Seismic performance of building with RC and Composite shear wall provided at side centre

^[1] Mohammad Saqib Siddiqui, ^[2] Anurag Bajpai

^[1]PG Student (M.Tech Structural Engineering), ^[2]Assistant Professor

^{[1][2]}Civil Engineering Department, Institute of Engineering and Technology,

Lucknow- 226022 (India)

Abstract - This study compares the seismic behaviour of tall building with RC shear wall and Composite shear wall. To improve the strength and ductility of core walls in tall buildings which would be subjected to combined high axial compressive force and bending moment during the earthquake, an innovative concrete filled double skin steel plate composite (CFSDC) wall is proposed. Multipartition composite shear walls have the strong points, such as high load-carrying capacity, good ductility, excellent energy dissipation capacity and fast construction speed. Composite shear walls are widely used in civil projects due to its high stiffness and deformability. RC shear wall building and CSW building are compared by providing both shear walls at side centre of building in X and Y direction using ETABS. The structural response in is investigated comparing various parameters that are time period, storey displacement, storey drift and stiffness. Multi storey building (G+24) is taken in Zone IV with medium soil.

Keywords: Composite shear wall, CFSDC wall, ETABS, Seismic behaviour.

INTRODUCTION

Steel shear walls, which are frequently used in seismic resistant structures against lateral loads, consist of a thin steel plate, two columns and two horizontal floor beams. The steel plate with two adjoining columns behaves as vertical plate girder with the columns acting as flanges and the steel sheet as web. The wall stiffness is provided through the diagonal tension field, generated in the steel sheat and accompanied by frame bending action. In composite shear walls, a layer of in-situ or pre-cast reinforced concrete is connected to one or both sides of the steel plate to improve the shear capacity by increasing the number of diagonal tension field lines, and also to improve the panel bearing against destructive factors such as fire, impulses, and explosion. The Canadian steel structures standards have approved this system and the American codes also provided the necessary guidelines for design and analysis of such walls. The improvement of shear capacity is due to distribution of diagonal lines in steel plate obtained by using steel mesh as stiffners, connected to the steel plate, producing lateral stiffness, or by a concrete layer connected to the steel plate by shear connectors (studs) to delay buckling.

Structural shear walls have played an important role in resisting lateral force, imposed by the earthquake or wind in tall buildings. However, the application of RC shear walls has been limited because of Composite shear walls.

This research addresses the behaviour of 3 structures subjected to earthquakes in Zone IV. Multi storey building(G+24) without shear wall, with RC shear wall and with Composite shear wall are analysed and compared. Seismic parameters that are time period, storey displacement, storey drift, stiffness are compared of all the three bare frame structures.

Cross section of shear wall

RC shear wall of 250mm thickness is provided in Model 2. These are provided at corners/edges of building.

Fig 1 – RC shear wall design

Composite shear wall of 250mm thickness with two steel plates of 4mm thickness is provided in Model 3. These are provided at corners/edges of building.

Fig 2 – Cross section of Composite shear wall provided

---- SHOWS STEEL PLATES(4mm)

Number of Layers: 3

Total Section Thickness: 250 mm

Sum of Layer Overlaps: 8 mm

Sum of Gaps Between Layer: 0 mm

2. OBJECTIVES OF WORK

- To study the behaviour of building for regular plan under seismic loads and load combinations as per IS 1893:2016.
- To evaluate the response of RC multi-storey building (G+24) with RC shear wall (RSW) and Composite shear wall (CSW).
- To determine seismic parameters that are time period, storey displacement, storey drift, stiffness.

3. DESCRIPTION OF BUILDING

3.1 Dimensions of building

Commercial building with 25 storey located in Zone IV (Delhi)

S. No.	Structural part	Dimension
1	Length in X-direction	48m
2	Length in y-direction	48m
3	No of bay in X-direction	8No.@6m
4	No of bay in Y-direction	8No.@6m
5	Floor to floor height	3m
6	Total height of building	75m
7	Thickness of slab	150 mm
8	Thickness of RC shear wall	250 mm
9	Thickness of Composite shear wall	250 mm
10	Column size	(600x600)mm

