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Abstract: Various engineering and scientific computational problems involve both sparse and dense matrices. Problems related to 

dense matrix can be resolved easily by parallelizing matrix computations. For problems related to sparse matrix, Karmaker suggested 

a new parallel architecture which is based on finite projective geometry. For such kinds of computations, it is essential to utilize 

parallel architectures. All contemporary computer systems are equipped with multi-core model in addition to multithreading. These 
multiple cores which are physical processing units provide parallelism. These cores may be homogeneous or heterogeneous. These 

cores operate in parallel and each performs separate computations by using different instruction streams on different data streams. 
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I INTRODUCTION 

 In parallel computing, it is extremely necessary to speed up computations. Following the two major problems arise in parallel 

architecture: However parallel computations suffer following major problems: 

 Data Distribution: It describes the assignment of data to the appropriate processing unit to    enhance the performance of the 

system. 

 Expression Evaluation: Expression can be broken down into sub-expression for further computation. 

 Load Balancing: It is achieved by distributing the computations in such a manner that each processor occupies equal amount 

of computational load. 

 Memory Access Conflicts: In parallel architecture, whenever two or more processors compete to access the same memory 

location this lead to memory access conflicts. 

The computations assigned to a processor depend on the projective geometry and the incidence relations. Since the projective 

geometry possesses the symmetric nature, the computation load on each processor is balanced. The pattern of these geometries 

defines the interconnections between processors and memories, and also helps to solve difficult tasks such as load balancing, 

bandwidth matching, avoiding conflicts, data routing etc. (The automorphism governing these geometries are used to develop 

‘perfect-access patterns’ and ‘perfect-access sequences’, which confirms that all the processors and memories are simultaneously 

involved in conflicts free communication of data. 

II PARALLEL COMPUTING 
Traditionally software has been written for serial computations: 

 To be run on a single computer having a single Central Processing Unit (CPU) 

 A problem is broken into a discrete set of instructions 

 Instructions are executed one after another 

 Only one instruction can be executed at any moment in time 

In the simplest sense, parallel computing is the simultaneous use of multiple compute resources to solve a computational 

problem: 

 To be run using multiple CPUs 

 A problem is broken into discrete parts that can be solved concurrently 

 Each part is further broken down to a series of instructions 

 Instructions from each part execute simultaneously on different CPUs 

2.1 Parallel Algorithm 

An algorithm is a sequence of steps that take inputs from the user and after some computation, produces an output. 
A parallel algorithm is an algorithm that can execute several instructions simultaneously on different processing devices and then 

combine all the individual outputs to produce the final result. 
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III Concurrent Processing 

The easy availability of computers along with the growth of Internet has changed the way we store and process data. We are 
living in a day and age where data is available in abundance. Every day we deal with huge volumes of data that require complex 

computing and that too, in quick time. Sometimes, we need to fetch data from similar or interrelated events that occur 

simultaneously. This is where we require concurrent processing that can divide a complex task and process it multiple systems to 

produce the output in quick time. 

Concurrent processing is essential where the task involves processing a huge bulk of complex data. Examples include − 

accessing large databases, aircraft testing, astronomical calculations, atomic and nuclear physics, biomedical analysis, economic 

planning, image processing, robotics, weather forecasting, web-based services, etc.It is not easy to divide a large problem into sub-

problems. Sub-problems may have data dependency among them. Therefore, the processors have to communicate with each other to 

solve the problem. 

It has been found that the time needed by the processors in communicating with each other is more than the actual 

processing time. So, while designing a parallel algorithm, proper CPU utilization should be considered to get an efficient algorithm 
to design an algorithm properly, we must have a clear idea of the basic model of computation in a parallel computer. 

IV Model of Computation 

Both sequential and parallel computers operate on a set (stream) of instructions called algorithms. These set of instructions 

(algorithm) instruct the computer about what it has to do in each step. Depending on the instruction stream and data stream, 

computers can be classified into following four categories: 

 Single Instruction stream, Single Data stream (SISD) computers 

 Single Instruction stream, Multiple Data stream (SIMD) computers 

 Multiple Instruction stream, Single Data stream (MISD) computers 

 Multiple Instruction stream, Multiple Data stream (MIMD) computers 

SISD Computers 

SISD computers contain one control unit, one processing unit, and one memory unit. 

