Multi objective Economic and Emission Dispatch in Multi Machine System Using Modified Particle Swarm Optimization

Krishnanand¹ Tushar Agrawal²

¹M.Tech. (Scholar) Department of Electrical Engineering, RIET, Jaipur, Rajasthan, India, ²Assistant Professor, Department of Electrical Engineering, RIET, Jaipur, Rajasthan, India.

Abstract: - ELD is a tool that schedules genset output to operate the power system most economically based on specified load requirements, or in other words, we can say that the main goal of economic load scheduling is to optimize all system constraints. At the same time, various generator sets are distributed at the lowest possible operating cost. The input/output characteristics of modern units are inherently highly non-linear (with valve point effects, rate limiting, etc.) and have multiple local minimum points in the cost function. In this regard, random search algorithms such as (GA), (ES), (EP), (PSO) can prove that (SA) is very effective in solving highly nonlinear ELD problems, and the shape is not limited. Cost curve. (GA) is a soft computing technique used to find exact or approximate solutions to optimization and search problems. Genetic algorithms are classified as global search heuristics. An algorithm to get the best solution to the optimization problem. The individual's performance is evaluated by the fitness function (ie, the objective function) and the problem is minimized, in which case particles with lower values have higher performance. The best experience for each particle in the iteration is stored in its memory, called Personal Best (Pbest). The best value of Pbest (minimum) in the iteration determines the global best value (Gbest).

Keywords- Economic Load Dispatch (ELD), Genetic algorithms (GA), Evolutionary strategies (ES), Evolutionary programming (EP), Particle swarm optimization (PSO)

1. INTRODUCTION

We can define economic load scheduling (ELD) as the process of assigning load levels to generator sets so that system loads are fully and economically delivered. In interconnected power systems, costs must be minimized. The production level of each generator set is defined by the economic load distribution, so the total cost of generating and transmitting electricity is the least likely for a given load plan. The purpose of economic load scheduling is to minimize the total cost of generating electricity. The situation becomes more complicated when utility companies attempt to address transmission line losses and seasonal fluctuations associated with hydropower plants. There are a number of conventional techniques that can be used to address economic load distribution issues such as Lambda iterations, Newton-Raphson and Lagrangian multipliers. The entire interconnection network is controlled by the load dispatch center. The MW power generation for each grid is assigned by the load dispatch center, depending on the primary MW demand for that area. The job of the load control center is to maintain the power exchange between different regions and system frequencies at the required values. There are many alternatives to scheduling generation. In interconnected power systems, the primary goal is to find the actual and reactive power plans for each individual power plant in a way that minimizes operating costs. This is known as the "economic load scheduling" (ELD) issue. The objective function is also called the cost function. These objective functions can bring economic costs, system

security or other goals. The loss factor is called the B factor. The main purpose of the economic load scheduling problem is to minimize the total cost of generating actual power.

The components that make up operating costs include fuel costs, labor costs, maintenance costs, and supplies. The throttling loss is large when the valve is just opened, and the throttle flow is small when fully opened.

Figure 3.1 shows a simple model of the purpose of fossil plant scheduling. The cost is usually approximated by one or more secondary segments. The operating costs of the plant are shown in Figure 3.2. Therefore, the fuel cost curve in active power generation is in the form of a quadratic curve, as follows:

$$F(P_{gi}) = a_i P_{gi}^2 + b_i P_{gi} + c_i Rs / hr$$

Where a_i , b_i , c_i is the cost factor of the i-th unit F (P_{gi}) is the total cost of generation P_{gi} is the generation of the i-generation plant

(3.1)

The fuel cost curve has many discontinuities, these occur when the output power is extended by using additional boilers, steam condensers, or other equipment. The is the minimum loading limit below which the operating device is uneconomical (or technically not feasible) and is the maximum output limit due to its rating.

II. ECONOMIC LOAD DISPATCH

Assuming that there is an N_G generator in one station and an active power load demand is given, the actual amount of power generate by each generator must be allocated in order to minimize the total cost. Therefore, the optimization problem can be expressed as:

Minimize:

© 2019 JETIR June 2019, Volume 6, Issue 6

Subject to the energy balance equation

$$\sum_{i=1}^{NG} P_{gi} = P_D$$

the inequality constraints

$$P_{gi}^{\min} \le P_{gi} \le P_{gi}^{\max} \qquad i = 1, 2, NG$$

Where, P_{gi} is the decision variable, that is, the actual power generation P_d is the real power demand NG is the number of p^{min}

power plants
$$r_{gi}$$
 Is the lower limit of the actual power p^{max}

generation, F_{gi}^{i} Is the allowable upper limit of actual power generation, F_i (P_{gi}) is the operating fuel cost of the i-th plant, given by the quadratic equation

$$F(P_{gi}) = a_i P_{gi}^2 + b_i P_{gi} + c_i Rs / hr$$
(2.2d)

The above problem is a constrained optimization problem. Use a Lagrangian multiplier where the function is minimized (or maximized) by using this method; the enhancement function is defined as

$$L(P_{gi},\lambda) = F(P_{gi}) + \lambda(P_D - \sum_{i=1}^{NG} P_{gi})$$
(2.3)

