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Abstract: In this paper, we introduce a new class  of  sets called gg*-closed sets in 

topological spaces. Also we study and  investigate the relationship with other existing closed 

sets. Moreover, we introduce  some functions such as g*-closed, gg*-closed, almost g*-

closed, almost gg*-closed, gg*-continuous and almost gg*-continuous.We also study a 

new class of normal space called, quasi g*-normal space. The relationships among normal, -

normal, quasi normal, softly normal, mildly normal, -normal,-normal, quasi -normal, 

softly -normal, mildly -normal, g*-normal, g*-normal,quasi g*-normal, softly g*-normal 

and mildly g*-normal spaces are investigated. Further we show that this property is a 

topological property and it is a hereditary property only with respect to closed domain 

subspaces. Utilizing gg*-closed sets and some functions, we obtained some 

characterizations and preservation theorems for quasi g*-normal spaces. 
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1. Introduction 

In 1958,  Kuratowski, [13] introduced the concept of regular open and regular closed sets 

in topological spaces.  In 1968, Zaitsev [32] introduced the concept of  quasi-normal space 

in topological spaces and obtained several properties of such a space. In 1970, Levine [15] 

defined generalized closed sets in topological spaces. In 1973, Singal and Singal [26] 

introduced the concept of mildly normal spaces and obtained their properties. In 1989, 

Nour [22] introduced the notion of p-normal spaces and obtained their characterizations 

and preservation theorems for p-normal spaces. In 1990, Mahmoud and Monsef [17] 

introduced the concept of -normal spaces. In 2000, M. K. R. S. Veera Kumar [31] 

introduced the concepts of g*-closed sets in topological spaces. In 2007, Ekici [10] 
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introduced the concept of -normal spaces and obtained their characterizations and 

preservation theorems for -normal spaces. In 2008, Kalantan [11] introduced the notion of 

-normal spaces and obtained some characterizations. In 2010, Tahiliani [30] introduced 

the notion of g-closed sets and their properties are studied. In 2010, M. C. Sharma and 

Hamant Kumar [24] introduced the notion of -normal spaces and obtained their 

characterizations. In 2012, Thabit and Kamaruihaili [28] introduced the notion of a weaker 

form of p-normality called quasi p-normality which lies between p-normality and mild p-

normality. In 2013, Thanh and Thinh [29] introduced the notion of gp-normal spaces and 

prove that gp-normality is a topological property and it is a hereditary property with 

respect to -open, gp-closed subspaces.  Recently,  Hamant Kumar and M.C.Sharma  [12] 

introduced the  concept  of  g-closed  sets  as  weak  form  of  g-closed  sets  due  to  

Dontchev [9].  and introduced  the concept   of  quasi  -normal  spaces  and  by using   

g-closed  sets,  we  obtained  a  characterization  and  preservation  theorems  for  quasi  

-normal  spaces.  

  

                                                         2. Preliminaries 

 

Throughout in this paper, the spaces (X, ), (Y, ) and (Z, ) always mean topological spaces 

on which no separation axioms are assumed unless explicitly stated. Let A be a space X. The 

closure of A and interior of A are denoted by cl(A) and int(A) respectively. 

 

2.1.  Definition.  A subset A of a space X is said to be 

1. regular open [13] if A = int(cl(A)). 

2. The finite union of regular open sets is said to be -open [32]. 

3. -open [3] if A  cl(int(A))  int(cl(A)). 

4. p-open [18] if A  int(cl(A)). 

5. s-open [14] if A  cl(int(A)). 

6. -open [19] if A  int(cl(int(A))). 

7. -open [1] if A  cl(int(cl(A))). 

The complement of a regular open (resp. -open, -open, p-open, s-open, -open, -open) set 

is said to be regular closed (resp. -closed, -closed, p-closed, s-closed, -closed, -closed). 
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2.2.  Definition.   A subset A of a topological  space X is said to be 

1. g-closed [15] if cl(A)  U  whenever  A   U and U is  open in X.  

2. gp-closed [20] if p-cl(A)  U whenever A  U and U is open in X. 

3. gs-closed [6] if p-cl(A)  U whenever A  U and U is open in X.  

