
© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 94 
 

Review On Accelerating Source Code Analysis 

At Massive Scale 
1Kalyani N. Suryawanshi, 2Ashok N. Kamthane 

1PG Scholar, Department of CSE, Matoshri Pratishthan Group of Institutions (M.P.G.I.) Nanded. 
2Associate Professor, Department of CSE, Matoshri Pratishthan Group of Institutions (M.P.G.I.) Nanded. 

 

Abstract :  Ultra-large scale mining has been shown to be useful for a number of Software Engineering tasks Such as Mining 

Specification, Defect Prediction. Extant techniques have dedicated on leveraging distributed computing to solve this problem, but 

with a concomitant increase in computational resource needs. This work proposes a technique that reduces the amount of 

calculation performed by the ultra-large-scale source code mining task, especially those that make use of control and data flow 

analyses. Our key idea is to analyze the mining task to identify and remove the irrelevant portions of the source code, prior to 

running the mining task. We show a recognition of our insight for mining and analyzing massive collections of control flow 

graphs of source codes. Our evaluation using 16 established control-/data-flow analyses that are typical components of mining 

tasks and 7 Million CFGs shows that our technique can achieve on average a 40% decline in the task calculation time. Our case 

studies demonstrates the applicability of our technique to massive scale source code mining tasks. 

 

IndexTerms - Source code analysis, Mining Software Repositories, Ultra-large-scale Mining, Data-driven Software Engineering. 

 

I.  INTRODUCTION 

   The primary goal of software development is to deliver high quality software in the least amount of time[3]. To achieve these 

goals, Software Engineers are progressively applying data mining algorithms to various software engineering tasks [1] to improve 

software efficiency and quality.There has recently been significant interest and success in analyzing large corpora of source code 

repositories to solve a broad range of software engineering problems including but not limited to defect prediction [1], 

discovering programming patterns [2], [3], suggesting bug fixes[4],[5], requirement implication [6], [7], [8], [9].This is because in 

case of syntactic duplicates, the amount of hurrying is limited by the amount of copy-and-paste code and in case of semantic 

duplicates, only a subset of analysis can accelerate, for instance control flow only analyses[10]. In this work, we propose a 

balancing technique that accelerates ultra-large-scale mining tasks without difficult additional computational resources[5].  

  Given a mining task and an ultra-large dataset of programs on which the mining task needs to be run, our technique first 

analyzes the mining task to extract information about parts of the input programs that will be relevant for the mining task, and 

then it uses this information to perform a pre-analysis that removes the irrelevant parts from the input programs prior to running 

the mining task on them. For example, if a mining task is about extracting the conditions that are checked before calling a certain 

API method, the relevant statements are those that contains API method invocations and the conditional statements immediate the 

API method invocations [4]. Our technique automatically extracts this information about the relevant statements by analyzing the 

mining task source code and removes all irrelevant statements from the input programs prior to running the mining task [10]. 

Source code mining can be performed either on the source code text or on the intermediate depictions like abstract syntax trees 

(ASTs) and control flow graphs (CFGs) [6],[16].  

      In this work, we target source code mining tasks that perform control and data flow analysis on loads of CFGs[7]. Given the 

source code of the mining task, we first perform a static analysis to extract a set of rules that can help to identify the relevant 

nodes in the CFGs. Using these rules, we perform a lightweight pre-analysis that identifies and annotates the relevant nodes in the 

CFGs. We then perform a reduction of the CFGs to remove irrelevant nodes[4]. Finally, we run the mining task on the compacted 

CFGs.Running the mining task on compacted CFGs is definite to produce the same result as running the mining task on the 

original CFGs, but with significantly less computational cost. Our intuition behind hurrying is that, for source code mining tasks 

that iterates through the source code parts several times can save the unnecessary iterations and computations on the irrelevant 

statements, if the target source code is optimized to contain only the relevant statements for the given mining task[5]. Source code 

mining can be performed either on the source code text or on the intermediate representations like abstract syntax trees (ASTs) 

and control flow graphs (CFGs). In this work, we target source code mining tasks that perform control and data flow analysis on 

millions of CFGs[11].  

