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ABSTRACT 

In this paper, we using A numerical investigation of laminar flow in a two-dimensional, Cartesian flow 

that exits from a short channel with a backward-facing step is carried out in this work for the Reynolds 

number range of 0.00054  Re 54. We studied the steady state fluid dynamics, phase change and heat 

transfer of the flow. We analyzed the flow behavior occurring for different outflow velocities and three 

different configuration of the step . This paper is organized as follows in section we adopt some usual terminology, 

notations and conventions which will be used later in the section we establish In order to obtain a better 

understanding of the step angle influence on the fluid dynamics, we obtained the heat transfer flux rates and 

the axial velocity profiles have also been presented. 
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1.1 INTRODUCTION 

 In mathematics, fluid dynamics is a sub discipline of fluid mechanics that deals with fluid flow—the 

natural science of fluids (liquids and gases) in motion. It has several sub disciplines itself, including 

aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in 

motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on 

aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, 

understanding nebulae in installer space and modeling fission weapon detonation. Some of its principles are 

even used in traffic engineering, where traffic is treated as a continuous fluid, and crowd dynamics. Fluid 

dynamics offers a systematic structure—which underlies these practical disciplines that embraces empirical 

and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution 

to a fluid dynamics problem typically involves calculating various properties of the fluid, such as flow 

velocity, pressure, density, and temperature, as functions of space and time. Before the twentieth century, 

hydrodynamics was synonymous with fluid dynamics. This is still reflected in names of some fluid 

dynamics topics, like magneto hydrodynamics and hydrodynamic stability, both of which can also be 

applied to gases. The theoretical study of the motion of the fluid is the most successful, fascinating and 

useful application of mathematics. 

An important issue in fluid dynamics is the study of fluid flow and heat transfer in channels with 

phase change, this being the topic of a range of studies because it is present in many technical applications 

and natural processes. Giessler and Schlegelm (2008) compared a two-dimensional axisymmetric simulation 

of a glass melt flowing through a pipe with a one-dimensional model. The fluid was supposed to be heated 

by internal electromagnetic heating and cooled at the wall by convection. It was considered to be a laminar 

and steady flow of a viscous electrically-conducting fluid in a pipe with circular cross-section driven by a 

pressure difference between the inlet and the outlet of the pipe. The highly viscous fluid with constant 

density was supposed to have strongly temperature-dependent viscosity and electrical conductivity. The 

steady state flow was governed by the Navier-Stokes equation, the incompressibility condition and the 

energy equation. The dependence of the mean velocity on the applied pressure difference and the 

dependence of the mean outlet temperature on the applied pressure difference were analyzed for heating 

without cooling and cooling without heating. Mirbagheri et al. (2003) simulated the flow of an 

incompressible molten metal in a mould cavity. They developed a numerical code and proposed a new 

algorithm with free and solid boundary condition to investigate the heat transfer and the effect of the coating 
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permeability during the mould filling using finite differences. This problem was modeled with the 

momentum equations, the continuity equation and the heat transfer equation for the liquid or solid zone; the 

heat transfer equation was used for the mushy region, while the free surface function and the backpressure 

function were utilized for low melting point metals. Velocity profile, temperature field and filling sequence 

were obtained from the simulations. 

To this end, the governing equations were discretized with the finite difference method and a semi-

explicit solution of this approximation was obtained to compute the first guess for new time-level velocities 

using the initial conditions or previous time-level values for all advective, pressure and viscous 

accelerations. To satisfy the continuity, pressure was iteratively adjusted in each cell and the velocity 

changes induced by each pressure change are added to the velocity computed previously. In most cases, an 

over-relaxation factor is used to accelerate the convergence of the iteration. Shmueli et al. (2008) 

investigated the process of melting of a phase change material in a vertical tube. The numerical simulations 

were done with fluent and the flow patterns and a detailed distribution of heat transfer on the inner wall of 

the tube were obtained. The results of the simulation and the analysis of digital pictures, obtained in 

previous studies, reveal that the effect of convection in the liquid phase provokes non-radial heat fluxes 

from the wall to the melting zone. The conservation equations for air were solved in the domain bounded by 

the perimeter of the inner walls, phase change melting from below, and the upper boundary of the tube from 

above. Boundary conditions for the momentum equation were no-slip at all solid surfaces and slip at the 

upper boundary of the tube, while for the energy equation constant and uniform temperature on the outside 

wall of the tube, zero heat flux at the bottom, and ambient air temperature at the upper boundary of the tube 

