
© 2019 JETIR June 2019, Volume 6, Issue 6                                                  www.jetir.org (ISSN-2349-5162) 

JETIR1907310 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 41 
 

HALL EFFECTS ON PERISTALTIC FLOW 

OF A NEWTONIAN FLUID THROUGH A 

POROUS MEDIUM IN A CHANNEL WITH 

LONG WAVELENGTH WITH HEAT 

TRANSFER 
 

                                   1.RudraRaviKumar Palegari  2.Dr.R.Siva Prasad 

Department of Mathematics, RGUKT-APIIIT, Idupulapaya, Kadapa District, A.P., India. 

 

Abstract : The effect of hall on the peristaltic flow of a Newtonian fluid through a porous medium in a 

two dimensional channel with heat transfer under the assumption of long wavelength. A closed form 

solution is obtained for axial velocity, temperature field and pressure gradient. The effects of various 

emerging parameters on the pressure gradient, time-averaged volume flow rate and temperature field.  
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1. INTRODUCTION 

The study of the mechanism of peristalsis in both mechanical and physiological situations has 

recently become the object of scientific research, since the first investigation of Latham [8. Several 

theoretical and experimental attempts have been made to understand peristaltic action in different 

situations.  A review of much of the early literature is presented in an article by Jaffrin and Shapiro [7]. 

A summary of most of the experimental and theoretical investigations reported with details of the 

geometry, fluid Reynolds number, wavelength parameter wave amplitude parameter and wave shape has 

been given by Srivastava and Srivastava [17]. 

The magnetohydrodynamic (MHD) flow of a fluid in a channel with peristalsis is of interest in 

connection with certain flow problems of the movement of conductive physiological fluids, (e.g., the 

blood flow in arteries). The effect of magnetic field on blood flow was first studied by Sud et al. [20] 

and it is found that the effect of suitable magnetic field accelerates the speed of blood. Srivastava and 

Agrawal [18] and Prasad and Ramacharyulu [13] by taking into account the blood as an electrically 

conducting fluid and constitutes a suspension of red cell in plasma. Also, Agrawal and Anwaruddin [1] 

studied the effect of magnetic field on the peristaltic flow of blood using long wavelength 

approximation method and observed for the flow of blood in arteries with arterial stenosis or 

arteriosclerosis, that the influence of magnetic field may be utilized as blood pump in carrying out 

cardiac operations. Li et al., [9] have used an impulsive magnetic field in the combined therapy of 

patients with stone fragments in the upper urinary tract. It was found that the impulsive Magnetic field 

(IMF) activates the impulsive activity of the ureteral smooth muscles in 100% of cases. Mekheimer [11] 

studied the peristaltic transport of blood under effect of a magnetic field in non uniform channels. Hayat 

et al. [6] have first investigated the Hall effects on the peristaltic flow of a Maxwell fluid trough a 

porous medium in channel. Recently Eldabe [4] have studied the Hall Effect on peristaltic flow of third 

order fluid in a porous medium with heat and mass transfer.  

Moreover, flow through a porous medium has been of considerable interest in recent years 

particularly among geophysical fluid dynamicists. Examples of natural porous media are beach sand, 

stand stone, limestone, rye bread, wood, the human lung, bile duct, gall bladder with stones and in small 

blood vessels. The first study of peristaltic flow through a porous medium is presented by Elsehawey et 

al. [2]. Elsehawey et al. [3] have studied peristaltic motion of a generalized Newtonian fluid through a 

porous medium. Peristaltic transport through a porous medium in an inclined planar channel has 

investigated by Mekheimer [10] taking the gravity effect on pumping characteristics. Recently, Subba 

Reddy and Prasnath Reddy [19] have investigated the effect of variable viscosity on peristaltic flow of a 

Jeffrey fluid through a porous medium in a planar channel.  

Understanding of bio-heat transport is important in the beneficial applications of heat and cold 

for medical treatment. Recent advances in the application of heat (hyperthermia), radiation (laser 

therapy), and coldness (cryosurgery), as means to destroy undesirable tissues, such as cancer, have 
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Fig. 1 Physical Model 
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Porous medium 

stimulated much interest in the study of thermal modeling in tissue. In the case of hyperthermia, it is 

noted that tissue can be destroyed when heated to 42 – 45o C (Field and Franconi, [5]. Vajravelu et al. 