11	Beam size	(350x500) mm

3.2 Material properties-

S.No.	Material	Grade (N/mm ²)
1	Column	M35
2	Beam, Slab	M30
3	Rebar	Fe-500

3.3 Seismic data-

3.3 Se	eismic data-	〈 JE]
1	Zone Factor	0.24 (clause 6.4.2)
2	Damping ratio	5%
3	Importance factor (I)	1.2 (clause 7.2.3)
4	Response reduction factor (R)	5 (SMRF) (clause 7.2.6)
5	Type of soil	Medium soil (II)

3.4 Loading

- \blacktriangleright Live load 4kN/m² as per IS 875 (II)
- Earthquake load as per IS 1893-2016 (I)

4. PROBLEM DESCRIPTION

Model 1 – Multi storey building without shear wall

Model 2 – Multi storey building with RC shear wall

Model 3 – Multi storey building with Composite shear wall

Fig 4.1 - 3-D view of structure without shear wall

Fig 4.2 – 3-D view of structure with RC shear wall provided at side centre

Fig 4.3 – 3-D view of structure with Composite shear wall provided at side centre

5. ANALYSIS AND RESULTS

5.1 TIME PERIOD

As per **IS 1893 2016 clause 7.6.2**, the approximate fundamental translational natural period' T_s 'of oscillation in seconds shall be estimated by following expression:

$T_s =$	0.07	$5h^{0.75}$	offor	moment	resisting	frame)
W	/here,	h = 1	neigh	t of buildi	ng in met	er

MODE	TIME PERIOD (seconds)				
	MODEL	MODEL	MODEL		
	1	2	3		
Mode1	3.438	2.364	2.365		
Mode2	3.438	2.364	2.365		
Mode3	3.154	1.706	1.708		
Mode4	1.133	0.633	0.634		
Mode5	1.133	0.633	0.634		
Mode6	1.041	0.42	0.421		
Mode7	0.661	0.302	0.303		
Mode8	0.661	0.302	0.303		
Mode9	0.612	0.194	0.195		
Mode10	0.461	0.194	0.195		
Model1	0.461	0.189	0.19		
Mode12	0.428	0.148	0.149		

TABLE 5.1 – Time Period in seconds

Fig 5.1 – Graph showing Time period

Time period of model 1 is maximum and decreases rapidly at each interval of 3 modes.

Time period of model 2 and model 3 is almost same.

5.2 STOREY DISPLACEMENT

According to EURO CODE, the maximum allowable deflection is calculated as h/250,

Where,

h= height of the storey above ground level

5.2.1 STOREY DISPLACEMENT IN X DIRECTION

STORY	STOREY	STOREY DISPLACEMENT (mm)				
	MODEL	MODEL MODEL MODEL				
	1	2	3	Code		
				Limit		
Story25	363.844	212.571	146.078	300		
Story24	352.672	204.751	140.7	288		
Story23	337.284	196.731	135.197	276		
Story22	320.05	188.29	129.39	264		
Story21	302.172	179.67	123.467	252		
Story20	284.168	170.87	117.419	240		
Story19	266.174	161.882	111.243	228		
Story18	248.726	152.709	104.94	216		
Story17	231.886	143.363	98.52	204		
Story16	215.395	133.859	91.991	192		
Story15	199.476	124.213	85.367	180		
Story14	183.598	114.444	78.659	168		

676

© 2019 JETIR June 2019, Volume 6, Issue 6

Story13	168.597	104.577	71.885	156	
Story12	154.043	106.854	73.441	144	
Story11	139.994	95.845	65.88	132	
Story10	126.034	84.794	58.292	120	
Story9	112.46	73.773	50.724	108	
Story8	99.461	62.871	43.238	96	
Story7	87.184	52.197	35.908	84	
Story6	75.064	41.885	28.826	72	
Story5	63.086	32.099	22.103	60	
Story4	51.881	23.037	15.876	48	
Story3	42.056	14.947	10.311	36	
Story2	33.951	8.081	5.581	24	
Story1	27.874	2.808	1.957	12	
TABLE 5.2.1 – Storey displacement in X Direction					

STOREY DISPLACEMENT

www.jetir.org (ISSN-2349-5162)

