QUASI g*- NORMAL SPACES AND πgg*-CLOSED SETS

Jitendra Kumar and Dr. B. P. Singh Department of Mathematics S. S. M. V. (P. G.) College, Shikarpur-203395 (U. P.) India J. V. Jain (P. G.) College, Saharanpur-247001 (U. P.) India.

Abstract: In this paper, we introduce a new class of sets called πgg^* -closed sets in topological spaces. Also we study and investigate the relationship with other existing closed sets. Moreover, we introduce some functions such as g*-closed, πgg^* -closed, almost g*-closed, almost πgg^* -closed, πgg^* -continuous and almost πgg^* -continuous. We also study a new class of normal space called, quasi g*-normal space. The relationships among normal, π -normal, quasi normal, softly normal, mildly normal, α -normal, $\pi \alpha$ -normal, quasi α -normal, softly α -normal, g*-normal, πg^* -normal, πg^* -normal, softly g*-normal spaces are investigated. Further we show that this property is a topological property and it is a hereditary property only with respect to closed domain subspaces. Utilizing πgg^* -closed sets and some functions, we obtained some characterizations and preservation theorems for quasi g*-normal spaces.

2010 AMS Subject Classification: 54D15, 54D10, 54D05, 54C08.

Key words and phrases : π -open, g^* -open, πgg^* -closed, π -closed, g^* -closed, and πgg^* -closed sets, πgg^* -closed, almost πgg^* -closed, πgg^* -continuous and almost πgg^* -continuous functions, quasi g^* -normal spaces.

1. Introduction

In 1958, Kuratowski, [13] introduced the concept of regular open and regular closed sets in topological spaces. In 1968, Zaitsev [32] introduced the concept of quasi-normal space in topological spaces and obtained several properties of such a space. In 1970, Levine [15] defined generalized closed sets in topological spaces. In 1973, Singal and Singal [26] introduced the concept of mildly normal spaces and obtained their properties. In 1989, Nour [22] introduced the notion of p-normal spaces and obtained their characterizations and preservation theorems for p-normal spaces. In 1990, Mahmoud and Monsef [17] introduced the concept of β -normal spaces. In 2000, M. K. R. S. Veera Kumar [31] introduced the concepts of g*-closed sets in topological spaces. In 2007, Ekici [10] introduced the concept of γ -normal spaces and obtained their characterizations and preservation theorems for γ -normal spaces. In 2008, Kalantan [11] introduced the notion of π -normal spaces and obtained some characterizations. In 2010, Tahiliani [30] introduced the notion of π g β -closed sets and their properties are studied. In 2010, M. C. Sharma and Hamant Kumar [24] introduced the notion of $\pi\beta$ -normal spaces and obtained their characterizations. In 2012, Thabit and Kamaruihaili [28] introduced the notion of a weaker form of p-normality called quasi p-normality which lies between π p-normal spaces and prove that π gp-normality is a topological property and it is a hereditary property with respect to π -open, π gp-closed subspaces. Recently, Hamant Kumar and M.C.Sharma [12] introduced the concept of π g γ -closed sets as weak form of π g-closed sets due to Dontchev [9]. and introduced the concept of quasi γ -normal spaces and by using π g γ -closed sets, we obtained a characterization and preservation theorems for quasi γ -normal spaces.

2. Preliminaries

Throughout in this paper, the spaces (X, τ) , (Y, σ) and (Z, γ) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a space X. The closure of A and interior of A are denoted by cl(A) and int(A) respectively.

2.1. Definition. A subset A of a space X is said to be

1. regular open [13] if A = int(cl(A)).

- 2. The finite union of regular open sets is said to be π -open [32].
- 3. **\gamma-open [3]** if $A \subset cl(int(A)) \cup int(cl(A))$.
- 4. **p-open [18]** if $A \subset int(cl(A))$.
- 5. s-open [14] if $A \subset cl(int(A))$.
- 6. **\alpha-open [19]** if $A \subset int(cl(int(A)))$.
- 7. **\beta-open [1]** if $A \subset cl(int(cl(A)))$.