  Given the source code of the mining task, we first perform a static analysis to extract a set of rules that can help to identify the 

relevant nodes in the CFGs[5]. Using these rules, we perform a lightweight pre-analysis that identifies and interprets the relevant 

nodes in the CFGs. We then perform a reduction of the CFGs to remove irrelevant nodes. Finally, we run the mining task on the 

compacted CFGs[8],[4]. Running the mining task on compressed CFGs is guaranteed to produce the same result as running the 

mining task on the original CFGs, but with significantly less computational cost[5],[16]. Our intuition behind acceleration is that, 

for source code mining tasks that iterates through the source code parts several times can save the unnecessary iterations and 

computations on the irrelevant statements, if the target source code is optimized to contain only the relevant statements for the 

given mining task[6],[12]. 

     We evaluated our technique using a collection of 16 demonstrative control and data flow analyses that are often used in the 

source code mining tasks and compilers[4].We also present four case studies using the source code mining tasks drawn from prior 

works to show the applicability of our technique. For certain mining tasks, our technique was able to reduce the task calculation 

time by as much as 90%, while on average a 40% reduction is seen across our collection of 16 analyses[10]. 

 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 95 
 

 This paper makes the following contributions: 

 

 We present that evaluates the mining task to repeatedly extract the information about parts of the source code that are 

related for the mining task. 

 Our valuation shows that, for few mining tasks, our technique can reduce the task calculation time by as much as 90%, 

while on average a 40% reduction 

 

Fig. 1. Overview of the approach: accelerating ultra-large scale mining using the interaction pattern between the mining task and 

the artifacts. 

 

 

 

Fig. 2. Top three interaction pattern graphs for the API Precondition Mining Task. Here, S and E are start 

and end nodes, p is the node predicate expression, and c is the node that calls an API method. 

 

. 

. II.  APPROACH 

    An overview of our approach is shown in Figure 1. Given a mining task and a large collection of artifact graphs1, alight-weight 

traversal is performed on each artifact graph that identifies the parts relevant for the mining task and removes the irrelevant parts 

to produce an interaction pattern graph2[3],[16],[17]. Upon generating the interaction pattern graph, we check if the pattern graph 

is already seen before while mining other piece graphs, if not then we run the mining task on the original piece graph to generate 

the output[16]. An output function that provides expressions to generate the output is erected. 

   A simple output function is the mining task itself (as we see later in the realization of this model, we use the mining task as the 

output function)[6],[14]. We persist the pattern along with its output function, such that next time when a match happens, we 

extract and apply the output function to generate the result, instead of running the mining task[16]. Many source code mining 

tasks require performing control and data flow analysis over CFGs of a large collection of programs. 

   API precondition mining [4], API usage pattern mining source code search discovering vulnerabilities to name a few. These 

source code mining tasks can be expensive[17]. For example, consider the API precondition mining  that analyzes the control 

flow graphs of millions of methods to extract conditions that are checked before invoking the API methods and uses these 

conditions to construct specifications for API methods[10]. 

Let us outline our approach for mining the preconditions for API methods.  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 96 
 

Figure 2 gives an overview, which can be summarized as: 

1. The input is the set of all API methods under     analysis and client projects to mine. 

2. For each method in the corpus that calls an API, we build the control dependence relation between each      

    method call and the predicates in the method (from the control-flow graph)and identify all precondition    of API calls. 

3. Next, we normalize the preconditions to identify and combine the equivalent ones.  

4. We then analyze the preconditions to infer additional ones which are not directly present in the client code. 

5. Finally we filter out non-frequent preconditions[4],[6],[16]. 

 

2.1 Mining API Preconditions 

 

   In this case study we use Mining API Preconditions, described in xII-A, that mines API preconditions of a given API method 

using the client methods that call the API method[16]. Here, the API preconditions are the predicate expressions that guard the 

API method calls in the client methods. This mining task traverses the CFG of each client method, identifies nodes that have API 

method calls and collect the predicate expressions on which the API method call node is control dependent using a dominator 

analysis[10],[16]. 

  The mining task outputs the normalized predicate as preconditions for a given API method call. Figure 2 shows top three 

interaction pattern graphs that appeared in the client methods that calls the substring(int; int) API method. We argue that 

candidates in each cluster shows similar behaviors with respect to the mining task. Studying the candidates in each cluster may 

itself be a new research direction for exploring and answering mining task related questions.  

