced(T?v, TPw) = 0 which implies that, TPv = TPw. As Tis injective, v = w is the unique
common fixed point of T;and T,.
Since we have assumed that {T, T,} and {T, T,} are Banach pair{T,T,} and {T,T,} Commutes at the fixed point of T;and T,,
respectively. This implies that, TT,v = T, Tv for v € F(T;). So, Tv = T, Tv, which gives that Tv is another fixed point of T, It is
also true for T,.By the uniqueness of fixed point of T;, Tv = v. Hence v = Tv = T,v = T,v. Therefore v is the unique common
fixed point of T, T;and T, in X. this completes the proof of theorem.
4. Conclusion
In this attempt, we generalize unique common fixed point results in complete cone metric spaces with two Banach pairs mapping
satisfying contraction condition given by the concept of [44].These results generalize improve and extend the theorem 3.2,3.3,3.4,
3.5 which is given by Petwal &Dimri [41] of theorem 3.1.
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