4. αg-closed [16] if  α-cl(A)  U whenever A   U and U  is open in X 

5. g-closed [8] if -cl(A)  U whenever A  U and U is open in X. 

6. g-closed [2] if -cl(A)  U whenever A  U and U is open in X. 

7. g -closed [9] if cl(A)  U whenever A  U and U is -open in X. 

8. gp-closed [23] if p-cl(A)  U whenever A  U and U is -open in X. 

9. gs-closed [7] if s-cl(A)  U whenever A  U and U is -open in X. 

10. g-closed [5] if -cl(A)  U whenever A  U and U is -open in X. 

11. g-closed [30] if -cl(A)  U whenever A  U and U is -open in X. 

12. g-closed [27] if -cl(A)  U whenever A  U and U is -open in X. 

13. g-open (resp. gp-open, gs-open, g-open, g-open, g-open, g-open, gp-open, gs-

open, g-open, g-open) if the complement of A is g-closed (resp. gp-closed, gs-closed, 

g-closed, g-closed, g-closed, g-closed, gp-closed, gs-closed, g-closed, g-closed, 

g-closed).   

14. g*-closed [31] if  cl(A)  U whenever A  U and U is g-open in X.  

15. gg*-closed if g*- cl(A)  U whenever A  U and U is -open in X. 

The complement of  g-closed ( resp. α-closed ,g*-closed, gg*-closed, g-closed ,gg*-closed) 

set is called g-open ( resp. g*-open, gg*-open, g-open, gg*-open) set and the complement 

of -open is called -closed. The intersection of all g*-closed sets containing A is called  the 

g*-closure of A and denoted g*-cl(A).The union of all  g*-open subsets  of  X which are  

contained in A is called  the g*-interior of A and denoted by g*-int(A).         

 

             closed          g-closed   g-closed 

 

                                               

   

            g*-closed              gg*-closed        gg*-closed 
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            -closed                     g-closed               πg-closed 

 

 

                                                           

 

            p-closed                     gp-closed               πgp-closed 

 

                                                               

 

             γ-closed                     gγ-closed                   πgγ-closed 

 

                                                                 

 

               β-closed                     gβ-closed                   πgβ-closed 

 

                                                  and 

 

 

                closed           g-closed             g-closed 

 

                                                         

            g*-closed                  gg*-closed                 gg*-closed 

 

                                                         

 

             -closed                     g-closed                   πg-closed 

 

 

                                                   

 

               s-closed                     gs-closed                   πgs-closed 

 

                                                                    

 

               γ-closed                     gγ-closed                   πgγ-closed 

 

                                                                     

 

               β-closed                     gβ-closed                   πgβ-closed 

 

 

here none of the implications is reversible as can be seen from the following examples. 

 

2.3. Example. Let X = {a, b, c, d} and  = {, X, {a}, {d}, {a, d} {c, d}, {a, c, d}}. Here we 

show that A = {c} is g-closed but not g-closed. 
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2.4. Example. Let X = {a, b, c, d} and  = {, {a}, {b, c}, {a, b, c}, X}. Then A = {a} is g-

closed as well as g-closed but not closed. 

2.5. Example. Let X = {a, b, c, d) and  = {, {b}, {d}, {b, d}, X}. Then A = {a, b, d} is g-

closed as well as g-closed but it is not closed. 

2.6. Example. Let X = {a, b, c, d} and  = {, {b, d}, {a, b, d}, {b, c, d}, X}. A = {a, b} is g-

closed as well as g-closed but it is not closed. 

2.7. Example. Let X = {a, b, c} and  = {, {b}, {c}, {b, c}, X}. Then the subset A = { b} is 

g-closed as well as g-closed but not closed. 

2.8. Example. Let X = {a, b, c} and  = {, {a}, X}. Then the subset A = {a, b} is g-closed as 

well as g-closed but not closed. 

2.9. Example. Let X = {a, b, c} and  = {, {a}, {a, b}, X}. Then the subset A = {a, c} is g-

closed as well as g-closed but not closed. 

2.10. Example. Let X = {a, b, c, d, e} and  = {, {a, b}, {b, d}, {a, b, c, d}, X}. Then A = {a, 

e} is g-closed as well as g-closed but it is not closed. 