The complement of a regular open (resp. π -open, γ -open, p-open, s-open, α -open, β -open) set is said to be **regular closed** (resp. π -closed, γ -closed, p-closed, s-closed, α -closed, β -closed).

2.2. Definition. A subset A of a topological space X is said to be

1. **g-closed** [15] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

2. **gp-closed** [20] if $p-cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

3. **gs-closed** [6] if $p-cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

4. **ag-closed [16]** if α -cl(A) \subset U whenever A \subset U and U is open in X

5. **g** β -closed [8] if β -cl(A) \subset U whenever A \subset U and U is open in X.

6. gy-closed [2] if γ -cl(A) \subset U whenever A \subset U and U is open in X.

7. πg -closed [9] if cl(A) \subset U whenever A \subset U and U is π -open in X.

8. **\pigp-closed [23]** if p-cl(A) \subset U whenever A \subset U and U is π -open in X.

9. **\pigs-closed** [7] if s-cl(A) \subset U whenever A \subset U and U is π -open in X.

10. π ga-closed [5] if α -cl(A) \subset U whenever A \subset U and U is π -open in X.

11. $\pi g\beta$ -closed [30] if β -cl(A) \subset U whenever A \subset U and U is π -open in X.

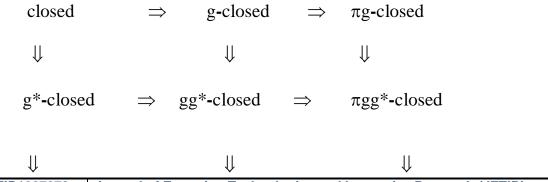
12. π gy-closed [27] if γ -cl(A) \subset U whenever A \subset U and U is π -open in X.

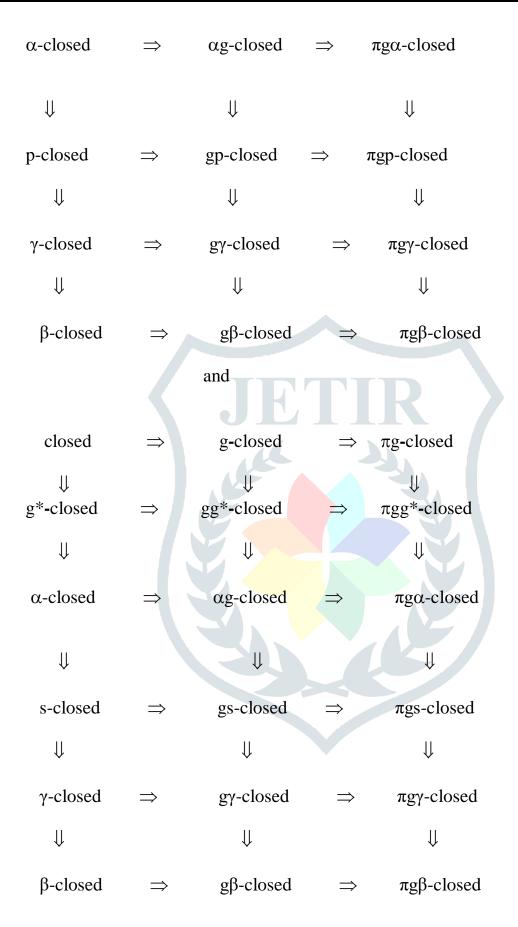
13. g-open (resp. gp-open, gs-open, α g-open, g β -open, g γ -open, π g-open, π gg-open, π gg-open, π gg-open, π gg-open, π gg-open, π gg-closed, gs-closed, gs-closed, gs-closed, gs-closed, π gc-closed, π gc-closed, π gc-closed, π g β -closed, π g β -closed, π gg-closed, π gg-clo

14. g*-closed [31] if $cl(A) \subset U$ whenever $A \subset U$ and U is g-open in X.

