Properties of (i,j)-Semi-I-Irresolute Multifunctions

B. BRUNDHA AND P. GOMATHI SUNDARI

Department of Mathematics, Government Arts College for women, Orathanadu, Thanjavur, Tamilnadu Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India.

Abstract-In this paper, we define upper (lower) (i,j)-semi-l - irresolute multifunction and obtain some characterizations and basic properties of such a multifunction.

2000 Mathematics Subject Classification. 54C05, 54C601, 54C08, 54C10.

Key words and phrases- Ideal bitopological space, (i,j)-semi-I-open set, (i,j)-semi-I-irresolute multifunction.

I. INTRODUCTION

It is well known that various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good number of them have been extended to the setting of multifunctions [2, 8, 9, 10, 11]. This implies that both, functions and multifunctions are important tools for studying other properties of spaces and for constructing new spaces from (i,j)-semiviously existing ones. The concept of ideals in topological spaces has been introduced and studied by Kuratowski [7] and Vaidyanathaswamy, [13]. An ideal I on a topological space $(X,(\tau_1,\tau_2))$ is a nonempty collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space $(X,(\tau_1,\tau_2))$ with an ideal I on X and if P(X) is the set of all subsets of X, a set operator (.)* : $P(X) \rightarrow P(X)$, called the local function [13] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(\tau,I) = \{x \in X | U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau | x \in U\}$. A Kuratowski closure operator $Cl^*(\cdot)$ for a topology $\tau^*(\tau,I)$ called the *-topology, finer than τ is defined by $Cl^*(A) = A \cup A^*(\tau,I)$ when there is no chance of confusion, $A^*(I)$ is denoted by A^* . If I is an ideal on X, then (X,τ_1,τ_2,I) is called an ideal bitopological space. In 1996, Dontchev [1] introduced the notion of (i,j)-semi-I-open sets and (i,j)-semi-I-continuous functions. Recently, Akdag [2] introduced and studied the concept of semi-I-continuous multifunction in topological spaces. The purpose of this paper is to define upper (lower) (i,j)-semi-I-irresolute multifunction and to obtain several characterizations of such a multifunction.

II. PRELIMINARIES

Throughout this paper, (X,τ_1,τ_2,I) and (Y,σ_1,σ_2,J) always mean ideal bitopological spaces in which no separation axioms are assumed unless explicitly stated. For a subset A of (X,τ) , Cl(A) and Int(A) denote the closure of A with respect to τ and the interior of A with respect to τ , respectively. A subset Sof an ideal topological space (X,τ_1,τ_2,I) is (i,j)-semi-Iopen S \subset Clj*(Inti(S))). The complement of an (i,j)-semi-I-closed set is said to be an (i,j)-semi-I-open set. The (i,j)-semi-Iclosure and the (i,j)-semi-I-interior, that can be defined in the same way as Cl(A) and Int(A), respectively, will be denoted by (i,j)-sICl(A) and (i,j)-sIInt(A), respectively. The family of all (i,j)semi-I-open (resp.(i,j)semi-I-closed) sets of (X,τ_1,τ_2,I) is denoted by (i,j)-SIO(X) (resp. (i,j)-SIC(X)). The family of all (i,j)-semi-I-open (resp. (i,j)-semi-I-closed) sets of (X,τ_1,τ_2,I) containing a point $x \in X$ is denoted by (i,j)-SIO(X,x) (resp. (i,j)-SIC(X,x)). A subset U of X is called an (i,j)semi-I-neighborhood of a point $x \in X$ if there exists $V \in (i,j)$ -SIO(X,x) such that $V \subset U$. By a multifunction $F : (X,\tau) \rightarrow$ (Y,σ) , following [3], we shall denote the upper and lower inverse of a set B of Y by F ⁺(B) and F⁻(B), respectively, that is, $F^+(B) = \{x \in X : F(x) \subset B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. In particular, $F^-(Y) = \{x \in X : y \in F(x)\}$ for each point $y \in$ Y and for each $A \subset X$, $F(A) = U_{x \in A} F(x)$. Then F is said to be surjection if F(x) = y.

Lemma 2.1. If A is a subset of (X, τ_1, τ_2, I) , then (i, j)-sI Cl(A) = AUCli(Intj*(A)).