  For instance, we found that the interaction pattern graph shown in Figure 2(a), almost all the time provides predicate expressions 

that are generic to the API method and not specific to the client method that calls the API method[5],[16]. This API method 

invocation is guarded by the condition colon >=0 at line 6, hence the condition is considered as precondition. To extract this 

precondition, the mining task first builds the CFG of the method as shown in Figure 2 (CFG node numbers corresponds to the line 

numbers in Figure 1). The task performs several traversals of the CFG. 

   In the first traversal, it identifies the API method call nodes as well as the conditional nodes that provide conditions[10]. In the 

next traversal, the mining task performs a dominator analysis to compute a set of dominator statements for every statement in the 

program (A statement x dominates another statement y, if every execution of statement y includes the execution of statement x).In 

the final traversal, the mining task uses the results from the first two traversals to extract the conditions of all the dominating 

nodes of the API method invocation nodes. For this analysis the relevant nodes are:  

i) the nodes that contain substring(int,int) API method invocations and ii) the conditional nodes. In the client method shown in 

Figure 1, only line 6 & 7 are relevant (node 6 &7 in the corresponding CFG shown in Figure 2). All other nodes are irrelevant and 

any computation performed on these nodes is not going to affect the mining results. 

   In the absence of our technique, the API requirement. mining task would traverse all the nodes in the CFG in all the three 

traversals, where the traversal and the computation of the irrelevant nodes (computing dominators and extracting conditions of the 

dominators of the API invocation nodes) can be avoided to save the unnecessary calculations. For instance, if the mining task is 

run on a reduced CFG as shown in Figure 2 that contains only relevant nodes, the mining task can be accelerated substantially. As 

we show in our case study ( x5.1), for the API precondition mining task, we were able to reduce the overall mining task time by 

50% [16]. 

 

2.2  A Control Flow Graph 

 

   Given a mining task that contains one or more traversals, our static analysis analyzes each traversal by constructing the control 

flow graph representation of the traversal and enumerating all acyclic paths in it  (CFG) of a program is defined as G = (G = 

(N,E,T, _I) where G is a directed graph with a set of nodes N representing program statements and a set of edges E representing 

the control flow between statements. > and ? denote the entry and exit nodes of the CFG.2 

 

 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 97 
 

 
  

 

Fig. 3: Control flow graphs of the three traversals 

 

     The key idea of our static analysis is to select a subset of all acyclic paths based on the two conditions: 1) the path contains 

statements that provide predicates on the input variable (a CFG node), and 2) the path contains statements that contributes to the 

analysis output.  An input variable of a traversal (or an analysis function) is always a CFG node as described in the traversal 

definition. For example, in the mineT traversal definition, function can be one of the three kinds: 

 1) the variables returned by the traversals as outputs, for instance, doms in case of domT traversal, 2) the global variables, for 

instance, api Call Nodes and conditions AtNodes in case of mineT traversal, or 3) the variables that are written to console as 

outputs, for instance, preconditions in case of analysisT traversal. 

node is the input variable. Output variables of an analysis 

       Every selected path produces a rule that is a path condition. 3 For example, consider the API precondition mining task shown 

in Figure 3. This mining task contains three 

traversals (mineT, domT, and analysisT), where mineT, domT, and analysisT contains 4, 6, and 4 acyclic paths respectively as 

shown in Figure 3. Our static analysis analyzes each of these paths to select a subset of paths satisfying the two conditions 

described above. Given a set of acyclic paths of a traversal (or an analysis function), and input/output variables of the traversal.  A 

path condition is a conjunction of all node conditions and it represents a condition that must be true for the path to be taken at 

runtime. 

 

III. Accelerating Software Analysis: 

 Kulkarni et al. [9] accelerates program analysis in Data log by running the analysis offline on a corpus of training programs to 

learn analysis facts over shared code and then reuses the learnt facts to accelerate the analysis of other programs that share code 

with the training corpus [17].  

  When compared to their approach, our approach does not require programs or artifacts to share code or other pieces. Recycling 

analysis results to accelerate interprocedural analysis by calculating partial or complete procedure summaries [10] is also studied 

[10]. However, to best to our awareness there is no technique that can benefit analysis crosswise programs and cluster programs 

specific to analysis [4],[10],[16], [17].  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 98 
 

 
 

Fig.4 Collaboration Diagram 

 

A collaboration diagram describes interactions among objects in terms of sequenced messages. Collaboration diagrams represent 

a combination of information taken from class, sequence, and use case diagrams describing both the static structure and dynamic 

behavior of a system. In this diagram first cloud user login into cloud. Here uploading his constraints to cloud provider. If a cloud 

want to access another cloud through Agent he need to get access from cloud admin after getting the access the Cloud can be able 

to view product support. Through user feedback cloud admin can monito the cloud Providers and how Agent take Place in the 

Interaction. 