Story16	215.395	133.859	91.991	192		
Story15	199.476	124.213	85.367	180		
Story14	183.598	114.444	78.659	168		
Story13	168.597	104.577	71.885	156		
Story12	154.043	106.854	73.441	144		
Story11	139.994	95.845	65.88	132		
Story10	126.034	84.794	58.292	120		
Story9	112.46	73.773	50.724	108		
Story8	99.461	62.871	43.238	96		
Story7	87.184	52.197	35.908	84		
Story6	75.064	41.885	28.826	72		
Story5	63.086	32.099	22.103	60		
Story4	51.881	23.037	15.876	48		
Story3	42.056	14.947	10.311	36		
Story2	33.951	8.081	5.581	24		
Story1	27.874	2.808	1.957	12		
TABLE 5.2.2 – Storey displacement in X Direction						

20 STOREY DRIFT (mm) MODEL 1 18 16 Storey Displacement (mm) STOREY 14 DISPLACEMENT 12 (mm) MODEL 2 10 STOREY DISPLACEMENT 8 (mm) MODEL 3 6 STOREY 4 DISPLACEMENT (mm) IS Code 2 Limit 0 Story25 Story19 Story16 Story13 Story13 Story7 Story4 Story4

Fig 5.2.1 – Graph showing Storey displacement

5.2.2 STOREY DISPLACEMENT IN Y DIRECTION

STORY	STOREY	STOREY DISPLACEMENT (mm)				
	MODEL	MODEL	MODEL	IS		
	1	2	3	Code		
				Limit		
Story25	363.844	212.571	146.078	300		
Story24	352.672	204.751	140.7	288		
Story23	337.284	196.731	135.197	276		
Story22	320.05	188.29	129.39	264		
Story21	302.172	179.67	123.467	252		
Story20	284.168	170.87	117.419	240		
Story19	266.174	161.882	111.243	228		
Story18	248.726	152.709	104.94	216		
Story17	231.886	143.363	98.52	204		

STOREY DISPLACEMENT 20 STOREY DRIFT 18 (mm) MODEL 1 16 Storey Displacement (mm) 14 STOREY DISPLACEMEN 12 T (mm) MODEL 10 2 8 STOREY DISPLACEMEN 6 T (mm) MODEL 4 3 STOREY 2 DISPLACEMEN 0 T (mm) IS Code Story9 Story5 Story1 Story13 Story25 Story21 Story17 Limit

Building without shear wall i.e. Model 1 shows larger displacement of 363.85 mm which exceeds the euro code limit and therefore the structure fails.

Building with RC shear wall is safe and values are within the permissible limit whereas building with Composite shear wall shows least displacement.

5.3 STOREY DRIFT

As per **IS 1893:2016** (clause 7.11.1) storey drift in any case shall not exceed 0.004 times of the storey height.

5.3.1 STOREY DRIFT IN X DIRECTION

STORY	STOREY	DRIFT (n	nm)		
	MODEL	MODEL	MODEL		-
	1	2	3	10	I
Story25	11.1/2	8.084	5.562	12	
Story24	15.388	9.027	6.208	12	
Story23	17.234	9.571	6.583	12	
Story22	17.878	9.968	6.855	12	
Story21	18.004	10.323	7.099	12	
Story20	17.994	10.634	7.312	12	
Story19	17.448	10.894	7.49	12	
Story18	16.84	11.107	7.636	12	
Story17	16.491	11.278	7.752	12	
Story16	15.919	11.411	7.843	12	
Story15	15.878	11.512	7.911	12	
Story14	15.001	11.579	7.957	12	
Story13	14.554	11.61	7.977	12	
Story12	14.049	11.599	7.968	12	
Story11	13.96	11.538	7.925	12	
Story10	13.574	11.416	7.84	12	
Story9	12.999	11.213	7.7	12	
Story8	12.277	10.908	7.492	12	
Story7	12.12	10.476	7.194	12	
Story6	11.978	9.886	6.792	12	
Story5	11.205	9.106	6.26	12	
Story4	9.825	8.091	5.562	12	×
Story3	8.105	6.799	4.678	12	
Story2	6.077	5.196	3.591	12	
Story1	4.063	2.691	1.854	12	