2.11. Example. Let X = {a, b, c, d} and  = {, {a}, {d}, {a, d}, {c, d}, {a, c, d}, X}. Then A 

={c} is g-closed as well as gp-closed but it is not closed. 

2.12. Example. Let X = {a, b, c, d} and  = {, {a}, {b}, {a,b}, {a, b, d}, X}. Then A = {a} is  

gs-closed as well as g-closed but it is not closed. 

2.13. Example. Let X = {a, b, c, d} and  = {, {a}, {d}, {a,d}, {c, d}, {a, c, d}, X }. Then A 

= {c} is gp-closed as well as g-closed but it is not closed.  

2.14.Example. Let X = { a, b, c, d } and   = { , {a}, {c, d}, {a, c, d }, {d}, {a, d}, X }.Let A 

={c}.Then  A is gg*-closed set but not  g-closed set in X.   

2.15. Example. Let X = { a, b, c, d } and   = { , {a},{c}, {a, b}, {a, c},{a, d} , {a, d, c }, {a, 

b, d}, {a, b, c}, X }. Then  the  set   A = {a} is  gg*-closed set  not gg*-closed set  in X .   

2.16. Theorem. A subset A of  a  topological  space  X  is  gg*-open  iff        F  g*-int (A) 

whenever F is -closed and  F  A. 

3. Quasi g*- Normal  Spaces 

3.1. Definition. A topological space X is said to be g*-normal (resp. -normal [4]) if for 

every pair of disjoint closed subsets A , B of X, there exist disjoint g*-open (resp.-open) sets 

U, V of X such that A  U and B  V. 
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3.2. Definition. A topological space X is said to be g*-normal (resp. -normal [11], -

normal ) if for every pair of disjoint closed subsets A, B of X, one of which is -closed, there 

exist disjoint g*-open (resp. open, -open) sets U, V of X such that A  U and B  V.   

3.3. Definition. A  topological  space X is said to be quasi g*-normal (resp. quasi normal 

[32], quasi -normal [5]) if for every pair of disjoint -closed subsets H, K, there exist 

disjoint g*-open sets U, V of X such that H  U and K  V. 

    normal                       -normal                                     quasi-normal 

  

                                                                



g*-normal                g*-normal                                            quasi g*-normal 

 

 

              

 

-normal                            -normal                             quasi -normal



    

 

p-normal                            p-normal                             quasi p-normal 

         

 

               



γ -normal                            γ-normal                              quasi  γ-normal     

 

            

    
   β-normal                          β-normal                                                  quasi  β 

 

 

                                                                  and                                          

 

     normal                     -normal                          quasi-norma 

 

                                               

 g*-normal                 g*-normal                                          quasi g*-normal  
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-normal                                  -normal                      quasi -normal     

 

                                                                                     

 

s-normal                                  s-normal                                         quasi s-normal     

 

                                                         



γ -normal                                  γ-normal                                        quasi  γ-normal     

 

                                                       

    

β-normal                                 β-normal                                         quasi  β-normal 
 

 

3.4. Example. Let X = {a, b, c, d, e} and  = {, {e}, {a, b}, {c, d}, {a, b, e}, {c, d, e}, {a, b, 

c, d}, X}. The pair of  disjoint -closed subsets of X are A = {a,  b} and B = {c, d}. Also U = 

{a, b, e} and V ={c, d} are -open sets such that A  U and B  V. Hence X is quasi -normal 

but not quasi-normal, since U and V are not open sets. 

3.5. Example. Let X = {a, b, c} and  = {,  X, {a}, {a, b}, {a, c}} is quasi p-normal but not 

p-normal space.      

3.6. Example.   Let X = {a, b, c, d} and  = {, {a}, {c}, {a, c}, { b, d},  

{a, b, d}, {b, c, d}, X}. The pair of disjoint -closed subsets of X are A = {a} and B = {c}. 

Also U = {a} and V = {b, c, d} are disjoint open  sets  such  that A  U and  B  V. Hence X 

is quasi-normal as well as quasi g*-normal because every open set is g*-open set. 