Where λ is Lagrange multiplier, The partial derivative of the Lagrangian function defined by L=L (Pgi, λ) must be zero for each parameter.

$$\frac{\partial L(P_{gi},\lambda)}{\partial P_{gi}} = \frac{\partial F(P_{gi})}{\partial P_{gi}} - \lambda = 0$$
(i= 1, 2,,... NG) (2.4)
And

$$\frac{\partial L(P_{gi},\lambda)}{\partial P_{gi}} = P_D - \sum_{i=1}^{NG} P_{gi} = 0$$

From equation 3.4 we get,

$$\frac{\partial F(P_{gi})}{\partial P_{gi}} = \lambda \qquad (i=1, 2, \dots NG) \quad (2.$$

Where $\partial F(P_{gi}) / \partial P_{gi}$ is the incremental fuel cost of the *i*th generator.

$$\frac{\partial F(P_{gi})}{\partial P_{gi}} = 2a_i P_{gi} + b_i$$

 $C\Gamma_{gi}$ (2.7) Substituting the increment cost in (2.6) this equations becomes

$$2a_i P_{gi} + b_i = \lambda \tag{2.8}$$

Rearranging equation (2.8) to get P_{gi}

$$P_{gi} = \frac{\lambda - b_i}{2a_i} \tag{2.9}$$

Substituting the value of Pgi in eq. (2.5), we get

or

$$\sum_{i=1}^{NG} \frac{\lambda - b_i}{2a_i} = P_D$$

$$\lambda = \frac{P_D + \sum_{i=1}^{NG} \frac{b_i}{2a_i}}{\sum_{i=1}^{NG} \frac{1}{2a_i}}$$
(2.10)

With the economic load scheduling problem with transmission power loss PL, the objective function is therefore expressed as: Minimize

$$F(P_{gi}) = \sum_{i=1}^{NO} F_i(P_{gi})$$
(2.11a)
$$F_i(P_{gi}) = a_i P_{gi}^2 + b_i P_{gi} + c_i Rs / hr$$
(2.11b)

Subject to (i) the energy balance equation

NC

(2.2b)

(2.2c)

$$\sum_{i=1}^{NG} P_{gi} = P_D + P_L$$
(2.11c)
$$P_{gi}^{\min} \le P_{gi} \le P_{gi}^{\max}$$
(i= 1, 2,,..... NG)
(2.11d)
In general form the loss formula using B-coefficient is

$$P_{L} = \sum_{i=1}^{NG} \sum_{j=1}^{NG} P_{gi} B_{ij} P_{gi}$$
(2.12)

Where P_{gi} and P_{gj} are the real power generation of the *i*-*th* and *j*-*th* buses, respectively. B_{ij} is the loss factor or B coefficient At Eq. (2.12) the transmission loss formula is called the George formula.

$$L(P_{gi}, \lambda) = F(P_{gi}) + \lambda(P_D + P_L - \sum_{i=1}^{NG} P_{gi})$$
(2.13)

Used for minimize enhancements, $2L(\mathbf{P}, \mathbf{z})$

$$\frac{\partial L(P_{gi}, \lambda)}{\partial P_{gi}} = 0$$
(2.14a)
$$\frac{\partial L(P_{gi}, \lambda)}{\partial \lambda} = 0$$
(2.14b)
$$\frac{\partial F_i(P_{gi})}{\partial P_{gi}} = \frac{\partial F(P_{gi})}{\partial P_{gi}}$$
(1.14b)
(1.14b

The condition given by (2.14), results as $\frac{\partial L(P_{gi},\lambda)}{\partial I_{gi}} = \frac{\partial F(P_{gi})}{\partial I_{gi}} + \lambda \left(\frac{\partial P_L}{\partial I_L} - 1\right) = 0$

$$\frac{\partial F(P_{gi})}{\partial P_{gi}} = \lambda \left(1 - \frac{\partial P_L}{\partial P_{gi}} \right)$$
 (i=1,2,..,NG) (2.17)

We can say that

$$\frac{\partial F(P_{gi})}{\partial P_{gi}} + \lambda \left(\frac{\partial P_L}{\partial P_{gi}}\right) = \lambda$$
(2.18)

$$\frac{\partial F(P_{gi})}{\partial P} \qquad \qquad \frac{\partial F(P_{gi})}{\partial P}$$

Where \bigcup_{gi}^{OI} is increment fuel cost (IC) \bigcup_{gi}^{OI} is called incremental transmission loss (ITL) i and is associated with the ith generation unit. Rearrange (2.18) results $\partial F(P_i)$

$$\frac{\frac{\partial P_{g}}{\partial P_{g}}}{1 - \frac{\partial P_{L}}{\partial P_{gi}}} = \lambda$$

$$\frac{1}{-\frac{\partial P_{L}}{\partial P_{gi}}} = \lambda$$

$$(i=1,2,...,NG) \qquad (2.19)$$

$$(i=1,2,...,NG) \qquad (2.20)$$

$$L_{i}\left(\frac{\partial P_{gi}}{\partial P_{gi}}\right) = \lambda$$
 (i=1,2,,,,NG) (2.21)