 

Figure: SSID computers 

In this type of computers, the processor receives a single stream of instructions from the control unit and operates on a single 

stream of data from the memory unit. During computation, at each step, the processor receives one instruction from the control unit 

and operates on a single data received from the memory unit. 

SIMD Computers 

SIMD computers contain one control unit, multiple processing units, and shared memory or interconnection network. 

 

Figure: SIMD computers 
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Here, one single control unit sends instructions to all processing units. During computation, at each step, all the processors 

receive a single set of instructions from the control unit and operate on different set of data from the memory unit.Each of the 

processing units has its own local memory unit to store both data and instructions. In SIMD computers, processors need to 

communicate among themselves. This is done by shared memory or by interconnection network. While some of the processors 

execute a set of instructions, the remaining processors wait for their next set of instructions. Instructions from the control unit 

decides which processor will be active (execute instructions) or inactive (wait for next instruction). 

MISD Computers 

As the name suggests, MISD computers contain multiple control units, multiple processing units, and one common memory 

unit. 

 

Figure: MISD computers 

Here, each processor has its own control unit and they share a common memory unit. All the processors get instructions 

individually from their own control unit and they operate on a single stream of data as per the instructions they have received from 

their respective control units. This processor operates simultaneously. 

 

MIMD Computers 

MIMD computers have multiple control units, multiple processing units, and a shared memory or interconnection network. 

 

Figure: MIMD computers 
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Here, each processor has its own control unit, local memory unit, and arithmetic and logic unit. They receive different sets of 

instructions from their respective control units and operate on different sets of data. 

 An MIMD computer that shares a common memory is known as multiprocessors, while those that uses an interconnection 

network is known as multi-computers. 

 Based on the physical distance of the processors, multi-computers are of two types − 

 Multicomputer − When all the processors are very close to one another (e.g., in the same room). 

 Distributed system − When all the processors are far away from one another (e.g.- in the different cities) 

 

V Projective Geometry 

A geometry is denoted by G = (Ω,I), where Ω is set and I is a relation which is both symmetric and reflexive. The relation on 

geometry is called the incidence relation, For example consider the traditional Euclidian geometry. In this geometry, the objects of the 

set Ω are points and lines. A point is incident to a line if it lies on that line, and two lines are incident if they have all points in 

common – only when they are the same line.  

A point in a finite projective plane PG(2, Pn), may be denoted by the symbol (x1 ,x2, x3) , where the coordinates x1,x2,x3 are 

marks of  a Galois field of order Pn , GF(Pn). The symbol (0,0,0) is excluded, and if k is a nonzero mark of the GF(Pn), the symbols 

(x1 ,x2, x3) and  (kx1 ,kx2, kx3) are to be thought of as the same point. The totality of points whose coordinates satisfy the equation u1 

x1+u2 x2+u3 x3 = 0, where u1 , u2 , u3 are marks of the GF(Pn), not all zero , is called a line. The plane then consists of P2n+Pn+1 = q 

points and q lines: each line contains P+1 point. 

5.1 Finite Projective Geometries 

There is a mathematical construct known as finite projective geometry, which plays an important role in defining the parallel 

architecture. The structure of these geometries is helpful in efficiently solving several difficult problems encountered in the design of 

parallel systems, such as load balancing, data routing, memory access conflicts, etc. 