15. π gg*-closed if g*- cl(A) \subset U whenever A \subset U and U is π -open in X.

The complement of g-closed (resp. α -closed ,g*-closed, gg*-closed, π g-closed , π gg*-closed) set is called **g-open** (resp. **g*-open**, **gg*-open**, **\pig-open**, **\pigg*-open**) set and the complement of π -open is called π -closed. The intersection of all g*-closed sets containing A is called the **g*-closure of A** and denoted **g*-cl**(A). The union of all g*-open subsets of X which are contained in A is called the **g*-interior of A** and denoted by **g*-int**(A).





here none of the implications is reversible as can be seen from the following examples.

2.3. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$. Here we show that $A = \{c\}$ is $\pi g \alpha$ -closed but not g-closed.

2.4. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a\}$ is gyclosed as well as g β -closed but not closed.

2.5. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{d\}, \{b, d\}, X\}$. Then $A = \{a, b, d\}$ is gyclosed as well as g β -closed but it is not closed.

2.6. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. A = $\{a, b\}$ is gy-closed as well as π gy-closed but it is not closed.

2.7. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then the subset $A = \{b\}$ is g-closed as well as gy-closed but not closed.

2.8. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Then the subset $A = \{a, b\}$ is g-closed as well as $g\gamma$ -closed but not closed.

2.9. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then the subset $A = \{a, c\}$ is g-closed as well as gy-closed but not closed.

2.10. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{b, d\}, \{a, b, c, d\}, X\}$. Then $A = \{a, e\}$ is πg -closed as well as $\pi g \alpha$ -closed but it is not closed.

2.11. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then A ={c} is $\pi g \alpha$ -closed as well as $\pi g p$ -closed but it is not closed.

2.12. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, X\}$. Then $A = \{a\}$ is π gs-closed as well as π g γ -closed but it is not closed.

2.13. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, X\}$. Then A = {c} is π gp-closed as well as π g β -closed but it is not closed.

2.14.Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c, d\}, \{a, c, d\}, \{d\}, \{a, d\}, X\}$.Let A ={c}.Then A is π gg*-closed set but not π g-closed set in X.

2.15. Example. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, d, c\}, \{a, d, d\}, \{a, d, c\}, \{a, d, c\}, \{a, d, c\}, \{a, d, d\}, \{a, d, c\}, \{a, d, c\}, \{a, d, d\}, \{a, d, d\},$

2.16. Theorem. A subset A of a topological space X is πgg^* -open iff $F \subset g^*$ -int (A) whenever F is π -closed and $F \subset A$.

3. Quasi g*- Normal Spaces

3.1. Definition. A topological space X is said to be **g*-normal** (resp. α -normal [4]) if for every pair of disjoint closed subsets A, B of X, there exist disjoint g*-open (resp. α -open) sets U, V of X such that A \subset U and B \subset V.

3.2. Definition. A topological space X is said to be πg^* -normal (resp. π -normal [11], $\pi \alpha$ -normal) if for every pair of disjoint closed subsets A, B of X, one of which is π -closed, there exist disjoint g*-open (resp. open, α -open) sets U, V of X such that $A \subset U$ and $B \subset V$.

3.3. Definition. A topological space X is said to be **quasi g*-normal** (resp. **quasi normal** [32], **quasi \alpha-normal** [5]) if for every pair of disjoint π -closed subsets H, K, there exist disjoint g*-open sets U, V of X such that H \subset U and K \subset V.