1-

www.jetir.org (ISSN-2349-5162)

Li is called the penalty factor for the i-th plant.

$$=\frac{1}{1-\frac{\partial P_L}{\partial P_{gi}}}$$

 L_i

Equation (2.13) shows that the minimum cost can be obtained when the incremental cost of each plant is multiplied by its penalty factor for all plants. Equation (2.20) is also written in another form

(2.22)

$$(IC) = \lambda \left[1 - ITL \right]_i$$

(2.23)

This equation is called the exact coordination equation. Therefore, it can be clearly seen from the formula (2.23) that in order to solve the economic load distribution problem. The B-factor this method is sufficient for dealing with loss coordination in economic dispatch of loads between plants. The general form of the loss formula using the B-factor is given in (2.22) the simplified formula the identification $B_{ij}=B_{ji}$,

$$\frac{\partial P_{L}}{\partial P_{gi}} = \sum_{i=1}^{NG} 2B_{ij}P_{gi}$$
(2.24)
$$\frac{dF_{i}(P_{gi})}{dP_{gi}} = 2a_{i}P_{gi} + b_{i}$$
(2.25)
$$2a_{i}P_{gi} + b_{i} + \lambda \sum_{i=1}^{NG} 2B_{ij}P_{gi} = \lambda$$
(i=1,2,...,NG)
(2.26)
$$(2a_{i} + 2\lambda B_{gi})P_{gi} = -\lambda \sum_{\substack{i=1\\j \neq i}}^{NG} 2B_{ij}P_{gi} - b_{i} + \lambda$$
(i=1,2,...,NG)(2.27)
$$1 - \frac{b_{i}}{\lambda} - \sum_{\substack{i=1\\i \neq i}}^{NG} 2B_{ij}P_{gi}$$

$$P_{gi} = \frac{\frac{1}{j \neq i}}{\frac{2a_i}{\lambda} + 2B_{ij}}$$
(i=1,2,,,,NG)
$$F(P_i) = \sum_{i=1}^{NG} (a_i P_i^2 + b_i P_i + c_i + d_i * \sin\{e_i * (P_i^{\min} - P_i)\})$$
(2.29)

For any particular value of λ , the above equation can be solved iteratively by assuming the initial value of Pgi. ELD is considered to be one of the key functions of power system operation. However, due to the valve point load in fossil fuel combustion equipment, the actual input-output characteristics show high order nonlinearities and discontinuities. The valve point loading effect has been modeled as a repetitive rectifying sine function, as shown in Figure 2.3.

Power Output Pi

Figure 2.3 Operating Cost Characteristics with Valve Point Load The valve point effect introduces ripple into the heat curve. Mathematically, the economic load scheduling problem considering valve point loading is defined as: Minimize operating costs

$$F(P_i) = \sum_{i=1}^{NG} (a_i P_i^2 + b_i P_i + c_i + d_i * \sin\{e_i * (P_i^{\min} - P_i)\})$$
(2.29)

Where ai, bi, ci, di, e are the cost coefficients of the first unit. Subject to: (i) the energy balance equation is given by the equation. (2.11c) and (ii) the inequality constraint is given by the equation. (2.11d)

III. COMBINED ECONOMIC EMISSION DISPATCH

The function of fuel cost is simulated and approximated as a Cubic curve, whose total expression (\$/h) is for a period of time T and many generators N are given by:

 $minF_T = \sum_{i=1}^n F_i(P_i)$

The economic dispatch problem can be defined mathematically as an objective with two constraints:

$$F_{ci}(P_i) = a_i P_i^3 + b_i P_i^3 + c_i P_i + d_i$$

Subject to the two constraints:

$$\sum_{i=1}^{N} P_i = D + l$$

 $P_{imin} \leq P_i \leq P_{imax}$

Where P_i : power output (MW) of the i-th generator; F_T : Total fuel cost (\$ / h); F_i (P_i): fuel cost per unit i (\$ / h); D: Total demand (MW); L: transmission loss (MW); P_{imin} , P_{imax} large power limit of unit i (MW); and N: total the number of service units. Toxic gas released by thermal units Burning fossil fuel sources such as sulfur dioxide, nitrogen oxides and carbon dioxide Can contribute to minimizing the world alone Emissions pass:

$$E_{SO2i}(P_i) = a_{SO2i}P_i^3 + b_{SO2i}P_i^2 + c_{SO2i}P_i + d_{SO2i}$$

$$E_{NOxi}(P_i) = a_{NOxi}P_i^3 + b_{NOxi}P_i^2 + c_{NOxi}P_i + d_{NOxi}$$

$$E_{CO2i}(P_i) = a_{CO2i}P_i^3 + b_{CO2i}P_i^2 + c_{CO2i}P_i + d_{CO2i}$$

In this work, we integrated the price penalty factor hi (maximum fuel cost / maximum emissions per gas) Emission equation $[F_{Ti}(P_i) = F_{Ci}(P_i) + h_{SO2i}E_{SO2i}(P_i) + \cdots + h_{NOxi}E_{NOxi}(P_i) + h_{CO2i}E_{CO2i}(P_i)$