[22] have studied the peristaltic flow of a Newtonian fluid in a vertical porous annulus with heat 

transfer. The effect of heat transfer on the peristaltic flow of a Newtonian fluid in a vertical annulus 

under the effect of magnetic field was analyzed by Mekheimer and Elmaboud [12]. Srinivas and 

Kothandapani [16] have investigated the influence of MHD and heat transfer on the peristaltic flow of a 

Newtonian in an asymmetric channel. Effect of heat transfer on peristaltic transport of a Newtonian fluid 

through a porous medium in an asymmetric vertical channel was discussed by Vasudev et al. [21]. 

Recently, Ranjitha and Subba Reddy [14] have studied the peristaltic flow of a Williamson fluid through 

a porous medium in a planar channel by considering the radiation effects.  

 In view of these, we studied the effect of hall on the peristaltic flow of a Newtonian fluid 

through a porous medium in a two dimensional channel with heat transfer under the assumption of long 

wavelength. A closed form solution is obtained for axial velocity, temperature field and pressure 

gradient. The effects of various emerging parameters on the pressure gradient, time-averaged volume 

flow rate and temperature field are discussed with the help of graphs.  

2. MATHEMATICAL FORMULATION 

 We consider the peristaltic pumping of a conducting 

Newtonian fluid flow through a porous medium in a channel 

of half-width 𝑎. A longitudinal train of progressive sinusoidal 

waves takes place on the upper and lower walls of the 

channel. For simplicity, we restrict our discussion to the half-

width of the channel as shown in the Fig.1. The wall 

deformation is given by  

   
2

, sinH X t a b X ct




 
   

 
  (2.1) 

where 𝑏 is the amplitude, 𝜆 the wavelength and 𝑐 is the wave 

speed.  

Under the assumptions that the channel length is an 

integral multiple of the wavelength 𝜆 and the pressure difference across the ends of the channel is a 

constant, the flow becomes steady in the wave frame  ,x y   moving with velocity c away from the 

fixed (laboratory) frame  ,X Y . The transformation between these two frames is given by  

 ,  ,   ,   x X c t y Y u U c v V       and  ( )  ( ,  ),p x P X t   (2.2)  

where  ,  u v and  ,  U V  are the velocity components,  p   and  P   are pressures in the wave and 

fixed frames of reference, respectively.  

The equations governing the flow in wave frame are given by  

0
u v

x y

 
 

 
,          (2.3) 
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 (2.4) 
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  (2.5)  

2 22
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T T u v u v

u v T v
x y x y y x




               
              

               

  (2.6) 

where  is the density   is the electrical conductivity, 0B  is the magnetic field strength, m  is the Hall 

parameter,  k  is the permeability of the porous medium,   is the specific heat at constant volume, v  is 

kinematic viscosity of the fluid,   is thermal conductivity of the fluid and T  is temperature of the fluid. 

The dimensional boundary conditions are 

u c   at y H        (2.7) 
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0
u

y





  at 0y          (2.8) 

1T T    at  y H        (2.9) 

0
T

y





  at 0y          (2.10) 

Introducing the non-dimensional quantities 
2
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Into equations (2.3) to (2.5), we get 

0
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x y

 
 

 
          (2.10a) 
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  (2.13) 

Here Re  is the Reynolds number, M  is the Hartmann number, Da  is the Darcy number, Pr  is the 

Prandtl number and E  is the Eckert number.  

Using long wavelength (i.e., 1  ) approximation, the equations (2.11) to (2.13) become  
2

2 2

2

u p
u

y x
 

 
  

 
       (2.14) 

 0
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
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       (2.16) 

where 

2

2

1

1

M

m Da
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
.  

From  Eq. (2.15), it is clear that p  is independent of y . Therefore Eq. (2.14) can be rewritten as 
2

2 2

2

u dp
u

y dx
 


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
       (2.17) 

The corresponding non-dimensional boundary conditions are given as 

1u     at  1 sin 2y h x         (2.18) 

0
u

y





 at 0y         (2.19) 

1     at  1 sin 2y h x          (2.20) 

0
y





  at  0y         (2.21) 

Knowing the velocity, the volume flow rate q  in a wave frame of reference is given by 
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0

h

q udy  .         (2.22) 

The instantaneous flow Q ( , )X t  in the laboratory frame is 

  
0 0

( , ) 1
h h

Q X t UdY u dy q h           (2.23) 

 The time averaged volume flow rate Q  over one period T
c

 
 