3.7. Theorem. For a topological space X, the following are equivalent :   

(a)  X is quasi g*-normal. 

(b)  For any disjoint -closed sets H and K, there exist disjoint gg*-open  

      sets U and V such that H  U and K  V.  

(c)  For any disjoint -closed sets H and K, there exist disjoint gg*-open        

      sets U and V such that H  U and K  V. 

(a) For any -closed set H and any -open set V containing H, there exists   

 a  gg*-open set U of X such that H U  g*-cl(U)  V. 

(b) For any  - closed set H and any  - open set V containing H, there exists   

a  gg*- open set U of X such that H  U  g*-cl(U)  V. 

Proof.  (a)  (b), (b)  (c), (d)  (e) , (c)  (d), and (e)  (a).                 (a)  (b). Let X 

be quasi g*-normal. Let H, K be disjoint  - closed sets of X. By  assumption, there exist 
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disjoint g*-open sets U, V such that H  U and   K  V. Since every g*-open set is gg*-open, 

U ,V are gg*-open sets such that H U and K  V. 

(b)  (c). Let H, K be two disjoint  -closed sets. By assumption, there exist gg*-open sets U 

and V such that H  U and K  V. Since gg*-open set is gg*-open, U and V are gg*-open 

sets such that H  U and K  V. 

(d)  (e). Let H be any -closed set and V be any -open set containing H. By assumption, 

there exists a gg*-open set U of X such that  

H  U  g*-cl(U)  V. Since  every gg*-open set is gg*-open, there exists a  gg*-open set 

U of  X such that H  U   g*-cl(U)  V. 

(c)  (d). Let H be any -closed set and V be any -open set containing H. By assumption, 

there exist gg*-open sets U and W such that H  U and  

X  V  W. By Theorem 2.16, we get X  V  g*-int(W) and  

 g*-cl(U)  g*- int(W) = .Hence H  U  g*-cl(U)  X  g*-int(W)  V. 

(e)  (a). Let H, K be any two disjoint  -closed set of X. Then H  X  K and X  K is -

open. By assumption, there exists a  gg*-open set G of X such that H  G   g*-cl(G)  X  

K. Put  U = g*-int(G),V = X  g*-cl(G). Then U  and V  are  disjoint g*-open  sets  of  X  such 

that H  U and K  V. 

3.8. Definition. A function  f : X → Y  is said  to  be   

1. g*- closed (resp. gg*- closed ,gg*- closed ) if f (F) is g*-closed (resp.  

    gg*-closed ,gg*-closed ) in Y for every closed set F of  X 

2. rc - preserving [21](resp.  almost closed [25],  almost g*- closed, almost    

    gg*-closed, almost gg*- closed) if f (F) is regularly  closed (resp. closed,     

   g*-closed, gg*- closed, gg*- closed) in  Y for every  F  RC(X). 

3. -continuous [9] (resp. almost -continuous [9 ] if   f -1 (F) is -closed  in X for  every  

closed (resp. regular closed ) set F of Y.  

4.almost  gg*-continuous if  f -1 (F) is gg*-closed in X for every   

   regular closed set F of Y.  

   From the definitions stated above, we obtain the following diagram: 

   closed              g*- closed             gg*- closed           gg*- closed  

                                                                                                   

   al. closed        al. g*-closed         al. gg*-closed     al. gg*-closed 
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     here al. =  almost. 

     here none of the reverse implications are true as can be seen from the      

     following examples : 

3.9. Example.  X = { a, b, c, d },  ={  , {c}, {a, b, d},X } and   = { , {a},      

  {d}, {c, d}, {a, d},{a, c, d}, X }. Let f : (X, ) → (X, )  be the identity     

  function. Then f  is gg*-closed but not  g-closed. Since A= {c} is not  g- 

  closed in  (X, ).     

3.10. Example .  Let  X  = { a, b, c, d }   = {,  {c}, {b, d}, {a, b, d},{b, c, d}, X } and  = { 

, X, {a}, {d},{a, d}, {c, d}, {a,  c, d}}. Let  f : (X, ) → (X, )  be the identity function  Then 

f  is  almost gg*-closed  but  not gg*- 

  closed. Since A= {c} is not  gg*-closed. 