Where h_{SO2} , h_{NOx} and h_{CO2} are price penalties SO₂, NO_x and CO₂ are mixed with emissions Cost and normal fuel costs.

$$h_{SO2i} = \frac{F_{Ci}(P_{MAXi})}{E_{SO2i}(P_{MAXi})}$$
$$h_{NOxi} = \frac{F_{Ci}(P_{MAXi})}{E_{NOxi}(P_{MAXi})}$$
$$h_{CO2i} = \frac{F_{Ci}(P_{MAXi})}{E_{CO2i}(P_{MAXi})}$$

Comprehensive economic emission scheduling problem is a problem Combination of economic load scheduling and emissions Dispatch problems. In this paper, the cubic criterion function is Use CEED instead of quadratic function to represent CEED problem. Cube standard functions have been found more effectively resists nonlinearity of actual power system. Economic scheduling problems can defined as:

 $F(P) = \sum_{i=1}^{n} a_i P_i^3 + b_i P_i^2 + c_i P_i + d_i$

Where $F(P_i)$ is the power generation cost of the generator set (\$/ hour) output power is P_i ; a_i , b_i , c_i and d_i are costs Generate the coefficient i of the unit. Emission scheduling issues can also be defined as cubes Standard functions with four transmit coefficients as:

 $E(P) = \sum_{i=1}^{n} e_i P_i^3 + f_i P_i^2 + g_i P_i + h_i$

Where $E(P_i)$ is the emission (in kilograms per hour) and Pi is the power Generated by unit i, and e_i , f_i , g_i and hi are transmitted coefficient. Minimize the goal of generating electricity costs Pollutant emissions can be converted into a single Use the target of the price penalty factor. Maximum/maximum fine Factors in this study were considered to address CEED issues. The CEED problem with the maximum/maximum penalty factor can be described as

$$OF = F_T = \sum_{i=1}^{n} F(P_i) + \sum_{i=1}^{n} h_{iMAX/MIN} E(P_i)$$

Where OF represents the objective function (CEED) and FT refers to Total cost and $h_{imax/min}$ are maximum/maximum penalty factors Generator set can define maximum/maximum penalty factor Such as

$$h_{imax/min} = \sum_{i=1}^{n} F(P_{imax}) / \sum_{i=1}^{n} E(P_{imax})$$

Where $P_{i, max}$ refers to the maximum power (in MW) can be generated by the generating unit i. The goal of this paper is to minimize power generation costs. And the emission of pollutant gases, i.e. the total cost Meet all other constraints. In the power generation system, need to have many equal and unequal constraints considered to optimize the actual situation system. Power balance and generator limit constraints the two most important constraints are considered here jobs. The total output power (megawatts) must be met Total load demand (in megawatts) Therefore, the total output power must Equal to the sum of total load demand and total load Power loss (MW). It can be defined as

$$P = \sum_{i=1}^{n} P_i = P_D + P_L$$

Where P_i , P_D and P_L are total generated power, total load demand and total loss, respectively. Each power generation unit in the power generation system has its upper and lower limits. Generate unit output Must be within this limit to work properly. This one Constraint can be defined as

$$P_{imin} \leq P_i \leq P_{imax}$$

Where P_{imin} and P_{imax} denote the minimum and maximum limits, respectively, of generating unit i.

IV. QUANTOM PSO BASED COMBINED DISPATCH

PSO provides population based Search program, in which individuals are called partial icles change, their position over time. In the PSO system, Particles fly around in a multidimensional search space. Each particle adjusts its position according to it during flight Own experience and experience Adjacent particles, using the best position It is encountered by itself and its neighbors. Optimal in multidimensional space seeking a solution to move every particle in the group Get the best point by adding speed position. Particle speed is affected three components, namely inertia, cognitive and society. The inertial component simulates the inertial behavior of birds flying in the previous direction. The Cognitive components mimic the memory of birds about its best location and social the component simulates the memory of birds the best location in some of the icles. Particle movement around the multidimensional search space until they find the best solution. Modification speed of each can use current speed and calculation agent the distance to Pbest and Gbest is as follows.

$$V_i^{k+1} = W \times V_i^k + C_1 \times r_1 \times (Pbest_i^k - X_i^k) + C_2 \times r_2 \times (Gbest^k - X_i^k)$$

Where, V_i^k The speed of individual i when iterating k, X_i^k Individual i is in the position of iteration k, W inertial weight C1 , C2 acceleration factor, Pbest_i^k The best position of individual i in iteration k, Gbest^k Group's best position until iteration k r1, r2 Random number between 0 and 1. Accelerate during this speed update the coefficients C1, C2 and the inertia weight W are Predefined and r1, r2 are randomly generated uniformly The number is in the range [0, 1]. In general, inertia the weight W is set according to the following equation:

