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Abstract  

This paper, presents a relation on graphs that induces new dimension of topological structures to 

the graph and then  discusses some of the properties of graph. Also, we have investigated an 

algorithm to generate the topological structures from different graphs. Finally, some 

applications in medicine and geographs are discussed and we have verified our results in the 

real life. 
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1.Introduction 

Graph theory1-4 has recently emerged as a subject in its own right as well as an important 

mathematical tool in such diverse areas such as health care, PERT, sociology, genetics etc. A 

graph G is a pair (V, E), where V is nonempty set called vertices or nodes and E is 2-element 

subsets of V called edges or links. The number of vertices in a graph G is the order of G, and the 

number of edges is the size of G. An edge joining a vertex to itself is called a loop. Two or 

more edges that join the same pair of distinct vertices are called parallel edges. Let G = (V(G), 

E(G)) be a graph; we call H a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G), in which case we 

write H ⊂ G. The eccentricity e(v) of a vertex v in a connected graph G is the distance between v 

and a vertex farthest from v in G, while the radius rad(G) is the smallest eccentricity among 

the vertices of G. The notions of closure operator is very useful tool in several sections of 

mathematics, as an example, in algebra,5,6 topology,7,8 and computer science theory,9 the 

connection between graph theory and different subjects, as in structural analysis,10 

medicine11 and physics.12 Topology is the science that deals with the properties of things 

that does not depend on the dimension, which means that it allows increases and decreases, 

but without cutting on things. If X is a nonempty set, a collection 𝜏 of subsets of X is said to be 

a topology on X, and if the following condition holds X and 𝜙 belongs to 𝜏, the finite 

intersection of any 2 sets in 𝜏 belongs to 𝜏 and the union of any number of sets in 𝜏 belongs to 

𝜏.13 The term topology is also used to refer to a structure imposed upon a set X, a structure that 

essentially “characterizes” the set X as a topological space by taking proper care of properties 

such as convergence, connectedness, and continuity, upon transformation. Every element in 

topology is called an open set, its complement is a closed set. The closure of a subset A 

(briefly, Cl(A)) is the smallest closed set that contains A . The interior of a subset B (briefly, 

int(B)) is the greatest open set that is contained in B. The main contribution of the work is that 

we provide a new definition of a relation to extract a topology from any graph and study some 

properties. Throughout the paper, we start with the application of abstract topological graph 

theory. Some ideas in terms of concepts in topological graph theory, which is a branch of 

mathematics, and in many real-life applications will be investigated. We give an algorithm to 

generate some topological structural in graphs. Each topological structure on graphs is a 

topological space. Some properties on closure and interior operators for topological graphs will 

be studied. Finally, we apply both of a graph and a topology on some of the medical 

application such as the blood circulation in the human body and geographical application such 
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as a street system of a community. 

Definition 1.1. 1 If uv is an edge of G, then u and v are adjacent vertices. Two adjacent 

vertices are referred to as neighbors (ie, N(vi)) of each other. The number of vertices in a 

graph G is the order (degree) of G, and the number of edges is the size of G. The degree of a 

vertex v in a graph G is the number of vertices in G that are adjacent to v, denoted by degG(v). 

Definition 1.2. 1 A multigraph is a nonempty set of vertices, every 2 of which are joined 

by a finite number of edges. Structures that permit both parallel edges and loops are called 

pseudographs. A graph is simple if it has no loops or parallel edges. A simple graph is 

called complete graph, if any 2 distinct vertices are joined by an edge. 

Definition 1.3. 1 If the vertex set of a graph G can be split into 2 disjoint sets A and B, so 

that each edge of a graph G joins a vertex of A and a vertex of B, thena graph G is a bipartite 

graph. A complete bipartite graph is a bipartite graph in which each vertex in A is joined to 

each vertex in B by just one edge. 

Definition 1.4. 1 A spanning subgraph of a graph G is a subgraph obtained by edge 

deletions only. An induced subgraph of a graph G is a subgraph obtained by vertex 

deletions together with the incident edges. 