3.11.Theorem. A surjection f : X → Y is almost gg*-closed if and only if for each subset S 

of Y and each U   RO(X) containing f -1(S), there exists  a    

  gg*-open set V of Y such that S  V  and f -1(V)  U. 

Proof.  Necessity. Suppose  that  f  is  almost  gg*-closed. Let S be a subset  

of  Y and  U  RO(X) containing f –1(S). If  V = Y f (X  U) , then V is a  

gg*-open set of Y such that S  V and f -1(V)  U. 

Sufficiency. Let F be any regular closed set of X. Then f -1 (Y f (F))  X  F  

 and X – F  RO(X). There exists a gg*- open set V of Y such that                         Y  f (F) 

 V and  f –1 (V)  X  F. Therefore, we have f (F)    Y   V and         F  X  f –1 (V)  f –1 

(Y  V) . Hence we obtain f (F) = Y  V and f (F) is   gg*-closed in Y which shows that f is 

almost gg*-closed. 

4. Preservation  Theorems  

4.1.Theorem. If  f : X → Y is an almost  gg*-continuous rc-preserving  

 injection and Y is quasi g*-normal then X is quasi g*-normal.  

Proof. Let A and B be any disjoint -closed sets of X. Since f  is  a  

 rc-preserving injection, f (A) and f (B) are disjoint  -closed sets of Y. Since    

 Y is quasi  g*-normal, there exist disjoint g*-open sets U and V of Y such  

 that f (A)  U and  f (B)   V. Now if G = int(cl(U)) and  H =  int(cl(V)). Then G and H are                      

regular open sets such that  f (A)  G and f (B)  H. Since  
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 f is almost gg*-continuous, f -1(G) and f –1(H) are disjoint gg*-open sets containing A and 

B respectively which shows that X is quasi  g*-normal. 

4.2.Theorem. If  f : X →  Y is -continuous almost g*-closed surjection and X is quasi g*-

normal space then Y is g*-normal.  

Proof.  Let A and B be any two disjoint closed sets of Y. Then f -1(A) and        

 f –1 (B) are disjoint -closed sets of X. Since X is quasi g*-normal, there exist disjoint  g*-

open  sets of  U and  V  such  that f –1 (A)  U and f -1(B)  V. Let G = int(cl(U)) and H = 

int(cl(V)). Then G and H are disjoint regular open sets of  X such that f –1 (A)  G and f –1(B) 

 H. Set  K = Y  f (X  G) ,       L = Y f (X  H).Then K and L are  g*-open sets of Y such 

that A  K,   B  L,  f –1(K)  G , f –1(L)  H. Since G and H are disjoint, K and L are 

disjoint. Since  K  and  L  are  g*-open  and  we obtain A  g*-int(K),    B  g*-int(L) and g*-

int(K)  g*- int(L) = . Therefore  Y is g* - normal. 

4.3.Theorem. Let  f  : X →Y be an almost -continuous and almost gg*-closed surjection. If  

X is quasi g*-normal space then Y is quasi g*-normal.  

Proof. Let A and B be any disjoint -closed sets of Y. Since f is almost   -continuous, f –1(A), 

f –1(B) are disjoint closed subsets of  X. Since X is quasi  g*-normal, there exist disjoint g*-

open sets U and V of X such that              

 f –1(A)  U and f –1(B)  V. Put G = int(cl(U)) and H = int(cl(V)).Then G  

 and H are disjoint regular open sets of  X such  that f -1(A)  G and  f -1(B)  H. By Theorem 

3.11, there exist gg*-open sets K and L of Y such that A  K,    B  L, f -1 (K)  G and  f (L) 

  H. Since G and H are disjoint. So are K and L by Theorem 2.16, A  g*-int(K), B  g*-

int( L) and g*-int(K)  g*-int(L) =   . Therefore, Y is quasi g*-normal. 

4.4.Corollary. If  f : X → Y is an almost continuous and almost closed  

 surjection and X is a normal space, then Y is quasi g*-normal. 

Proof. Since every almost closed function is almost gg*-closed so Y is quasi  

 g*-normal. 
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