Definition 2.2. A multifunction F $(X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$ is said to be:

- (1) upper (i,j)-semi-I-continuous [2] if for each point $x \in X$ and each open set V containing F(x), there exists $U \in (i,j)$ -SIO(X,x) such that $F(U) \subset V$;
- (2) lower (i,j)-semi-I-continuous [2] if for each point x ∈ X and each open set V such that F(x)∩V ≠ Ø, there exists U ∈ (i,j)-SIO(X,x) such that U ⊂ F⁻(V).
- (3) On upper and lower (i,j)-semi-I-irresolute multifunctions

Definition 3.1. A multifunction $F : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$ is said to be:

© 2019 JETIR June 2019, Volume 6, Issue 6

- (1) upper (i,j)semi-I-irresolute if for each point $x \in X$ and each (i,j)semi-J-open set V containing F(x), there exists $U \in (i,j)$ -SIO(X,x) such that F(U) \subset V;
- (2) lower (i,j)-semi-I-irresolute if for each point $x \in X$ and each (i,j)-semi-J-open set V such that $F(x) \cap V \neq \emptyset$, there exists $U \in (i,j)$ -SIO(X,x) such that $U \subset F^{-}(V)$.

Theorem 3.2. The following statements are equivalent for a multifunction $F : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$:

- (1) F is upper (i,j)-semi-I-irresolute;
- (2) for each point x of X and each (i,j)semi-J-neighborhood V of F(x), $F^+(V)$ is a (i,j)semi-I-neighborhood of x;
- (3) for each point x of X and each (i,j)semi-J-neighborhood V of F(x), there exists a(i,j)semi-I-neighborhood U of x such that $F(U) \subset V$;
- (4) $F^+(V) \in (i,j)$ -SIO(X) for every $V \in (i,j)$ -SJO(Y);
- (5) $F^{-}(V) \in (i,j)$ -SIC(X) for every $V \in (i,j)$ -SJC(Y);
- (6) (i,j)-sICl($F^{-}(B)$) $\subset F^{-}((i,j)$ -sJ Cl(B)) for every subset B of Y.

Proof. (1) \Rightarrow (2): Let $x \in X$ and W be an (i,j)-semi-J-neighborhood of F(x). There exists $V \in (i,j)$ -SJO(Y) such that $F(x) \subset V$

 \subseteq W. Since F is upper (i,j)-semi-I-irresolute, there exists $U \in (i,j)$ -SIO(X,x) such that $F(U) \subseteq V$. Therefore, we have $x \in U$

 \subset F⁺(V) \subset F⁺(W); hence F⁺(W) is an (i,j)-semi-I-neighborhood of x.

- (2) \Rightarrow (3): Let $x \in X$ and V be an (i,j)-semi-J-neighborhood of F(x). Put U = F⁺(V). Then, by (2), U is an (i,j)-semi-I-neighborhood of x and F(U) \subseteq V.
- (3) ⇒ (4): Let V ∈ (i,j)-SJO(Y) and x ∈ F⁺(V). There exists an (i,j)-semi-I-neighborhood G of x such that F(G) ⊂ V. Therefore, for some U ∈ (i,j)-SIO(X,x) such that U ⊂ G and F(U) ⊂ V. Therefore, we obtain x ∈ U ⊂ F⁺(V); hence F⁺(V) ∈ (i,j)-SIO(X).
- (4) \Rightarrow (5): Let K be an (i,j)-semi-J-closed set of Y. We have $X F^{-}(K) = F^{+}(Y \setminus K) \in (i,j)$ -SJO(X); hence $F^{-}(K) \in (i,j)$ -SIC(X).
- (5) \Rightarrow (6): Let B be any subset of Y. Since (i,j)-sJCl(B) is (i,j)-semi-J-closed in Y, F⁻((i,j)-sJCl(B)) is (i,j)-semi-I-closed in X and F⁻(B) \subset F⁻((i,j)-sJCl(B)). Therefore, we obtain (i,j)-sICl(F⁻(B)) \subset F⁻((i,j)-sJCl(B)).
- (6) ⇒ (1): Let x ∈ X and V ∈ (i,j)-SJO(Y) with F(x) ⊂ V. Then we have F(x)∩(Y \V) = Ø; hence x /∈ F⁻(Y \V). By (6), x ∈ (i,j)-sI Cl(F⁻(Y \V)) and there exists U ∈ (i,j)-SIO(X,x) such that U ∩ F⁻(Y \V) = Ø. Therefore, we obtain F(U) ⊂ V and hence F is upper (i,j)-semi-I-irresolute.