Consider a finite field,  Fs = GF(s) which has s =  pk  elements , where p is a prime, k is a positive integer. A projective 

geometry of dimension d, denoted by Pd(Fs), is the set of all one dimensional subspaces of the (d+1)-dimensional vector space Fs
d+1 

over the field Fs. A one dimensional subspace of  Fs
d+1 generated by x, x ε Fs

d+1, x ≠ 0 , is the set of all nonzero elements of the form 

λx, λ ε Fs. These subspaces are the points of the projective geometry. Since there are (sd+1-1) nonzero elements in Fd+1, and (s-1) 
nonzero elements in Fs ,  the number of points in the geometry, nd , is given by (sd+1 – 1)/(s – 1). Similarly, an m-dimensional subspace 

of the projective geometry consists of all one dimensional subspaces of an (m + 1)-dimensional subspace of Fd+1. If {b0,b1,…bm} 

forms a basis of this vector subspace, then the elements of the subspace are of the form  

 

 m 

   ∑  αibi  , where αi ε Fs 

                                          i=0 

The number of elements in the subspace, nm ,  is given by ( sm+1 – 1)/( s -1). The set of all m-dimensional projective 

subspaces of Pd(Fs) is denoted by Ωm. Now Ω0 represents the set of all the points of the projective space, Ω1 is the set of all lines, Ω2 is 

the set of all planes and so on.  For n  ≥  m, to count the number of elements in each of these sets, we define the function  

       (sn+1 – 1)(sn – 1) … (sn-m+1 – 1) 

           Φ(n, m, s)  =    

    (sm+1 – 1)(sm – 1) … (s – 1) 

Let 0 ≤ l ˂ m ≤ d. Then the number of l-dimensional subspaces of Pd(Fs) contained in a given m-dimensional subspaces is 

given by ϕ(m, l, s), and the number of m-dimensional subspaces of Pd(Fs) containing a given l-dimensional subspaces is given by 

ϕ(d-l-1, m-l-1 , s). 

VI Description of Karmakar’s Architecture 

As mentioned earlier, Karmakar’s architecture defines the interconnection patterns between processors and memories based 

on finite projective geometry. A finite projective geometry of dimension d consists of a set of points S, which form the zero-

dimensional subspaces. These points can be grouped together to form subspaces of higher dimensions (1, . . ., d). The subspaces of 

dimension 1 are called lines, 2-dimensional subspaces are called planes and the d-1-th dimensional subspaces are called hyper-planes. 

Once the appropriate geometry for a problem has been identified, a pair of dimensions dm and dp are chosen. The processors are 

associated in one-to-one correspondence with the subspace of dimension dp while the memories are associated with subspaces of 

dimension dm and a connection between a processor and memory is established if the corresponding subspaces have a non-trivial 

intersections.      

The access of memory is done in a structured fashion. By applying the symmetry of the geometry, it is possible to identify 

processor-memory pairs, involving all the processors and memories, which can communicate in a conflict-free manner. Each such set 
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of processor-memory pairs forms a perfect-access pattern. A collection of all such patterns together forms a perfect-access sequence, 

which ensures that every processor gets to communicate with every memory it is directly connected to. 

For the distribution of computational work between processors, first the problem is broken down into atomic computations 

and operations that can be carried out parallel are considered together. Then the memories, which conflict the operands needed for a 

particular operation, are identified and the operation is assigned to the processor connected to these relevant memories, which is 

unique for most operations and depends on the problem and the underlying geometry.  

The symmetry of geometry ensures that a balance is maintained in the distribution of load among the processors. Thus, the 

data required for computations is brought in parallel using parallel access sequence and the computations are then carried out parallel 

on each processor, ensuring efficient use of resources while avoiding conflicts and maintaining load balance.     

VII Computational Environments  

The proposed architecture can be used as an attached accelerator to a general purpose host processor. The accelerator and the 

host share a global memory system. The main program runs on the host, while computationally intensive subroutines are to be 

executed on the attached accelerator. The shared memory consists of partitioned memory modules, which are shared by processors in 

the accelerator over an interconnection network. Since the host and the accelerator share the memory system, it is not necessary to 

communicate large amount of data between the two separate I/O buses. 

 

 

 

 

Figure 1: Computational Environment 

 Only certain structural information such as base address of arrays needs to be communicated from host processor to the attached 

accelerator before invoking a subroutine to be executed on the attached accelerator. 