normal	\Rightarrow	π -normal	\Rightarrow	quasi-normal
\Downarrow		\Downarrow		\Downarrow
g*-normal	\Rightarrow	πg*-normal	\Rightarrow	quasi g*-normal
Ų		₽ IE1	TR >	\Downarrow
α-normal	\Rightarrow	$\pi\alpha$ -normal	⇒	quasi α -normal
\Downarrow				\Downarrow
p-normal	\Rightarrow	πp-normal	\Rightarrow	quasi p-normal
\Downarrow		Ų		\Downarrow
γ -normal	\Rightarrow	$\pi\gamma$ -normal	\Rightarrow	quasi γ-normal
\Downarrow		\downarrow		\Downarrow
β-normal	\Rightarrow	πβ-normal	\Rightarrow	quasi β
		and		
normal	\Rightarrow	π-normal	\Rightarrow	quasi-norma
\Downarrow		\Downarrow		\downarrow
g*-normal	\Rightarrow	πg^* -normal	\Rightarrow	quasi g*-normal
Ų		\Downarrow		\Downarrow

JETIR1907272Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org913

α-normal	\Rightarrow	$\pi\alpha$ -normal	\Rightarrow	quasi α -normal
\Downarrow		\Downarrow		\Downarrow
s-normal	\Rightarrow	π s-normal	\Rightarrow	quasi s-normal
\Downarrow		\Downarrow		\Downarrow
γ -normal	\Rightarrow	$\pi\gamma$ -normal	\Rightarrow	quasi γ-normal
\Downarrow		\Downarrow		\Downarrow
β-normal	\Rightarrow	$\pi\beta$ -normal	\Rightarrow	quasi β-normal

3.4. Example. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{e\}, \{a, b\}, \{c, d\}, \{a, b, e\}, \{c, d, e\}, \{a, b, c, d\}, X\}$. The pair of disjoint π -closed subsets of X are $A = \{a, b\}$ and $B = \{c, d\}$. Also $U = \{a, b, e\}$ and $V = \{c, d\}$ are γ -open sets such that $A \subset U$ and $B \subset V$. Hence X is quasi γ -normal but not quasi-normal, since U and V are not open sets.

3.5. Example. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ is quasi p-normal but not p-normal space.

{a, b, d}, {b, c, d}, X}. The pair of disjoint π -closed subsets of X are A = {a} and B = {c}.

Also U = {a} and V = {b, c, d} are disjoint open sets such that A \subset U and B \subset V. Hence X is quasi-normal as well as quasi g*-normal because every open set is g*-open set.

3.7. Theorem. For a topological space X, the following are equivalent :

- (a) X is quasi g*-normal.
- (b) For any disjoint π -closed sets H and K, there exist disjoint gg*-open sets U and V such that $H \subset U$ and $K \subset V$.
- (c) For any disjoint π -closed sets H and K, there exist disjoint πgg^* -open sets U and V such that $H \subset U$ and $K \subset V$.
- (a) For any π -closed set H and any π -open set V containing H, there exists

a gg*-open set U of X such that $H \subset U \subset g^*-cl(U) \subset V$.

(b) For any π - closed set H and any π - open set V containing H, there exists

a πgg^* - open set U of X such that $H \subset U \subset g^*$ -cl(U) $\subset V$.

Proof. (a) \Rightarrow (b), (b) \Rightarrow (c), (d) \Rightarrow (e), (c) \Rightarrow (d), and (e) \Rightarrow (a). (a) \Rightarrow (b). Let X

be quasi g*-normal. Let H, K be disjoint π - closed sets of X. By assumption, there exist

disjoint g*-open sets U, V such that $H \subset U$ and $K \subset V$. Since every g*-open set is gg*-open, U, V are gg*-open sets such that $H \subset U$ and $K \subset V$.

(b) \Rightarrow (c). Let H, K be two disjoint π -closed sets. By assumption, there exist gg*-open sets U and V such that H \subset U and K \subset V. Since gg*-open set is π gg*-open, U and V are π gg*-open sets such that H \subset U and K \subset V.

(d) \Rightarrow (e). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exists a gg*-open set U of X such that

 $H \subset U \subset g^*$ -cl(U) $\subset V$. Since every gg*-open set is πgg^* -open, there exists a πgg^* -open set U of X such that $H \subset U \subset g^*$ -cl(U) $\subset V$.