 

 of the peristaltic wave is given 

by 

 
0

1
1

T

Q Qdt q
T

            (2.24) 

 

3. SOLUTION 

 Solving Eq. (2.17) together with the boundary conditions (2.18) and (2.19), we get 

2

1 cosh
1 1

cosh

dp y
u

dx h



 

 
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 
       (3.1) 

Substituting Eq. (3.1) into the Eq. (2.16) and solving the Eq. (2.16), using the boundary 

conditions (2.20) and (2.21), we get 

 
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The volume flow rate q  in a wave frame of reference is given by 

3
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From Eq. (3.3), we write 
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
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The dimensionless pressure rise per one wavelength in the wave frame is defined as  

 
1

0

dp
p dx

dx
            (3.5) 

The heat transfer coefficient at the upper wall is defined by  
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dp
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 
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 (3.6)  

Note that, as Da  our results coincide with the results of Ravindranath Reddy et al. [15]. 

 

4. RESULTS AND DISCUSSION 

Fig. 2 depicts the variation of axial pressure gradient 
dp

dx
 with Hartmann number M  for

0.1Da  ,  0.6   and 0.3m  . It is found that, the axial pressure gradient 
dp

dx  
increases with 

increasing M .  

The variation of axial pressure gradient 
dp

dx
 with Hall parameter m  for 0.1Da  , 0.6   and 

1M   is depicted in Fig. 3. It is observed that, the axial pressure gradient
dp

dx
 decreases with increasing 

m . 
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Fig. 4 shows the variation of axial pressure gradient 
dp

dx
 with Darcy number Da  for 0.6  ,

1M   and 0.3m  . It is noted that, the axial pressure gradient 
dp

dx
 decreases with increasing Da .   

The variation of axial pressure gradient 
dp

dx
 with amplitude ratio   for 0.1Da  , 1M   and 

0.3m   is shown in Fig. 5. It is noticed that, the axial pressure gradient 
dp

dx
 increases with increasing 

 .   

Fig. 6 depicts the variation of pressure rise p  with time-averaged flow rate Q  for different 

values of Hartmann number M  with 0.1Da  , 0.6   and 0.3m  . It is found that, the time-

averaged flow rate Q  increases in the pumping region  0p    with increasing M , while it decreases 

in both the free-pumping  0p   and co-pumping  0p   regions with increasing M . 

The variation of pressure rise p  with time-averaged flow rate Q  for different values of Hall 

parameter m  with 0.1Da  , 0.6   and 1M   is depicted in Fig. 7.  It is observed that, the time-

averaged flow rate Q  decreases in the pumping region with an increase in m , while it increases in both 

the free-pumping and co-pumping regions with increasing m .     

Fig. 8 represents the variation of pressure rise p  with time-averaged flow rate Q  for different 

values of Darcy parameter Da  with 0.3m  , 0.6   and 1M  .  It is observed that, the time-

averaged flow rate Q  decreases in the pumping region with an increase in Da , while it increases in 

both the free-pumping and co-pumping regions with increasing Da .     

The variation of pressure rise p  with time-averaged flow rate Q  for different values of 

amplitude ratio   with 0.1Da  , 1M   and 0.3m   is shown in Fig. 9. It is found that that the time-

averaged flow rate Q  increases with increasing amplitude ratio    in both the pumping and free 

pumping regions, while it decreases with increasing amplitude ratio   in the co-pumping region for 

chosen  0p  .   

Fig. 10 depicts the variation of temperature   with Hartmann number M  for 0.3, 0.6m   ,

0.1Da  , 0.1x  , 1Q   and Pr 1E  . It is found that the temperature   decreases with increasing 

Hartmann number M .  

The variation of temperature   with Hall parameter m  for 1, 0.6M   , 0.1Da  , 0.1x  , 

1Q   and Pr 1E   is depicted in Fig. 11. It is noticed that the temperature   increases with 

increasing hall parameter m .  

Fig. 12 shows the variation of temperature   with Da  for 0.3, 0.6m   , Pr 1E  , 0.1x  , 

1Q   and 1M  . It is observed that the temperature   increases with increasing Da .   

 The variation of temperature   with Pr E  for 0.3, 0.6m   , 0.1Da  , 0.1x  , 1Q  

and 1M   is shown in Fig. 13. It is found that the temperature   increases with increasing Hartmann 

number Pr E .  