Theorem 3.3. The following statements are equivalent for a multifunction $F : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$

- (1) F is lower (i,j)-semi-I-irresolute;
- (2) For each $V \in (i,j)$ -SJO(Y) and each $x \in F^{-}(V)$, there exists $U \in (i,j)$ -SIO(X,x) such that $U \subset F^{-}(V)$;
- (3) $F^{-}(V) \in (i,j)$ -SIO(X) for every $V \in (i,j)$ -SJO(Y);
- (4) $F^{+}(K) \in (i,j)$ -SIC(X) for every $K \in (i,j)$ -SJC(Y);
- (5) F((i,j)-sI $Cl(A)) \subset (i,j)$ -sJ Cl(F(A)) for every subset A of X;
- (6) (i,j)-sI Cl(F⁺(B)) \subset F⁺((i,j)-sJ Cl(B)) for every subset B of Y.

Proof. (1) \Rightarrow (2): This is obvious.

(2) \Rightarrow (3): Let $V \in (i,j)$ -SJO(Y) and $x \in F^{-}(V)$. There exists $U \in (i,j)$ -SIO(X,x) such that $U \subset F^{-}(V)$. Therefore, we have $x \in U \subset Inti(Clj^{*}(U)) \subset Inti(Clj^{*}(F^{-}(V)))$; hence $F^{-}(V) \in (i,j)$ -SIO(X).

(3) \Rightarrow (4): Let K be an (i,j)-semi-I-closed set of Y. We have X\F⁺(K) = F⁻(Y \K) \in (i,j)-SIO(X); hence F⁺(K) \in (i,j)-SIC(X).

(4) \Rightarrow (5) and (5) \Rightarrow (6): Straightforward.

 $(6) \Rightarrow (1)$: Let $x \in X$ and $V \in (i,j)$ -SJO(Y) with $F(x) \cap V \neq \emptyset$. Then F(x) is not a subset of Y \V and x $\in F^+(Y \setminus V)$. Since Y \V is (i,j)-semi-I-closed in Y, by (6), $x \in (i,j)$ -sI Cl($F^+(Y \setminus V)$) and there exists $U \in (i,j)$ -SIO(X,x) such that $\emptyset = U \cap F^-(Y \setminus V) = U \cap (X \setminus F^-(V))$. Therefore, we obtain $U \subset F^-(V)$; hence F is lower (i,j)-semi-I-irresolute.

Lemma 3.4. If $F : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$ is a multifunction, then $((i, j) - SI \ ClF)^-(V) = F^-(V)$ for each $V \in (i, j) - SJO(Y)$.

Proof. Let V ∈ (i,j)-SJO(Y) and x ∈ ((i,j)-sI ClF)-(V). Then V ∩((i,j)-sI ClF)(x) 6= Ø. Since V ∈ (i,j)-SJO(Y), we have V ∩ $F(x) \neq Ø$ and hence x ∈ F-(V). Conversely, let x ∈ F-(V). Then $Ø \neq F(x) ∩ V ⊂$ ((i,j)-sI ClF)(x) ∩ V and hence x ∈ ((i,j)-sI ClF)-(V). Therefore, we obtain ((i,j)-sI ClF)-(V) = F-(V).

Theorem 3.5. A multifunction $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is lower (i,j)-semi-I-irresolute if and only if (i,j)-sI ClF : $(X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is lower (i,j)-semi-I-irresolute

© 2019 JETIR June 2019, Volume 6, Issue 6

Proof. The proof is an immediate consequence of Lemma 3.4 and Theorem 3.3 (iii).

Definition 3.6. A subset A of a topological space (X,τ) is said to be:

- (1) α -regular [6] (resp. α -(i,j)-semi-I-regular) if for each $a \in A$ and any open (resp. (i,j)-semi-I-open) set U containing a, there exists an open set G of X such that $a \in G \subset Cl(G) \subset U$;
- (2) α -paracompact [6] if every X-open cover A has an X-open refinement which covers A and is locally finite for each point of X.

Lemma 3.7. If A is an α -(i,j)-semi-I-regular, α -paracompact subset of a space X and U is (i,j)-semi-I-neighborhood of A, then there exists an open set G of X such that A \subset G \subset Cl(G) \subset U.

Proof. The proof is similar to that [[6], Theorem 2.5].

Definition 3.8. A multifunction F : (X, τ_1 , τ_2 ,I) → (Y, σ_1 , σ_2 ,J) is said to be punctually α-paracompact (resp. punctually α-(i,j)-semi-I-regular, punctually α-regular) if for each x ∈ X, F(x) is α-paracompact (resp. α-(i,j)-semi-I-regular, α-regular).