 

IV. CONCLUSION 

  Data-driven software engineering demands mining and analyzing source code repositories at massive scale, and this activity can 

be expensive. Extant techniques have focused on leveraging distributed computing techniques to solve this problem, but with a 

concomitant increase in the computational resource needs. This work proposes a complementary technique that reduces the 

amount of computation performed by the ultra-large-scale source code mining tasks without compromising the  accuracy of the 

results.The key idea is to analyze the mining task to identify and remove parts of the source code that are irrelevant to the mining 

task prior to running the mining task. We have described a realization of our insights for mining tasks that performs control and 

data flow analysis at massive scale. Our evaluation using 16 classical control and data flow analyses has demonstrated substantial 

reduction in the mining task time. Our case studies demonstrated the applicability of our technique to massive-scale source code 

mining tasks. 

 

 

V. REFERENCES 

 

[1] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction approaches: A benchmark and an extensive 

comparison,” Empirical Softw. Engg., vol. 17, no. 4-5, pp. 531–577, Aug. 2012.  

[2] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage anomalies,” in Proceedings of the 6th Joint Meeting of the 

European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, 

ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 35–44.  

[3] S. Thummalapenta and T. Xie, “Alattin: Mining alternative patterns for detecting neglected conditions,” in Proceedings of the 

2009 IEEE/ACM International Conference on Automated Software Engineering, ser. ASE ’09. Washington, DC, USA: IEEE 

Computer Society, 2009, pp. 283–294.  

[4] B. Livshits and T. Zimmermann, “Dynamine: Finding common error patterns by mining software revision histories,” in 

Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International  

Symposium on Foundations of Software Engineering, ser. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 296–305. 

[5] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste and related bugs in large-scale software code,” IEEE 

Trans. Softw. Eng., vol. 32, no. 3, pp. 176–192, Mar. 2006.  

[6] Georgios Gousios. The GHTorrent dataset and tool suite. In MSR ’13.  

[7] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and Evaluation of Code Clone Detection Techniques 

and Tools: A Qualitative Approach. Sci. Comput. Program. 2009.  

[8] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan, “Mining preconditions of apis in large-scale code corpus,” in 

Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE 2014. New 

York, NY, USA: ACM, 2014, pp. 166–177.  

[9] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. Accelerating  Program Analyses by Cross-program Training. In 

OOPSLA’16. 

8: receive efficient code

Manager
Employe

e

Data
Base

Expert

1: login

2: upload questions

5: receive code

3: register & login

4: upload coding & send to manger

6: login

7: test code & send efficient code

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1906Z13 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 99 
 

[10] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language and infrastructure for analyzing ultra-large-scale 

software repositories,” in Proceedings of the 2013 International Conference on Software Engineering, ser. ICSE ’13. Piscataway, 

NJ, USA: IEEE Press, 2013, pp. 422–431.  

[11]. S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure for large-scale collection and analysis of opensource 

code,” Sci. Comput. Program., vol. 79, pp. 241–259, Jan. 2014.  

[12] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the 10th Working Conference on Mining Software 

Repositories, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 233–236.  

[13] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions of ast nodes to study actual and potential usage of java 

language features,” in Proceedings of the 36th International Conference on Software Engineering, ser. ICSE 2014. New York, 

NY, USA: ACM, 2014, pp. 779–790.  

[14] M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference on Software Engineering, ser. ICSE ’81. 

Piscataway, NJ, USA: IEEE Press, 1981, pp. 439–449.  

[15] John Demme and Simha Sethuma dhavan. Approximate Graph Clustering for Program Characterization. TACO’12.  

[16] Ganesha Upadhyaya, Hridesh Rajan."On Accelerating Source Code Analysis at Massive Scale", IEEE Transactions on 

Software Engineering, 2018 

[17] Ganesha Upadhyaya, Hridesh Rajan."On Accelerating ultra-large-scale mining",IEEE Transactions on Software Engineering, 

2018. 

 

 

 

 

 

 

 

. 

 

http://www.jetir.org/