Fig 3.1 the search mechanism of PSO The modified velocity equation (6) is given by: $V_i^{K+1} = K.(W.V_i^k + C_1G_d)(Pbest_i^k - X_i^k) + C_2C_d)(Gbest^k - X_i^k))$ $K = \frac{2}{1-2}$

$$\frac{1}{2-\varphi-\sqrt{\varphi^2-4\varphi}}$$

Where $\varphi = C_1 + C_2, \varphi > 4$

The convergence characteristic of the system can be controlled by φ . Contraction factor method (CFA) φ must be greater than 4.0 to guarantee stability. But as φ Increase Factor K is reduced, diversification is reduced, Produces a slower reaction. Usually when Using shrinkage factors, φ Set to 4.1 (ie C₁, C₂ = Therefore, the constant multiplier K is 0.729.QPSO, proposed and developed by Sun et al., is the expansion of PSO in the field of quantum computing. The concept of qubits and revolving doors is here to introduce the improvement of demographic characteristics Diversity. Qubit and angle Represents the state of the particle rather than the position and the particle velocity completed in the basic PSO. Thereby, QPSO has powerful search capabilities and powerful search capabilities Fast convergence feature. The basic difference between a qubit and a classical bit is the latter can stay at the same time Superposition of two different quantum states,

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

In the above equation, α and β are complex numbers that satisfy the equation

 $|\alpha|^2 + |\beta|^2 = 1$

The rotation state is represented by | 0 > and the rotation state is It is represented by | 1 >. As can be seen from (1), a qubit is Represents two information states (| 0 > and | 1 >) simultaneously. This superposition state can also expressed as

$$|\psi\rangle = \sin\theta |0\rangle + \cos\theta |1\rangle$$

Where the phase of the qubit is represented by θ . the relation among α,β and θ . The relation among α,β and θ can be defined as the position of the particle in QPSO can be described as $\theta = \arctan(\beta/\alpha)$

$$x_{id} = p_{id} \pm \frac{L}{2} \ln\left(\frac{1}{u}\right)$$

Where x_{id} is the position of the ith particle and p_{id} is local The attractor of particle i is located between pbest and gbest and u is a uniformly distributed random number in the range [0,1]. The value of L can be used following equation

$$L = 2\alpha |x_{id} - p_{id}|$$

Where α is the only parameter of QPSO, which can be calculated using the following equation

$$\alpha = (1 - 0.5) \cdot \frac{t_{max} - t}{t_{max}} + 0.5$$

And the local attractor p can be represented as below

 $p = \varphi. pbest + (1 - \varphi). gbest$

Where φ refers to a uniformly distributed random number. The range of φ is [0, 1]. Figure 1 depicts a flow chart of the QPSO. In the first step, Algorithm parameters, such as population size, particles initialize the dimension and the maximum number of iterations. The second step is to evaluate the fitness of each particle and Record pbest and gbest.

IV. RESULTS

The research work done in this dissertation is associated with the minimization of fuel cost and emission dispatch while maintain the network constraints with consideration and nonconsideration of valve point effect.

The problems addressed in this research work are as follows-

- Formulation of economic load dispatch for different test systems.
- Implementing economic load dispatch problem considering valve point effect for different test systems.
- Implementation of economic load dispatch problem using modified particle swarm optimization for valve point effect for different test systems.
- Implementation of combined emission and economic • load dispatch using improved cost function and quantum particle swarm optimization.

This system consists of 13 generating units and the input data of 13-generator system are given in Table . In order to validate the proposed Modifed-PSO method, it is tested with 13-unit system having non-convex solution spaces. The 13-unit system consists of thirteen generators with valve-point loading effects and have a total load demands of 1800 MW and 2520 MW, respectively output.

This system consists of 40 generating units and the input data of 40-generator system are given in Table . In order to validate the proposed Modified-PSO method, it is tested with 13-unit system having non-convex solution spaces. The 40 -unit system consists of thirteen generators with valve-point loading effects and have a total load demands of 10500 MW and 20500 MW, respectively output.

Result for	Result for 13 Generator System Valve Point Effect						
Unit power	NN-EP SO [20]	MPSO					
out put							
P 1	490.0000	269.263671702					
P 2	189.0000	150.750185936					
P 3	214.0000	224.858126186					
P 4	160.0000	112.081379788					
P 5	90.0000	157.271376553					
P 6	120.0000	158.473867494					
Р 7	103.0000	106.176428015					
P 8	88.0000	158.919165718					
P 9	104.0000	159.451200806					
P 10	13.0000	77.5031323538					
P 11	58.0000	101.999849738					
P 12	66.0000	92.4841327770					
P 13	55.0000	92.7117782526					
Total Power Output (MW)	1800	1800					
Total Generation Cost (\$/h)	18442.5931	18100.145					