TABLE 5.3.1 – Storey drift in X direction

Fig 5.3.1 – Graph showing Storey drift

STORY	STOREY	DRIFT (n	nm)	
	MODEL	MODEL	MODEL	
	1	2	3	
Story25	11.172	8.084	5.562	12
Story24	15.388	9.027	6.208	12
Story23	17.234	9.571	6.583	12
Story22	17.878	9.968	6.855	12
Story21	18.004	10.323	7.099	12
Story20	17.994	10.634	7.312	12
Story19	17.448	10.894	7.49	12
Story18	16.84	11.107	7.636	12
Story17	16.491	11.278	7.752	12
Story16	15.919	11.411	7.843	12
Story15	15.878	11.512	7.911	12
Story14	15.001	11.579	7.957	12
Story13	14.554	11.61	7.977	12
Story12	14.049	11.599	7.968	12
Story11	13.96	11.538	7.925	12
Story10	13.574	11.416	7.84	12
Story9	12.999	11.213	7.7	12
Story8	12.277	10.908	7.492	12
Story7	11.172	10.476	7.194	12
Story6	15.388	9.886	6.792	12
Story5	17.234	9.106	6.26	12
Story4	17.878	8.091	5.562	12

5.3.2 STOREY DRIFT IN Y DIRECTION

© 2019 JETIR June 2019, Volume 6, Issue 6

Story3	18.004	6.799	4.678	12
Story2	17.994	5.196	3.591	12
Story1	17.448	2.691	1.854	12
TADID		1	1	

TABLE 5.3.2 – Storey drift in Y direction

Fig5.3.2 – Graph showing Storey drift

Building without shear wall exceeds the permissible limit of storey drift i.e. the structure fails in storey drift.

Building with Composite shear wall shows least storey drift.

5.4 STOREY STIFFNESS

5.4.1 STOREY STIFFNESS IN X DIRECTION

STORE Y	STOREY STIFFNESS (kN/m)		
	MODEL 1	MODEL 2	MODEL 3
Story25	1080323.09 8	846705.682	844728.608
Story24	1417390.41 3	1451630	1449853.74 8
Story23	1505332.03 8	1900548.85 2	1895526.59 4
Story22	1532860.05 2	2213933.90 7	2210858.80 4
Story21	1539757.05 7	2410962.06	2407900.55 7
Story20	1540258.42 5	2529538.29 6	2526686.82 6
Story19	1541214.45	2603221.70	2600509.25

www.jetir.org (ISSN-2349-5162)

	2	8	1
Story18	1545374.53	2655358.07 2	2652781.70 3
Story17	1552181.44	2698891.02	2696490.08
	4	9	7
Story16	1559582.09	2741082.16	2738959.70
	6	2	8
Story15	1566074.21	2788948.62	2787173.24
	4	5	9
Story14	1571597.66	2852317.03	2850868.50
	9	1	9
Story13	1577111.90 3	2942850.30 3	2941620.27
Story12	1583528.08	3069696.70	3068555.11
	9	5	1
Story11	1590874.68	3239259.67	3238106.57
	1	7	2
Story10	1598325.00	3454402.60	3453172.63
	9	4	3
Story9	1604965.09 6	3719897.6	3718488.62 4
Story8	1610621.19	4047847.90	4046018.71
	1	9	6
Story7	1616198.73 6	4461401.19 9	4458671.11
Story6	1623462.61	4998105.54	4993595.28
	6	3	9
Story5	1634991.96 4	5718630.97 6	5710723.64
Story4	1656961.62	6733765.87	6718897.46
	5	5	2
Story3	1713850.82	8260921.35	8220210.69
	7	3	6
Story2	1926350.01 2	10681064	10504873
Story1	3541171.61	19238562	18784859

TABLE 5.4.1- Storey stiffness in X direction

 $Fig 5.4.1-Graph\ showing\ storey\ stiffness$

STORE Y	STOREY STIFFNESS (kN/m)		
	MODEL 1	MODEL 2	MODEL 3
Story25	1080323.09 8	846705.682	844728.608
Story24	1417390.41 3	1451630	1449853.74 8
Story23	1505332.03 8	1900548.85 2	1895526.59 4
Story22	1532860.05 2	2213933.90 7	2210858.80 4
Story21	1539757.05 7	2410962.06	2407900.5 <mark>5</mark> 7
Story20	1540258.42 5	2529538.29 6	2526686.82 6
Story19	1541214.45 2	2603221.70 8	2600509.25 1
Story18	1545374.53	2655358.07 2	2652781.70 3
Story17	1552181.44 4	2698891.02 9	2696490.08 7
Story16	1559582.09 6	2741082.16 2	2738959.70 8
Story15	1566074.21 4	2788948.62 5	2787173.24 9
Story14	1571597.66 9	2852317.03 1	2850868.50 9
Story13	1577111.90 3	2942850.30 3	2941620.27
Story12	1583528.08 9	3069696.70 5	3068555.11 1
Story11	1590874.68	3239259.67	3238106.57
Story10	1598325.00	3454402.60	3453172.63