were considered. Alexiades et al. (2003) studied the effect of grid and scheme on the numerical solution of a 

tin melting flow. Simulations were carried out in a square cavity filled with tin (pure metal) initially at 

freezing temperature (solid tin). The top and bottom boundaries were considered to be adiabatic, while the 

right boundary was maintained at constant temperature. At the beginning of the simulation, the left 

boundary was suddenly brought to a hot temperature higher than the melting temperature. Thermal gradients 

generated density gradients, which provoked convection in the liquid tin. The shape of the solid-liquid 

interface, the flow pattern in the liquid and the heat transfer process were analyzed. Giannopapa (2006) 

developed a computational model to simulate the blow-blow forming process of glass containers that 

characterized the glass flow and the heat transfer. He was able to track the geometry of the deforming 

interface of glass applying structured and unstructured fixed meshes. The Navier-Stokes equations were 

used to describe the motion of the hot glass, while the energy equation was used to describe the heat transfer 

between the glass and the mould. The governing equations were discretized by the finite element method. In 

this work, the propagation of glass during the forming process and the temperature profiles were analyzed. 

Salinas (2006) studied numerically the solidification of aluminum alloy in a square cavity considering the 

flow of an incompressible Newtonian fluid with isotropic thermal properties where the phase change and the 

heat transfer by conduction and convection were considered. The mathematical model was based on a set of 

partial differential equations given by momentum, continuity and heat transfer equations. 

The discretization of the governing equations was done by the finite volume method combined with 

a SIMPLER scheme to join pressure and velocities. Transient results of the non-isothermal solidification 

were obtained and the streamlines and isotherms analyzed, the results showing a complex flow with 

secondary vorticity. The goal of the present work is to extend the one-dimensional study reported by 

Jimenéz (2002), providing insight into the velocity, the phase change and the temperature fields, as well as 

to analyze the heat fluxes and axial velocity profiles. The flow is assumed to be two-dimensional because 

the major changes occur only in the axial and transversal directions. The present research is of particular 

relevance for the glass industry because we have greatly extended current knowledge on how vortices and 

heat transfer interact with the geometry of the step channel. Furthermore, this fluid thermal interaction of 

glass flow underpins much of the behavior of the material properties. 

 

1.2 LITERATURE REVIEW 

 The convection driven by two different density gradients with differing rates of diffusion is widely 

known to as ―double-diffusive convection‖ and is an important fluid dynamics phenomenon. The study of 

double-diffusive convection has attracted attention of many researchers during the recent past due to its 

occurrence in nature and industry. The problems of time-dependent double-diffusive (mass and heat) flow 

over a semi-infinite vertical plate have been studied extensively by many researchers. [12] investigated 

transient free convective flow past a semi-infinite vertical plate with mass transfer, and analyzed the finite 

difference of transient free convection with mass transfer of an isothermal vertical flat plate. [7] Examined 

the effect of radiation in convective flow over a cone. [5] studied the effects of varying viscosity and 
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thermal conductivity on steady free convective flow and heat transfer along an isothermal vertical plate in 

the presence of heat sink. [8] investigated similarity solution for laminar thermal boundary layer over a flat 

plate with a convective surface boundary condition. One-dimensional time-dependent double-diffusive mass 

& heat flow over a semi-infinite vertical plate, under a convective surface boundary condition has been 

studied in this chapter. Using Similarity Transforms, the governing nonlinear partial differential equations 

have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved by 

Homotopy Perturbation Method. 

1.3 STREAM LINE FLOW AND HEAT TRANSFER PROBLEM 

 Two-dimensional flow of a viscous incompressible fluid of variable thermal conductivity in 

neighborhood of a stagnation point on a non-conducting stretching sheet is considered. The stretching sheet 

is located in the plane y = 0 and x-axis is taken along the sheet the fluid occupies the upper half plane i.e. y> 

0. The governing equations of flow are: 

The second derivatives of u and T with respect to x have been eliminated on the basis of magnitude 

analysis considering that Reynolds number is high. Hence the Navier-Stokes equation modifies into 

Prandtl‘s boundary layer equation. 