Definition 1.5. 2 The path P is called topological open subgraph if the subgraph not 

contained its end point. The path P is called topological closed subgraph if the subgraph 

contained its initial and its end points. 

Proposition 1.6. 2 If G = (V, E) is a connected graph and (V(G), 𝜏) is a topology induced by 

𝛽i={V(G), 𝜙, {vi}, {N(vi)}} 

as a basis and if P1 and P2 are open paths, then 

1. V(P1) ⊆ Cl(V(P1)). 

2. If P1 ⊆ P2, then Cl(V(P1)) ⊆ Cl(V(P2)). 

2.RELATIONS ON GRAPHS  

Let x be a vertex in a graph G with m loops and n multiple edges, then (degG(x))x = (2mx + 

nx)x. In simple graphs, we represent the vertex x only in the form (degG(x))x. 

Definition 2.1. A relation R on a graph G is defined as R = {((2mx + nx)x, (2my + ny)y) ∶ x, 

y ∈ V}, where mx and my are the number of loops of vertices x and y, respectively, and nx 

and ny are the number of multiple edges of vertices x and y, respectively. If G is a simple 

graph, R on G takes the form R={((degG(x))x, (degG(y))y) ∶ x, y ∈ V}. 

From Definition 2.1, if m  =  0, ie, there is no loop in G, then the relation in G can be written 

as R  =  {((nx)x, (ny)y) ∶   x, y ∈ V}, where nx and ny are the number of multiple edges of 

vertices x and y, respectively. If n = 1 and m  =  0, ie,  there is no multiple edges and no loops 

in G, then the relation in G can be written as R = {(1x, 1y) ∶ x, y ∈ V}. If G is directed and 

simple, then R = {(1x, 1y) = (x, y) ∶ x, y ∈ V}, and in case G is undirected, then the relation can 

be written as R = {(1x, 1y) = (x, y) or (y, x) ∶ x, y ∈ V}. 

 

FIGURE 1 A pesudograph G 
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FIGURE 2 A multigraph graph G 

 

FIGURE 3 A simple graph G 

 

Example 2.2. Let G be an undirected graph as shown in Figure 1. 

The relation R on G has the form R = {(7a, 6b), (7a, 5e), (6b, 10c), (10c, 6d), (6b, 6d), (6d, 5e), (7a, 7a), 

(5e, 5e), (10c, 10c)}. 

Example 2.3. Let G be a graph that has multiple edges and no loops, as 

shown in Figure 2. The relation R on G has the form R = {(3a, 6b), (3a, 

4e), (6b, 4c), (4c, 7d), (6b, 7d), (7d, 4e)}. 

Example 2.4. Let G be simple graph that has no loops and no multiple edges, 

as shown in Figure 3. The relation R on G has the form R = {(a, b), (a, e), (b, 

c), (c, d), (d, b), (d, e)}. 

It is clear that the relation R in Example 2.4 is a special case from the one given in Example 

2.2 and also in Example 2.3 and the relation R in Examples 2.3 and 2.4 represents a special 

case of Example 2.2. 

 

3.SOME APPLICATIONS  

In this section, we give an algorithm to evaluate the topological structure from a graph based 

on the topological notions of subbase and base. We represent a graph by its adjacency matrix 

in our algorithm. 

Now, we give 2 different examples. The first one shows the blood circulation of a human 

body and the second shows the street system of a community. 

Example 4.1. In this example, we will apply all the above on our medical application. We 

conclude that the graph must be connected to modifying the medical state. Figure 4 shows 

a graph G; we can classify the heart into a set of vertices and set of edges. So it is easy to 

generate the topology 𝜏G on it. The post classes of the vertices are the following: 

v1R = {v3}, v2R = {v3}, v3R = {v4}, v4R = {v5}, v5R = {v6, v7}, v6R = {v8}, 

v7R = {v8}, v8R = {v9}, v9R = {v10}. 