(c) \Rightarrow (d). Let H be any π -closed set and V be any π -open set containing H. By assumption, there exist π gg*-open sets U and W such that H \subset U and

 $X - V \subset W$. By **Theorem 2.16**, we get $X - V \subset g^*$ -int(W) and

 $g^*-cl(U) \cap g^*-int(W) = \phi$. Hence $H \subset U \subset g^*-cl(U) \subset X - g^*-int(W) \subset V$.

(e) \Rightarrow (a). Let H, K be any two disjoint π -closed set of X. Then $H \subset X - K$ and X - K is π open. By assumption, there exists a πgg^* -open set G of X such that $H \subset G \subset g^*$ -cl(G) $\subset X - K$. Put $U = g^*$ -int(G), $V = X - g^*$ -cl(G). Then U and V are disjoint g*-open sets of X such
that $H \subset U$ and $K \subset V$.

3.8. Definition. A function $f: X \to Y$ is said to be

1. g*- closed (resp. gg*- closed , π gg*- closed) if f (F) is g*-closed (resp.

gg*-closed , π gg*-closed) in Y for every closed set F of X

2. rc - preserving [21](resp. almost closed [25], almost g^* - closed, almost πgg^* - closed, almost πgg^* - closed) if f (F) is regularly closed (resp. closed,

g*-closed, gg*- closed, π gg*- closed) in Y for every $F \in RC(X)$.

3. π -continuous [9] (resp. almost π -continuous [9] if $f^{-1}(F)$ is π -closed in X for every closed (resp. regular closed) set F of Y.

4.almost πgg^* -continuous if $f^{-1}(F)$ is πgg^* -closed in X for every regular closed set F of Y.

From the definitions stated above, we obtain the following diagram:

closed \Rightarrow g*-closed \Rightarrow gg*-closed \Rightarrow π gg*-closed $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ al. closed \Rightarrow al. g*-closed \Rightarrow al. gg*-closed \Rightarrow al. π gg*-closed here al. = almost.

here none of the reverse implications are true as can be seen from the

following examples :

3.9. Example. $X = \{a, b, c, d\}, \tau = \{\phi, \{c\}, \{a, b, d\}, X\}$ and $\sigma = \{\phi, \{a\}, \sigma = \{\phi, \{a\}, \{a\}, \sigma = \{\phi, \{a\}, \sigma = \{a\}$

 $\{d\}, \{c, d\}, \{a, d\}, \{a, c, d\}, X\}$. Let $f: (X, \tau) \rightarrow (X, \sigma)$ be the identity

function. Then f is πgg^* -closed but not πg -closed. Since A= {c} is not πg -

closed in (X, σ) .

3.10. Example . Let $X = \{a, b, c, d\}$ $\tau = \{\phi, \{c\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$ and $\sigma = \{a, b, c, d\}$

 ϕ , X, {a}, {d}, {a, d}, {c, d}, {a, c, d}. Let $f: (X, \tau) \rightarrow (X, \sigma)$ be the identity function Then

f is almost πgg^* -closed but not πgg^* -

closed. Since $A = \{c\}$ is not πgg^* -closed.

3.11.Theorem. A surjection $f: X \to Y$ is almost πgg^* -closed if and only if for each subset S

of Y and each $U \in RO(X)$ containing f⁻¹(S), there exists a

 π gg*-open set V of Y such that S \subset V and f⁻¹(V) \subset U.

Proof. Necessity. Suppose that f is almost πgg^* -closed. Let S be a subset

of Y and $U \in RO(X)$ containing $f^{-1}(S)$. If V = Y - f(X - U), then V is a

 π gg*-open set of Y such that S \subset V and f⁻¹(V) \subset U.