In the free stream u = U(x) = bx, the equation (2) reduces to 
 
 

∂u    ∂u    dU     ∂2u 
u 

∂x 
+ v       

∂y 
= U 

dx  
+ υ  

∂y2 .                      (1.1) 

 

The corresponding boundary conditions are. 
 

y → 0: u = uw   x  → c v → 0, T → Tw ,                     (1.2) 
 

y → ∞ ∶ u = U  x   → bx , T → T∞                             (1.3) 

 
Method of Solution 
 

Introducing the stream function ψ (x, y) as defined by 
 

                    ∂ψ 
u = ,                    (1.4) 

                ∂y 
 

∂ψ 
v = − 

∂x          (1.5) 
 

And the similarity variable 

 

ε =(c / ν )1/2 y  (1.6) 

 

Ψ (x, y) = (c ν )1/2  x f (ε),  (1.7) 

 

into the equations (4) and (5), we get 

 

f ′′′ + ff ′′ − ( f ′)2 +λ2 = 0,  (1.8) 

And 

 

(1+ε) ζ ′′ +ε (ζ′) 2 + Pr ζ ′f + Pr S ζ = 0.  (1.9) where ε-

perturbation parameter , ε-similarity parameter { = (c/ν)½ y} , ε∞-value of ε at which boundary conditions is 

achieved ,κ-uniform thermal conductivity ,κ*- variable thermal conductivity ,ν-kinematic viscosity ,ρ-

density of fluid ,ψ-stream function ,                ζ-dimensionless temperature{ = ( T -T∞ ) / ( Tw -T∞ )} , ηw-

shear stress ,S- heat source/sink parameter {= Q/ρ Cp c } , T- fluid temperature 

The governing boundary layer and thermal boundary layer equations (1.8) and (1.9) with the boundary 

conditions (1.6) and (1.7) are solved using Homotopy perturbation method. Introducing the following 
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1 1 

1 1 



Homotopy : boundary conditions, we get: 

𝐟𝟎  𝛈   = 𝛌𝛈 − 𝐞−𝛈 + 𝛌𝐞−𝛈 − 𝛌 + 1, (1.10) 
 

𝐟𝟏  𝛈   =   𝛈𝐞−𝛈 + 𝟒𝐞−𝛈 + 𝟑𝛈 − 4 , (1.11) 
 

θ𝟎  𝛈  = 𝐞−𝛈, (1.12) 
 
 

 

A2e−η A3 e
−2η A4e−η η − 2 

θ𝟏 𝛈 =  A1 
 2 + 1 

+
   A  2 + 4 

+
    A  2   η −

    A
 
 

2A4 
−   

 A1  

A3 
+

 A 2 + 4 

A2 
+

 A 2 + 1 

 

  e−η . (1.13)

Finally by summing up the results, and letting p → 1 we have the 𝐟 𝛈 , 𝛉 𝛈 as: 

 

𝐟  𝛈   = 𝛌𝛈 − 𝐞−𝛈 + 𝛌𝐞−𝛈 − 𝛌 + 1 +   𝛈𝐞−𝛈 + 𝟒𝐞−𝛈 + 𝟑𝛈 − 4 , (1.14) 
 

 
θ η = e−η + 

A2e−η 

 

 A1 2 + 1

A3 e
−2η 

+ 
 A1 2 + 4 

A4e−η 

+ 
 A1 2 

 
 η − 

η − 2 
 

 

 A1 2 

2A4 
−   

 A1  

A3 
+

 A 2 + 4 

A2 
+

 A 2 + 1 

 

  e−η . (1.15) 

Where   A1 = Pr S , A2 = Pr S + Pr − λ ε Pr − 1, A3         
      = λPr − Pr − 2 , A4 = λPr. 

1.4 PROBLEM FORMULATION 

We present numerical simulations of the out flowing fluid from a two dimensional axially 

symmetric short channel with an inclined backward- facing step, as shown in Figure 1.  is the step 

inclination angle and the fluid enters at the superior boundary of the channel and exits at the inferior 

boundary of the domain at the outflow velocity denoted by Uout. This velocity is also imposed at the 

left inferior lateral boundary of the domain to simulate the casting velocity when the fluid is solidified 

or the jet velocity when the fluid experiments no phase change. No-slip boundary conditions were 

imposed at all solid walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Geometry of the cannel with inclined  backward- facing step and 

computational adaptive mesh 

The range of outflow velocity explored in this investigation was 8.6510-5 m/s  Uout  8.65100 

which for glass as the working fluid corresponds to the Reynolds number (Re=Uout L / v) range of 

0.00054  Re  54, where L is the distance from the entrance of the channel to the lower boundary of 

the domain. The walls of the short channel from the superior part of the channel to the step are assumed 

to be adiabatic. After the step, convection heat transfer coefficients are imposed along the domain 
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boundary in order to take into account the heat exchange by convection of the glass. with the 

surroundings, which are kept at T0=300K At the entrance of the channel, the glass temperature is 

Tin=1373K and the viscous stress vanishes along this boundary. The flow region Ω chosen for the 

numerical simulations is a two-dimensional channel, where the flow, heat transfer and phase change are 

analyzed. The conservation equations that describe this problem for a steady state incompressible fluid 

in this region are the momentum, continuity and energy equations. 