Lemma 3.9. If $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is punctually α -paracompact and punctually α -(i,j)-semi-I-regular, ((i,j)-SI ClF)⁺(V) = F⁺(V) for each V \in (i,j)-SJO(Y).

Proof. Let $V \in (i,j)$ -SJO(Y). Suppose that $x \in ((i,j)$ -sI ClF)+(V). Then, we have $F(x) \subset (i,j)$ -sI Cl(F(x)) $\subset V$ and hence $x \in F^+(V)$. Therefore, we obtain ((i,j)-sI ClF)+(V) $\subset F^+(V)$. Conversely, suppose that $x \in F^+(V)$. Then $F(x) \subset V$ and by Lemma 3.7 we have $F(x) \subset G \subset Cl(G) \subset V$ for some open set G of Y. Therefore, ((i,j)-sI ClF)(x) $\subset V$ and hence $x \in ((i,j)$ -sI ClF)+(V). Thus, we obtain $F^+(V) \subset ((i,j)$ -sIClF)+(V); hence ((i,j)-sI ClF)+(V) = F^+(V).

Theorem 3.10. Let $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ be punctually α -paracompact and punctually α -(i,j)-semi-I-regular multifunction. Then F is upper (i,j)-semi-Iirresolute if and only if (i,j)-sI ClF : $(X,\tau,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is upper (i,j)-semi-Iirresolute.

Proof. The proof follows from Lemma 3.9.

Definition 3.11. An ideal bitopological space (X,τ_1,τ_2,I) is said to be (i,j)-semi-I-normal if for any pair of disjoint closed subsets A, B of X, there exist disjoint U,V \in (i,j)-SIO(X) such that A \subset U and B \subset V.

Theorem 3.12. If Y is (i,j)-semi-I-normal and $F_i : X_i \rightarrow Y$ is an upper (i,j)-semi-I-irresolute multifunction such that F_i is punctually closed for i = 1,2 and the product of two (i,j)-semi-I-open sets is (i,j)-semi-I-open, then the set $\{(x_1,x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) \neq \emptyset\}$ is (i,j)-semi-I-closed in $X_1 \times X_2$.

Proof. Let $A = \{(x_1,x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) \neq \emptyset\}$ and $(x_1,x_2) \in (X_1 \times X_2) \setminus A$. Then $F_1(x_1) \cap F_2(x_2) = \emptyset$. Since Y is (i,j)-semi-I-normal and F_i is punctually closed for i = 1, 2, there exist disjoint $V_1, V_2 \in (i,j)$ -SIO(X) such that $F_i(x_i) \subset V_i$ for i = 1, 2. Since F_i is upper (i,j)-semi-I-irresolute, $F_i^+(V_i) \in (i,j)$ -SIO(X_i,x_i) for i = 1, 2. Put $U = F_{+1}(V_1) \times F_{+2}(V_2)$, then $U \in (i,j)$ -SIO(X₁ $\times X_2$) and $(x_1,x_2) \in U \subset (X_1 \times X_2) \setminus A$. This shows that $(X_1 \times X_2) \setminus A \in (i,j)$ -SIO(X₁ $\times X_2$); hence A is (i,j)-semi-I-closed set in X₁ $\times X_2$.

Definition 3.13. Let A be a subset of an ideal bitopological space X. The (i,j)-semi-I-frontier of A denoted by (i,j)-sIFr(A), is defined as follows: (i,j)-sIFr(A) = (i,j)-sI Cl(A) \cap (i,j)-sI Cl(X\A).

Theorem 3.14. The set of a point x of X at which a multifunction $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is not upper (lower) (i,j)-semi-I-irresolute is identical with the union of the (i,j)-semi-I-frontiers of the upper (lower) inverse images of (i,j)-semi-I-open sets containing (meeting) F(x).

Proof. Let x be a point of X at which F is not upper (i,j)-semi-I-irresolute. Then there exists $V \in (i,j)$ -SJO(Y) containing F(x) such that $U \cap (X \setminus F^+(V)) \neq \emptyset$ for each $U \in (i,j)$ -SIO(X,x). Then $x \in (i,j)$ -SI Cl(X \ F^+(V)). Since $x \in F^+(V)$, we have $x \in (i,j)$ -sI Cl(F+(Y) and hence $x \in (i,j)$ -sIFr(F+(A)). Conversely, let $V \in (i,j)$ -SJO(Y) containing F(x) and $x \in (i,j)$ -sIFr(F+(V)). Now, assume that F is upper (i,j)-semi-I-irresolute at x, then there exists $U \in (i,j)$ -SIO(X,x) such that F(U) $\subset V$. Therefore, we obtain $x \in U \subset (i,j)$ -sI Int(F+(V). This contradicts that $x \in (i,j)$ -sIFr(F+(V)). Thus, F is not upper (i,j)-semi-I-irresolute. The proof of the second case is similar.