Sufficiency. Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset X - F$

and $X - F \in RO(X)$. There exists a πgg^* - open set V of Y such that Y - f(F)

 \subset V and $f^{-1}(V) \subset X - F$. Therefore, we have $f(F) \supset Y - V$ and $F \subset X - f^{-1}(V) \subset f^{-1}$

(Y - V). Hence we obtain f(F) = Y - V and f(F) is πgg^* -closed in Y which shows that f is almost πgg^* -closed.

4. Preservation Theorems

4.1.Theorem. If $f: X \to Y$ is an almost πgg^* -continuous rc-preserving

injection and Y is quasi g*-normal then X is quasi g*-normal.

Proof. Let A and B be any disjoint π -closed sets of X. Since f is a

rc-preserving injection, f (A) and f (B) are disjoint π -closed sets of Y. Since

Y is quasi g*-normal, there exist disjoint g*-open sets U and V of Y such

that $f(A) \subset U$ and $f(B) \subset V$. Now if G = int(cl(U)) and H = int(cl(V)). Then G and H are

regular open sets such that $f(A) \subset G$ and $f(B) \subset H$. Since

f is almost πgg^* -continuous, f⁻¹(G) and f⁻¹(H) are disjoint πgg^* -open sets containing A and B respectively which shows that X is quasi g*-normal.

4.2.Theorem. If $f: X \to Y$ is π -continuous almost g*-closed surjection and X is quasi g*normal space then Y is g*-normal.

Proof. Let A and B be any two disjoint closed sets of Y. Then $f^{-1}(A)$ and

 f^{-1} (B) are disjoint π-closed sets of X. Since X is quasi g*-normal, there exist disjoint g*open sets of U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Let G = int(cl(U)) and H = int(cl(V)). Then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B)$ ⊂ H. Set K = Y – f (X – G), L = Y– f (X – H). Then K and L are g*-open sets of Y such that A ⊂ K, B ⊂ L, $f^{-1}(K) \subset G$, $f^{-1}(L) \subset H$. Since G and H are disjoint, K and L are disjoint. Since K and L are g*-open and we obtain A ⊂ g*-int(K), B ⊂ g*-int(L) and g*int(K) ∩ g*- int(L) = ϕ . Therefore Y is g* - normal.

4.3.Theorem. Let $f : X \to Y$ be an almost π -continuous and almost πgg^* -closed surjection. If X is quasi g*-normal space then Y is quasi g*-normal.

Proof. Let A and B be any disjoint π -closed sets of Y. Since f is almost π -continuous, f⁻¹(A), f⁻¹(B) are disjoint closed subsets of X. Since X is quasi g*-normal, there exist disjoint g*-open sets U and V of X such that

 $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Put G = int(cl(U)) and H = int(cl(V)). Then G

and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By **Theorem 3.11**, there exist πgg^* -open sets K and L of Y such that $A \subset K$, $B \subset L$, $f^{-1}(K) \subset G$ and $f(L) \subset H$. Since G and H are disjoint. So are K and L by **Theorem 2.16**, $A \subset g^*$ -int(K), $B \subset g^*$ int(L) and g^* -int(K) $\cap g^*$ -int(L) = ϕ . Therefore, Y is quasi g^* -normal.

4.4.Corollary. If $f: X \to Y$ is an almost continuous and almost closed

surjection and X is a normal space, then Y is quasi g*-normal.

Proof. Since every almost closed function is almost πgg^* -closed so Y is quasi g*-normal.

REFERENCES

1 M. E. Abd El-Monsef, S. N. EL Deeb and R. A. Mhamoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ. Sci., **12**(1983), 77-90.

2.A. Al-Omariand M. S. M. Noorani, On generalized-closed sets, Bull. Malays. Math. Sci. Soc., **32**(1), (2009), 19-30

3. D. Andrijevic, On b-open sets Mat. Vesnik, 48(1996), 59-64.

JETIR1907272 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 917

4. A. V. Arhangelskii and L. Ludwig, On α -normal and β -normal spaces, Comment, Math. Univ. Carolin., **42**(2001), no. 3, 507-519.