7.1 Interconnection Scheme 

There is a finite projective geometry of dimension d, we describe the architecture as. Select a pair of dimensions 0 ≤ dm< dp 

≤ d. Put the processors in the system in a one-to-one correspondence with subspace of dimension dp, and put memory modules in a 
one-to-one correspondence with subspaces of dimension dm . From a connection between a processor and a memory module if an d 

only if(iff) the subspace corresponding to the processor contains the subspace corresponding to the memory module. By reference to 

above discussion, the number of processors in the system will be φ(d,dp,s), and the number memory modules will be  φ(d,dm,s).  Each 

processor will be connected to φ(dp,dm,s) memory modules, and each memory modules will be connected to φ(d-dm-1,dp-dm-1,s) 

processors. If we are interested in a symmetric architecture, with an equal number of processors and memory modules, then we must 

choose dp and dm  such that d = dp+dm+1 

7.2 Load Assignment 

With the above correspondence between subspace of geometry and processors (and memories), the assignment of 

computational load to processor can automatically be done at a fine-grain level. To illustrate this, consider a binary operation  

                        o ← a o b 

Suppose operand a is in memory module M I , and b is in memory module M j . Then we associate an index pair (i, j) with 

this operation. (Similarly, we associate an index triplet with a ternary operation). The processor P i responsible for doing this 

operation is determined by a function f that depends on the geometry: 

 

   l = f(i , j)  

    

Thus operations having the same associated index pairs (or triplets) always assigned to the same processor. Furthermore, the 

function f is compatible with structure of the geometry i.e. processor P i has connection to memory modules M i and M j . 

7.3 Perfect Pattern and Perfect Sequences 

 Now we introduce the concepts of perfect pattern and perfect sequences which restrict the combination of words that can 

be accessed in one cycle. These combinations are designed so that no conflicts can arise in either accessing the memories or in 

sending the accessed data through the interconnection network. We define a perfect access pattern for a symmetric architecture based 

on a 4-dimensional geometry. In this architecture, memory modules are in a one-to-one correspondence with lines, and processors are 

in one-to-one correspondence with planes. A memory module is connected to a processor if and only if the line corresponding to the 

memory module lies on the plane corresponding to the processor.  

 

                   HOST 

 

SHARED MEMORY 

              PROJECTIVE  

              GEOMETRY  

            ACCELERATOR 
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 Suppose the number of lines (and hence the number of planes) is n. A perfect access pattern P is a collection of n non-

collinear triplets, 

  P = {(pi,q,ri) | pi ,qi , ri Є Ω0 , dim(pi,qi ri) = 2 , i = 1 ….n} 

  

Satisfying the following properties: 

1. Let ui , i = 1…n denote the lines generated by first two points of each triplet 

    ui =  < pi , qi > 

Then the collection of lines {u1…un} forms a permutation of all the lines of the geometry. 

2. Let vi, i = 1…n denotes the lines 

    Vi = < qi , ri >  

Then the collection of lines {vi…vn } form a permutation of all the lines of the geometry. 

3. Let wi , i = 1…n denotes the lines 

Wi = < ri , pi >  

Then the collection of lines {wi…wn } forms a permission of all the lines of the geometry. 

4. Let hi , i= 1…n denotes the planes 

 

              Hi = < pi , qi , ri > 

 

Then the collection of planes { hi … hn } forms a permutation of all the planes of the geometry. 

Since there is a connection between a memory module M and a processor P iff the line α  

Corresponding to M is contained in the plane β corresponding to P, we can denote a connection by the ordered pair (α , β ). Let C be 

the collection of all processor-memory connections: 

  

  C = {( α ,β ) | α Ω1 , β Ω2 , α  ⊆ β}           

  

Then, if (pi , qi , ri ) is a triplet in a pattern P, ui , vi , wi  are the corresponding lines and hi  is the corresponding plane , we say 

the perfect pattern P exercises the connections (ui, hi), (vi, hi ) and (wi, hi). 

A sequence of perfect patterns is called a perfect sequence if each connection in C is exercised the same number of times 

collectively by the patterns in the sequence. It follows that if such perfect sequences form the basis for instruction executed on the 
architecture, it leads to a uniform utilization of even the wires connecting processors and memories. It is then possible to connect the 

processors and memories so that the number of wires in the system only grows linearly with the number of processors. A definition of 

perfect pattern for 2-dimentional geometries and a discussion on how to generate perfect pattern based on automorphisms of the 

underlying groups 

Using the automorphisms, we develop perfect matching sequence, which are bijective mappings between lines and planes. 