Lemma 3.15. For a multifunction $F : (X, \tau_1, \tau_2, I) \rightarrow (Y, \sigma_1, \sigma_2, J)$, the following holds:

(1) $G^{+_F}(A \times B) = A \cap F^+(B)$; (2) $G^{-_F}(A \times B) = A \cap F^-(B)$ for any subset A X and B of Y.

Theorem 3.16. Let $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ be a multifunction. If the graph multifunction of F is upper (lower) (i,j)-semi-I-irresolute, then F is upper (lower) (i,j)-semi-I-irresolute.

Proof. Let $x \in X$ and V be any (i,j)-semi-J-open subset of Y containing F(x). Since $X \times V$ is an (i,j)-semi-I-open set of $X \times Y$ and $G_F(x) \subset X \times V$, there exists an (i,j)-semi-I-open set U containing x such that $G_F(U) \subset X \times V$. By Lemma 3.19, we have $U \subset G^+(X \times V) = F^+(V)$ and $F(U) \subset V$. Thus, F is upper (i,j)-semi-I-irresolute. The proof of the lower (i,j)-semi-I-irresolute of F can be done by the similar manner.

Definition 3.17. An ideal topological space (X,τ_1,τ_2,I) is said to (i,j)-semi-I-T₂ if for each pair of distinct points x and y in X, there exist disjoint (i,j)-semi-I-open sets U and V in X such that $x \in U$ and $y \in V$.

Theorem 3.18. If $F : (X,\tau_1,\tau_2,I) \rightarrow (Y,\sigma_1,\sigma_2,J)$ is an upper (i,j)-semi-I-irresolute injective multifunction and point closed from a topological space X to a (i,j)-semi-J -normal space Y, then X is a (i,j)-semi-I-T₂ space.

Proof. Let x and y be any two distinct points in X. Then we have $F(x) \cap F(y) = \emptyset$ since F is injective. Since Y is (i,j)-semi-J-normal, there exist disjoint (i,j)-semi-J-open sets U and V containing F(x) and F(y), respectively. Thus, there exist disjoint (i,j)-semi-I-open sets $F^+(U)$ and $F^+(V)$ containing x and y, respectively such $G \subset F^+(U)$ and $W \subset F^+(V)$. Therefore, we obtain $G \cap W = \emptyset$; hence X is (i,j)-semi-I-T₂.

REFERENCES

- [1] J. Dontchev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math.J., 2 (1996).
- [2] M. Akdag, On upper and lower semi-I-continuous multifunctions, Far East J. math. Sci., 25(1)(2007), 49-57.
- [3] T. Banzaru, Multifunctions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
- [4] E. Hatir and T. Noiri, On decomposition of continuity via idealization, Acta Math. Hungar., 96(2002), 341-349.
- [5] D. Jankovic and T. R. Hamlett, New toplogies from old via ideals, Amer. Math. Monthly, 97 (4) (1990), 295-310.
- [6] I. Kovacevic, Subsets and paracompactness, Univ. u. Novom Sadu, Zb. Rad.
- Prirod. Mat. Fac. Ser. Mat., 14(1984), 79-87.
- [7] K. Kuratowski, Topology, Academic presemiss, New York, 1966.
- [8] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363-380.
- [9] T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010), 185-214.
- [10] V. Popa, A note on weakly and almost continuous multifunctions, Univ, u Novom Sadu, Zb. Rad. Prirod-Mat. Fak. Ser. Mat., 21(1991), 31-38.
- [11] V. Popa, Weakly continuous multifunction, Boll. Un. Mat. Ital., (5) 15A(1978),379-388.
- [12] G. T. Whyburn, Retracting multifunctions, Proc. Nat. Acad. Sci., 59(1968), 343-348.
- [13] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [14] S. Yuksel, A. Acikgoz and E. Gursel, A new type of continuous functions in ideal topological spaces, J. Indian Acad. Math., 28 (2007), 427-438.