5. Arockiarani and C. Janaki, π ga-closed set and Quasi α -normal spaces, Acta Ciencia Indica Vol. **XXXIII** M. no. **2**, (2007), 657-666.

6. S. P. Arya and T. M. Nour, characterizations of s-normal spaces, Indian J, Pure Appl. Math., **21**(1990), 717-719.

7. A, Aslim, A. Caksu Guler and T. Noiri, On π gs-closed sets in topological spaces, Acta Math. Hungar.,**112**(2006), 275-283.

8. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac, Sci. Kochi Univ. Ser. A. Math., **16**(1995), 35-48.

9. J. Dontchev and T. Noiri, Quasi-normal spaces and πg - closed sets. *Acta* Math. *Hungar*. **89**(3)(2000), 211 - 219.

10. Ekici, On γ -normal spaces, Bull. Math. Soc. Sci. Math. Roumanie Tome **50**(98), 3(2007), 259-272.

11. L. Kalantan, π -normal topological spaces, Filomat, Vol. 22, No. 1, **9**(, 2008), 173-181.

12. H. Kumar and M. C. Sharma Quasi γ -normal spaces in topological spaces, International Journal Advance Research in Science and Engineering, **5**(2016), no. 08, 451-458.

13. C. Kuratowski, Topology I, 4th,ed, In French, Hafner, New York, 1958.

14. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.

15. N. Livine, Generalized closed sets in topology. Rend. Circ. Math. Palermo

(2)**19**(1970), 89**-**96.

16. H. Maki., R. Devi and K. Balachandran, Associated topologies of generalized α -closed sets and sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 5(1994), 51-63.

17. R. A. Mahmoud, and M. E. Abd El-Monsef, β -irresolute and β -topological invariant, Proc. Pakistan Acad. Sci., **27**(1990), 285-296.

18. A. S. Mashhour, M. E. Abd El-Monsef and S. N. Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, **53**(1982), 47-53.

19. O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965), 961-970.

20. T. Noiri , H. Maki and J. Umehera, Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19(1998), 13-20.

21.T. Noiri, Mildly-normal spaces and some functions. *Kyungpook Math. J.* **36** (1996),183 - 190.

22.T. M. J. Nour, Contribution to the Theory of Bitopological Spaces, Ph.D. Thesis, Delhi Univ., 1989.

23. J. H. Park, On π gp-closed sets in topological spaces, Indian J. Pure Appl. Math.,(2004).

24. M. C. Sharma and Hamant Kumar, $\pi\beta$ -normal Spaces, Acta Ciencia Indica, Vol. XXXVI M. no.4, (2010), 611-616.

25. M. K. Singal and A. R. Singal, Almost continuous mappings. Yokohama

Math. J. **16**(1968), 63 - 73.

26. M. K. Singal and A. R. Singal, Mildiy normal spaces, Kyungpook Math. J., **13**(1973), 27-31.

27. D. Sreeja and C. Janaki, On π gb-closed sets in topological spaces, International Journalof Mathematical Archieve, 2, **8**(2011), 1314-1320.

28. S. A. S. Thabit and H. Kamaruihaili, π p-normality on topological spaces, Int. J. Math. Anal., 6(21), (2012), 1023-1033.

29. L. N. Thanh and B. Q. Thinh, π gp-normal topological spaces, Journl of Advanced Studied in Topology, **4**(2013), no.1,48-54.

30. S. Tahiliani, On $\pi g\beta$ -closed sets in topological spaces, Node M. 30(1), (2010), 49-55.

31. M. K. R. S. Veera Kumar, g*-closed sets in topological spaces, Mem. Fac., Sci. Kochi Univ. Math., **21**(2000), 1-19.

32.V. Zaitsev, On certain classes of topological spaces and their

bicompactifications. Dokl. Akad. Nauk SSSR 178(1968),778-779.