Result for 13 Generator System Valve Point Effect

Table 2

Result for 40 Generator System Considering Valve Point Effect

Unit power out putPSO [21]MPSOP1 (MW)113.116113.9971P2 (MW)113.010112.6517P3 (MW)119.702119.4255P4 (MW)81.647189.0000P5 (MW)95.06296.8711P6 (MW)139.209139.2798P7 (MW)299.127223.5924P8 (MW)287.491284.5803P9 (MW)279.273239.3357P11 (MW)169.766314.8734P12 (MW)94.344305.0565P13 (MW)214.871365.5429P14 (MW)304.790493.3729P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.775457.0962P23 (MW)525.563441.3634P24 (MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31 (MW)189.377118.3775P32 (MW)199.284170.2403P35 (MW)199.284170.2403P36 (MW)199.284170.2403P35 (MW)199.291110.0000P34 (MW)199.291110.0		Effect	
P1 (MW) 113.116 113.9971 P2 (MW) 113.010 112.6517 P3 (MW) 119.702 119.4255 P4 (MW) 81.647 189.0000 P5 (MW) 95.062 96.8711 P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 524.775 457.0962 P23 (MW) 525.563 441.3634 P24 (MW) 522.712 397.3617 P25 (MW)	Unit power out put	PSO [21]	MPSO
P2 (MW) 113.010 112.6517 P3 (MW) 119.702 119.4255 P4 (MW) 81.647 189.0000 P5 (MW) 95.062 96.8711 P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.775 457.0962 P22 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P26 (MW)	P1 (MW)	113.116	113.9971
P3 (MW) 119.702 119.4255 P4 (MW) 81.647 189.0000 P5 (MW) 95.062 96.8711 P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 524.775 457.0962 P23 (MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 503.211 446.4181 P26 (MW) 524.775 457.0962 P23 (MW)	P2 (MW)	113.010	112.6517
P4 (MW) 81.647 189.0000 P5 (MW) 95.062 96.8711 P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.563 280.4326 P16 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.775 457.0962 P23 (MW) 522.563 441.3634 P24 (MW) 522.712 397.3617 P25 (MW) 10.082 74.8622 P28 (MW)	P3 (MW)	119.702	119.4255
P5 (MW) 95.062 96.8711 P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.563 280.4326 P16 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 524.814 534.0629 P22 (MW) 524.775 457.0962 P23 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) 10.082 74.8622 P28 (MW) 10.663 27.5430 P29 (MW)	P4 (MW)	81.647	189.0000
P6 (MW) 139.209 139.2798 P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.563 280.4326 P16 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.814 534.0629 P22 (MW) 524.775 457.0962 P23 (MW) 525.563 441.3634 P24 (MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) <td>P5 (MW)</td> <td>95.062</td> <td>96.8711</td>	P5 (MW)	95.062	96.8711
P7 (MW) 299.127 223.5924 P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.814 534.0629 P22 (MW) 524.775 457.0962 P23 (MW) 525.563 441.3634 P24(MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) 10.082 74.8622 P28 (MW) 10.663 27.5430 P29 (MW)	P6 (MW)	139.209	139.2798
P8 (MW) 287.491 284.5803 P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.814 534.0629 P22 (MW) 524.775 457.0962 P23 (MW) 525.563 441.3634 P24(MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) 10.082 74.8622 P28 (MW) 10.663 27.5430 P29 (MW) 10.418 76.8314 P30 (MW)	P7 (MW)	299.127	223.5924
P9 (MW) 292.316 216.4333 P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.563 280.4326 P16 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.775 457.0962 P22 (MW) 525.563 441.3634 P24 (MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) 10.082 74.8622 P28 (MW) 10.663 27.5430 P29 (MW) 10.418 76.8314 P30 (MW) 94.244 97.0000 P31(MW)	P8 (MW)	287.491	284.5803
P10 (MW) 279.273 239.3357 P11 (MW) 169.766 314.8734 P12 (MW) 94.344 305.0565 P13 (MW) 214.871 365.5429 P14 (MW) 304.790 493.3729 P15 (MW) 304.563 280.4326 P16 (MW) 304.302 432.0717 P17 (MW) 489.173 435.2428 P18 (MW) 491.336 417.6958 P19 (MW) 510.880 532.1877 P20 (MW) 511.474 409.2053 P21 (MW) 524.814 534.0629 P22 (MW) 522.712 397.3617 P25 (MW) 503.211 446.4181 P26 (MW) 524.199 442.1164 P27 (MW) 10.082 74.8622 P28 (MW) 10.663 27.5430 P29 (MW) 10.418 76.8314 P30 (MW) 94.244 97.0000 P31(MW) 189.796 188.7517 P33 (MW) 189.813 190.00000 P34 (MW)	P9 (MW)	292.316	216.4333
P11 (MW)169.766314.8734P12 (MW)94.344305.0565P13 (MW)214.871365.5429P14 (MW)304.790493.3729P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)109.284170.2403P36 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost122,323.97122,001.20(\$/h)122,323.97122,001.20	P10 (MW)	279.273	239.3357
P12 (MW)94.344305.0565P13 (MW)214.871365.5429P14 (MW)304.790493.3729P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)109.284170.2403P36 (MW)109.291110.0000P38 (MW)109.291110.0000P38 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost122,323.97122,001.20(\$/h)512.348468.1694	P11 (MW)	169.766	314.8734