5.4.2 STOREY STIFFNESS IN Y DIRECTION

	9	4	3
Story9	1604965.09 6	3719897.6	3718488.62 4
Story8	1610621.19 1	4047847.90 9	4046018.71 6
Story7	1616198.73 6	4461401.19 9	4458671.11
Story6	1623462.61 6	4998105.54 3	4993595.28 9
Story5	1634991.96 4	5718630.97 6	5710723.64
Story4	1656961.62 5	6733765.87 5	6718897.46 2
Story3	1713850.82 7	8260921.35 3	8220210.69 6
Story2	1926350.01 2	10681064	10504873
Story1	3541171.61 4	19238562	18784859

Fig5.4.2 – Graph showing storey stiffness

6. RESULTS AND DISCUSSION

- The story displacement in Model 1 in X and Y direction is observed to be 363.84 mm which exceeds Euro code limit therefore the structure fails.
- The story displacement in Model 3 in X and Y direction is observed to be least i.e. 146.07 mm compared to other models.

- The story drift observed in Model 1 in X and Y direction is 18.004 mm which exceeds the IS code recommended value 12 mm (4% of storey height).
- 4. The story drift observed in Model 3 in X and Y direction is 7.97 mm which is within the IS code recommended value 12 mm (4% of storey height).
- 5. The time period of the building is found to be higher in Model 1. Model 2 and Model 3 have almost same time period.
- 6. The stiffness of building is found to be most in Model 2 & 3.

7. CONCLUSIONS

From the above results, it can be concluded that Composite shear wall provided at side centre is best for this structure.

Composite shear walls are cost effective and gives lesser displacement. Composite shear walls can be used with lesser thickness as compared to RC shear walls.

The strength and ductility of core walls is increased by providing Composite shear walls in the structure.

8. REFERENCES

[1] Qiuohong Zhao and Abolhassan "Seismic behaviour of composite shear wall system and application of smart structures technology" University of Tennessee, Knoxville, USA and University of California, Berkeley, USA ; 2007.

[2] A.Rahai and F.Hatami "Evaluation of composite shear wall behaviour under cyclic loadings" Civil Engg. Department, Amirkabir University of Technology, Tehran, Iran; 2009

[3]A.Arabzadeh, M.Soltani, A.Ayazi "Experimental investigation of composite shear walls under shear loading" Department of Civil and Environmental Engineering, TarbiatModares University, Tehran, Iran; 2011 Monitoring" Department of Civil Engineering, Texas Southern University, Texas ; 2012

[5] S.Rafiei et.al "Finite element modelling of double skin profiled composite shear wallsystem under in-plane loadings" Department of Civil Engineering, University of Toronto, Canada ; 2013

[6] Wanlin Cao et.al "Structural Performance of Composite Shear Walls under Compression"Beijing University of Technology, Beijing, China ; 2017

[7] Reslan N and Masri A "Composite Shear Walls an Efficient Seismic Resistant System for Multi-Storey Buildings" Department of Civil Engineering, Beirut Arab University, Lebanon ; 2018

[8]LanhuiGuoet.al "Experimental study of rectangular multi-partition steel-concrete composite shear walls" Harbin Institute of Technology, Harbin, China and Xijing University, Xian, China ; 2018

[9] Shao Teng Huang et.al "Experimental study on seismic behaviour of an innovative composite shear wall" South China University of Technology, China and Nanyang Technological University, Singapore ; 2018

[10] Yan Wang et.al "Experimental study on seismic behaviour of steel plate reinforced concrete composite shear wall" Tongji University, China ; 2018.

[4] AlirezaFarhidzadeh et.al "Structural Health