The subbase has a form 

SG = {{v3}, {v4}, {v5}, {v6, v7}, {v8}, {v9}, {v10}}. 
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FIGURE 4 The blood circulation of human body2 [Colour figure can be viewed at 

wileyonlinelibrary.com] 
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The base has a form 

𝛽G = {X, 𝜙, {v3}, {v4}, {v5}, {v6, v7}, {v8}, {v9}, {v10}}. 

And the topology in a graph has a form 

𝜏G = {X, 𝜙, {v3}, {v4}, {v5}, {v6, v7}, {v8}, {v9}, {v10}, {v3, v4}, {v3, v5}, {v3, v6, v7}, 

{v3, v8}, {v3, v9}, {v3, v10}, {v4, v5}, {v4, v6, v7}, {v4, v8}, {v4, v9}, {v4, v10}, 

{v5, v6, v7}, {v5, v9}, {v5, v10}, {v6, v7, v8}{v6, v7, v9}, {v6, v7, v10}, {v8, v9}, 

{v8, v10}, {v9, v10}, {v3, v4, v5}, {v3, v4, v6, v7}, {v3, v4, v8}, {v3, v4, v9}, 

{v3, v4, v10}, {v3, v4, v5, v6, v7}, {v3, v4, v5, v8}, {v3, v4, v5, v9}, {v3, v4, v5, 

v10}, 

{v3, v4, v5, v6, v7, v8}, {v3, v4, v5, v6, v7, v9}, {v3, v4, v5, v6, v7, v10}, 

{v3, v4, v5, v6, v7, v8, v9}, {v3, v4, v5, v6, v7, v8, v10}, {v3, v4, v5, v6, v7, v8, v9, v10}, 

{v4, v5, v6, v7}, {v4, v5, v8}, {v4, v5, v9}, {v4, v5, v10}, {v4, v5, v6, v7, v8}, 

{v4, v5, v6, v7, v9}, {v4, v5, v6, v7, v10}, {v4, v5, v6, v7, v8, v9}{v4, v5, v6, v7, v8, 

v10}, 

{v4, v5, v6, v7, v8, v9, v10}, {v5, v6, v7, v8}, {v5, v6, v7, v9}, {v5, v6, v7, v10}, 

{v5, v6, v7, v8, v9}, {v5, v6, v7, v8, v10}, {v5, v6, v7, v8, v9, v10}, {v6, v7, v8, v9}, 

{v6, v7, v8, v10}, {v6, v7, v8, v9, v10}, {v8, v9, v10}}. 

Firstly, we can get the closure of the graph. If we assign a subgraph H = {v1, v2, e1, e2, e3}, 

which V(H) = {v1, v2}. We can conclude from the definition of the closure that the resultant 

closure of the subgraph H is cl(V(H)) = {v1, v2, v3}. Medically, when we apply this example 

in the heart will find is true. Because the blood flow in a heart in a directed path that 

means that the blood must be pass through each successive point until it completes its 

cycle. But, if the blood stops, it will cause many problems as heart failure that occurs if the 

heart cannot pump enough blood to the lungs to pick up oxygen. Left-side heart failure 

occurs if the heart cannot pump enough oxygen-rich blood to the rest of the body. 

Secondly, also we can get the interior of the graph by assigning subgraph H = {v4, e4, v5, 
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e6, v6}. We can conclude from the definition of the interior that the resultant interior of the 

subgraph H is the int(V(H)) = {v4, v5}. In this case, 

we notice that the end point does not exist. And this is a contradiction for our medical 

application. But there is one part only we can apply this example to it. This is the lung. 

Medically, some people have medical problems in lungs like cancer, pulmonary edema, 

and tuberculosis. So these people have to remove one of their lungs surgically. This 

surgical operation called a pneumonectomy obviously major lung surgery. Those who do 

not have heart/respiratory problems are candidates. It is a gift from God to us that we can 

live with only one lung. 

4.CONCLUSIONS  

We can find out the topological structure from any graph by using a relation defined above 

and from this relation, we understand the type of a graphs that are used. We studied the 

connectedness in both general topology and topological graph and the relation between them. 

Also, from topological properties, we can deduce the solution of some problems in healthcare 

and in geography. 
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