This is possible because we have the same number of planes and lines, both of which have been generated using the same 

automorphisms. Of these, the mappings that are relevant to our work are those that map a plane to one of the 7 lines that lie on it. 

 

 Consider the first sequence, S1: Ω2 → Ω1. 

  

S1(p) = Lx
a(ϕb(0,1,18)), if p = Lx

a(ϕb(0,1,2,5,11,18,19)) 

 
(The automorphism of a line or a plane is the set formed by the automorphisms of individual points on that line or plane) 

VIII Problem Mapping Strategies 

There are 2 different schemes that we have discussed here. The two schemes are based on the complete geometry using all 

the 155 lines and planes. There are 155 processors and 155 memory modules in each case. However they differ in their architecture 

and in the distribution of computational load over the processors. 

For all the strategies, the number of blocks in each row and column in matrix A is multiple of 31, as the block indices are 

associated with the points and there are 31 points in all. The indices are taken to be zero based. The block indices are mapped to 

points by taking their remainder modulo 31. Therefore we have the mapping function f: block indices → points as 

 

   F(b) = b(mod 31) 

 
IX Algorithm Mapping Scheme  

In this design, we have 155 processors and 155 memory modules and we use the entire P(4,GF(2)) geometry in defining the 

interconnection network. Each processor is connected to its own exclusive memory module; this processor-memory pair is associated 

with a line. In addition, the processor is also associated with plane mapped to the line through perfect matching S1. The processor is 
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directly connected to processor-memory pair representing other lines on its plane. Hence, each processor is connected to 12 other 

processors- 6 processors that lie on its own plane and 6 other processors in whose plane it lies. 

9.1 Data Distribution     

The data distribution in the memory modules depends on the indices of the matrix block and the triplet of points representing 

each module. Consider the following function M( i,j) from point doublets (elements of Ω0 ˟ Ω0) to Ω1, which specifies the memory 

module for Ap,q if  f(p) = I and f(q) = j. 

 

 M(α β) = line joining points  α and β all α, β Ɛ 0,1,…30 and α ≠ β 

 M(i,j) = Lx
i(ϕn(0,1,18)), a ε 0,1,2,3,4 

 

As can be seen from these equations, every block Ai,j, with distinct i, j , gets stored ij the memory module with the 

corresponding points in its 3-tuple representation. For example, the block A0,1 and A32,31 go into the module (0,1,18). This specifies 

the storage for all the non-diagonal blocks. 
 

 9.2 Distribution of Computations    

 The computation, which are represented by triplets of block indices are first converted to a triplet of points using the f map. 

These point triplets are distributed according to the following map P(α,β,γ) : Ω0 ˟  Ω0 ˟  Ω0 → Ω2.. 

 

 P(α,β,γ) = plane through non-collinear points  α,β and γ 

P(α, α , β) =  S1
-1(line joining α,β) 

P(α, β, α ) =  S1
-1(line joining α,β) 

P(α, β, β ) = planes passing through α and the lines M(β, β) 

 

As can be seen in the above equation, the computations corresponding to non-collinear triplets are allocated to the processor 

associated with the plane passing through that triplet. The column updates for the i-th iteration are carried out on the processors 
obtained by using the perfect matching sequence S1

-1 on each of 15 memory modules associated with lines passing through point i. 

The update of a diagonal block is done along with the update of other blocks stored.   

X Conclusions 

We can implement implicit and explicit parallelism to exploit speed-up computations. By applying language’s constructs we 

achieve implicit parallelism and by applying special purpose directives and system calls which are inherent in operating systems, we 

achieve explicit parallelism. 

Degree of parallelism can be enhanced by adopting both the multi-core and multi-threaded computation model. Projective 

geometry plays a significant role in parallel computing by suitably assigning the processes to the appropriate processors. Perfect 

pattern and perfect matching techniques can enhance the performance of the parallel system. 
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