P13 (MW)214.871365.5429P14 (MW)304.790493.3729P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)199.284170.2403P36 (MW)199.284170.2403P36 (MW)199.291110.0000P34 (MW)199.291110.0000P35 (MW)109.291110.0000P36 (MW)109.291110.0000P37 (MW)109.291109.3405P39 (MW)109.909109.243P40 (MW)512.348468.1694Total generation cost122,323.97122,001.20(\$/h)512.348468.1694	P12 (MW)	94.344	305.0565
P14 (MW)304.790493.3729P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)199.284170.2403P36 (MW)199.291110.0000P34 (MW)199.291110.0000P36 (MW)109.291110.0000P36 (MW)109.291110.0000P37 (MW)109.291110.0000P36 (MW)109.291110.0000P37 (MW)109.291109.3405P39 (MW)109.909109.243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P13 (MW)	214.871	365.5429
P15 (MW)304.563280.4326P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)109.42497.0000P34 (MW)199.797120.7029P35 (MW)109.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P14 (MW)	304.790	493.3729
P16 (MW)304.302432.0717P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)199.284170.2403P36 (MW)199.284170.2403P36 (MW)109.087109.3405P39 (MW)109.087109.3405P39 (MW)109.087109.3405P39 (MW)109.291110.0000P38 (MW)109.291100.021P30 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P15 (MW)	304.563	280.4326
P17 (MW)489.173435.2428P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)503.211446.4181P26 (MW)503.211446.4181P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.284170.2403P36 (MW)109.087109.3405P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P16 (MW)	304.302	432.0717
P18 (MW)491.336417.6958P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)109.284170.2403P36 (MW)199.284170.2403P36 (MW)109.087109.3405P39 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P17 (MW)	489.173	435.2428
P19 (MW)510.880532.1877P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.284170.2403P35 (MW)109.291110.0000P34 (MW)199.284170.2403P35 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P18 (MW)	491.336	417.6958
P20 (MW)511.474409.2053P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)199.291110.0000P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97 122,001.20	P19 (MW)	510.880	532.1877
P21 (MW)524.814534.0629P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.284170.2403P36 (MW)109.087109.3405P39 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P20 (MW)	511.474	409.2053
P22 (MW)524.775457.0962P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.087109.3405P39 (MW)109.099109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P21 (MW)	524.814	534.0629
P23 (MW)525.563441.3634P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.087109.3405P39 (MW)109.099109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P22 (MW)	524.775	457.0962
P24(MW)522.712397.3617P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.796188.7517P33 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)199.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P23 (MW)	525.563	441.3634
P25 (MW)503.211446.4181P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P24(MW)	522.712	397.3617
P26 (MW)524.199442.1164P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P25 (MW)	503.211	446.4181
P27 (MW)10.08274.8622P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P26 (MW)	524.199	442.1164
P28 (MW)10.66327.5430P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P27 (MW)	10.082	74.8622
P29 (MW)10.41876.8314P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P28 (MW)	10.663	27.5430
P30 (MW)94.24497.0000P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P29 (MW)	10.418	76.8314
P31(MW)189.377118.3775P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P30 (MW)	94.244	97.0000
P32 (MW)189.796188.7517P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P31(MW)	189.377	118.3775
P33 (MW)189.813190.0000P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P32 (MW)	189.796	188.7517
P34 (MW)199.797120.7029P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97 122,001.20	P33 (MW)	189.813	190.0000
P35 (MW)199.284170.2403P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P34 (MW)	199.797	120.7029
P36 (MW)198.165198.9897P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P35 (MW)	199.284	170.2403
P37 (MW)109.291110.0000P38 (MW)109.087109.3405P39 (MW)109.909109.9243P40 (MW)512.348468.1694Total generation cost (\$/h)122,323.97122,001.20	P36 (MW)	198.165	198.9897
P38 (MW) 109.087 109.3405 P39 (MW) 109.909 109.9243 P40 (MW) 512.348 468.1694 Total generation cost (\$/h) 122,323.97 122,001.20	P37 (MW)	109.291	110.0000
P39 (MW) 109.909 109.9243 P40 (MW) 512.348 468.1694 Total generation cost (\$/h) 122,323.97 122,001.20	P38 (MW)	109.087	109.3405
P40 (MW) 512.348 468.1694 Total generation cost (\$/h) 122,323.97 122,001.20	P39 (MW)	109.909	109.9243
Total generation cost (\$/h) 122,323.97 122,001.20	P40 (MW)	512.348	468.1694
	Total generation cost (\$/h)	122,323.97	122,001.20