Fig. 14 illustrates the variation of temperature   with amplitude ratio   for 0.3, 1m M  , 

0.1Da  , 0.1x  , 1Q   and Pr 1E  . It is noted that the temperature   decreases with increasing 

amplitude ration  except near the channel wall.  

In order to see the effects of , , ,M m Da   and Pr E  on the heat transfer coefficient Z we plotted 

the Table-1. It is found that, the heat transfer coefficient Z  decreases with increasing M  and Pr E , 

where as it increases with increasing ,m Da  and  .  
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5. CONCLUSIONS 

In this chapter, the effect of hall on the peristaltic flow of a conducting fluid through a porous 

medium in a symmetric channel with heat transfer under the assumption of long wavelength 

approximation is investigated. The expressions for the velocity field and temperature field and pressure 

gradient are obtained analytically. It is found that, the pressure gradient and the time-averaged flow rate 

in the pumping region are increases with increasing Hartmann number M   and amplitude ratio   , 

while they decreases with increasing hall parameter m   and Darcy number Da .  Also it is observed 

that, the maximum temperature decreases with increasing Hartmann number M  and amplitude ratio  , 

whereas it increases with increasing hall parameter m , Darcy number and Pr E .  Further it is found 

that, the heat transfer coefficient Z  decreases with increasing M  and Pr E , where as it increases with 

increasing ,m Da  and  . 

 

 

 

 

Fig. 2. The variation of axial pressure gradient 
dp

dx
 with Hartmann number M  for 0.6  , 

0.1Da   and 0.3m   . 

dp

dx
  

x   

2,1,0M    

 

Fig. 3. The variation of axial pressure gradient 
dp

dx
 with Hall parameter m  for 0.6  , 

0.1Da  and 1M   . 

dp

dx
  

x   

0,0.3,0.7m    

 

Fig. 4. The variation of axial pressure gradient 
dp

dx
 with Darcy number Da  for 0.6  , 

0.3m  and 1M   . 

dp

dx
  

x   

0.01,0.1,1,10Da    

 

 

 

Fig. 5. The variation of axial pressure gradient 
dp

dx
 with amplitude ratio   for 1M  , 

0.1Da   and 0.3m  . 
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dx
  

x   

0.6,0.3,0    

 

 

 

Fig. 6. The variation of pressure rise p  with time-averaged flow rate Q  for different values 

of Hartmann number M  with 0.1Da  , 0.6   and 0.3m  . 
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Q   

2,1,0M    

 

 

 

 

 

 

 

 

Fig. 7. The variation of pressure rise p  with time-averaged flow rate Q  for different values 

of Hall parameter m  with 0.1Da  , 0.6   and 1M  . 

 

p   

Q   

0.7,0.3,0m    
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Table 1. The variation of heat transfer coefficient Z with 0.1x    and 1Q   . 

M  m  Da     Pr E  Z  

1 0.3 0.1 0.6 1 -1.9097 

2 0.3 0.1 0.6 1 -2.0152 

1 0.7 0.1 0.6 1   -1.9001 

1 0.3 1 0.6 1 -1.5764 

1 0.3 0.1 0.7 1   -1.6530 

1 0.3 0.1 0.6 2 -3.8195 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The variation of pressure rise p  with time-averaged flow rate Q  for different values 

of Darcy number Da  with 0.3m  , 0.6   and 1M  . 
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Fig. 9. The variation of pressure rise p  with time-averaged flow rate Q  for different values 

of amplitude ratio   with 1M   and 0.3m  . 
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Fig. 10. The variation of temperature   with Hartmann number M  for 0.3,m   0.6  , 

0.1x  , 0.1Da  ,  1Q   and Pr 1E  . 
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Fig. 11. The variation of temperature   with Hall parameter m  for 1, 0.6M   , 0.1x  , 

0.1Da  , 1Q   and Pr 1E  . 

 

 

   

y   

0.7,0.3,0m    

 

 
Fig. 12. The variation of temperature   with Darcy number Da  for 1, 0.6M   , 0.1x 

, 0.3m  , 1Q   and Pr 1E  . 
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Fig. 13. The variation of temperature   with Pr E  for 0.1x  , 0.3, 0.6m   , 0.1Da 

, 1Q   and 1M  . 
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Fig. 14. The variation of temperature   with amplitude ratio   for 0.3, 1m M  , 0.1x 

, 0.1Da  , 1Q   and Pr 1E  . 
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