 Table 3

 Result for 40 Generator System Considering Valve Point

 Effect

Power	Lagrange	SA	PSO	QPSO	MPSO
P1	50.65	50	50	50.00	50.00
P2	21.20	20.00	20	20.00	20.04
P3	15.46	15.00	15	15.00	15.057
P4	22.6846	20.61	22.11	22.9	22.208
P5	21.3002	22.49	20.6	20.04	22.63
P6	21.1181	21.89	22.31	22.03	20.06
Fuel Cost (\$/h)	2734.21	2702. 78	2701.7 96	2701.4 76	2058.5
Emissi on	2642.702	2607. 46	2593.1 844	2583.6 485	2440.4

V. CONCLUSION

This research focuses on calculation and stimulation of economic load dispatch problem under different operating conditions. It also provided the solution involving valve point effect and losses for different test systems. Therefore, three aims were constructed. First, constructed the mathematical model of economic and emission load dispatch with cubical cost functions under valve point effect and non-valve point effect with and without losses. Second one is to solve numerical results of economic load dispatch with modified quantum particle swarm optimization. The third one is comparative analysis of simulated results with existing soft computing problems.

This research mainly studied the improved quantum PSO method. It is used to provide the solution involving numerical analysis. The modified PSO method requires less number of iterations to reach convergence, and is more accurate and not sensitive to the factors.

VI. REFERENCES

[1] H. T. Yang, P. C. Yang and C. L. Huang, "Evolutionary Programming Based Economic Dispatch for Ubits With Non Smooth Fuel Cost Functions", IEEE Transaction on Power System, vol. 11, No. 1, pp. 112-117, Feb. 1996.

[2] Neural-Net Based Real-Time Economic Dispatch For Thermal Power Plants Miodrag Djukanovic Milan Calovic Borka Milogevik Dejan J. Sobajic IEEE Transactions On Energy Conversion, Vol. 11, No. 4, December 1996

[3] Tarek BOUKTIR, Linda SLIMANI and BELKACEMI, "A Genetic Algorithm for Solving the Optimal Power Flow Problem", Leonardo Journal of Sciences, Vol. 3, No. 4, pp. 44-58, January-June 2004.

[4] Jeyakumar, D. N., T. Jayabarathi, and T. Raghunathan. "Particle swarm optimization for various types of economic dispatch problems." International Journal of Electrical Power & Energy Systems 28.1 (2006): 36-42.

[5] Comparison of genetic algorithm and particle swarm optimization Dr. Karl O. Jones International Conference on Computer Systems and Technologies - CompSysTech'2005

[6] Todorovski Mirko, Rajicic Dragoslav, "An initialization procedure in solving optimal power flow by genetic algorithm", IEEE Transactions on power systems, May, 2006 [7] A Hybrid Genetic Algorithm–Interior Point Method for Optimal Reactive Power Flow Wei Yan, Fang Liu, C. Y Chung, Member, IEEE, and K. P. Wong, Fellow, IEEE transactions on power systems, vol. 21, no. 3, august 2006

[8] Roy, Ranjit, and S. P. Ghoshal. "A novel crazy swarm optimized economic load dispatch for various types of cost functions." International Journal of Electrical Power & Energy Systems 30.4 (2008): 242-253.

[9] Das, Swagatam, Ajith Abraham, and Amit Konar. "Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives". Advances of Computational Intelligence in Industrial Systems.Springer Berlin Heidelberg, 2008.1-38.

[10] Laouer, Mohammed, et al. "New Approach of Optimal Power Flow with Genetic Algorithms." Act a Electro technical et Informatica Vol 8.2 (2008): 35-42.

[11] M. I. Mosaad, M.M. El Metwally, A.A. El Emary and F.M. El Bendary(2010): 'On-Line Optimal Power Flow Using Evolutionary Programming Techniques' Thammasat Int. J. Sc. Tech., Vol. 15, No. 1, January-March 2010.

[12] L.H. Wua, Y.N. Wanga, X.F. Yuana and S.W. Zhoub, Environmental/Economic Power Dispatch Problem using Multiobjective Differential Evolution Algorithm, Electric Power Systems Res. 80 (2011) 1171–1181

[13] Zhisheng, Zhang. "Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system."Expert Systems with Applications37.2 (2010): 1800-1803.

[14] Chen, Ying-ping, and Pei Jiang. "Analysis of particle interaction in particle swarm optimization. "Theoretical Computer Science 411.21 (2010): 2101-2115.

[15] Mukhopadhyay, Sumona, and Santo Banerjee. "Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization."Expert Systems with Applications 39.1 (2012): 917-924.

[16] Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay, Solving economic emission load dispatch problems using hybrid differential evolution, Applied Soft Computing, Volume 11, Issue 2, March 2011, Pages 2526-2537

[17] Cai, Jiejin, et al. "A fuzzy adaptive chaotic ant swarm optimization for economic dispatch."International Journal of Electrical Power & Energy Systems 34.1 (2012): 154-160.

[18] Kumar, Rajesh, et al. "A novel multi-objective directed bee colony optimization algorithm for multi-objective emission constrained economic power dispatch."International Journal of Electrical Power & Energy Systems 43.1 (2012): 1241-1250.

[19] Raglend, I. Jacob, et al. "Comparison of AI techniques to solve combined economic emission dispatch problem with line flow constraints."International Journal of Electrical Power & Energy Systems 32.6 (2010): 592-598.

[20] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, "Optimization by Simulated Annealing", Science, New Series, Vol. 220, No. 4598, pp. 671-680, May 13, 1983.

[21] Masaya Yoshikawa, Hironori Yamauchi, and Hidekazu Terai, "Hybrid Architecture of Genetic Algorithm and Simulated Annealing", Advance on line publication, 20 Aug 2008.

[22] Y.J. Jeon and J.C. Kim, "Network reconfiguration in RDS using SA and TS", IEEE /PES, Winter Meeting, pp. 2329-2333, 2000.

[23] E. Carpaneto and G. Chicco, "Performance of the SA based algorithms for the optimal reconfiguration of distribution systems", Power Tech Proceeding, IEEE, Porto, Portugal, Vol. 3, pp.6, 2001.