          
1

. ,v u u u f in


                                                               (1.16) 

                         . 0 ,u in                                                                           (1.17) 

                   . . ,pk T C u T Q in                                                              (1.18) 

Where  1 2,u u u is the velocity vector, 1u and 2u  being the transversal and axial velocity components 

respectively;  is the kinematic viscosity, p is the  pressure, k is the thermal conductivity, Cp is the 

specific heat, Q is the heating power per unit volume (heat source term) and T is the temperature 

Because we are interested in the flow behaviour at the phase change interface, the only body force 

taken into account in this model is given by a Darcian approximation that is a damping force, which 

ensures zero velocity of the solid phase and is given by the following body force   

   
2

3

1
,

a

b out

a

c
f c u u j

c 


 


                                                                                         (1.19) 

 

Where ca is the fraction of liquid phase, given by:  

           

 

 
   

 

1 ,

, ,
2

,

m

m

a m m

m

T T T

T T T
c T T T T

T

o T T T

  


  
    


  


                                                  (1.20) 

cb is the permeability constant and  is a small number to prevent division by zero in calculations. This 

term vanishes in the liquid phase region (ca=1). Tm=1223K is the melting temperature and T=20K is 

the temperature interval where the liquid-solid mixture coexists.  

Physically, in the mushy region when the fluid temperature decreases the glass solidifies; as a 

consequence, the specific heat capacity in the energy equation should be:  

                                     .p pC C H                                                             (1.21) 

in order to incorporate the effect of the significant amount of latent heat released in the phase 

change region. On the other hand, most of the released heat occurs near the melting temperature, like a 

peak of heat due to phase change. Thus, in order to capture this physical phenomenon, we introduce the 

exponential parameter , which allows for a pulse type latent heat in the mushy region.  is defined below:  

. 

                                               

    2 2
/mT T T

e

T




  




                                                           (1.22) 

 

While the enthalpy change is given by :  

                                                pH T C                                                                     (1.23) 

The velocity boundary conditions of the channel are:  

2
1 0, 0, 0

u
u for x

x


  

  

1 20, 0, ,A bu u for y y 
                                                                                   (1.24) 

1 20, , , ,out c D Eu u u for y y y 
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1 20, , .outu u u for y L    

The temperature boundary conditions are given by. 

0 ,A

T
for y

x





 

hB  35 W / m2  K, for  yB,  

hC  105W / m2  K, for yC,  

hD  60 W / m2  K,    for  yD ,                                                                               (1.25) 

hE  40 W / m2  K,     for yE 
 

The thermophysical properties of glass used in the simulation are independent of temperature, see 

Table 1. The data for the glass flow simulated in this work, including the melting temperature and the 

temperature interval where the liquid-solid mixture coexists, are those for an actual glass and were 

published by a glass bottle manufacturer (Silices de Veracruz S.A. de C.V) located at Veracruz, Mexico. 

 

 

 

Table 1: Physical properties of glass. 

 

Property Glass 

Density 2380 kg/m3 

Specific heat 1235.08 J/kgK 

Thermal 

conductivity 
2.1 W/mK 

Dynamic viscosity 600 Pa.s 

Latent heat 205 kJ/kg 

 

 

1.5 CONCLUSION  

 In this paper free convective flow of a viscous Fluid past a vertical plate with constant porosity and 

span-wise co-sinusoidal temperature by using Regular Perturbation along with Homotopy Perturbation 

method. One-dimensional time-dependent double-diffusive mass & heat flow over a semi-infinite vertical 

plate, under a convective surface boundary condition using Homotopy perturbation method and Similarity 

Transforms. The property of variable thermal conductivity on flow of a viscous incompressible fluid in 

variable free stream near a stagnation point on a nonconducting stretching sheet using Similarity 

transformation and Homotopy perturbation method. The effect of variable thermal conductivity and heat 

source/sink on flow of a viscous incompressible electrically conducting fluid in the presence of uniform 

transverse magnetic field and variable free stream near a stagnation point on a non-conducting stretching 

sheet by Similarity Transformation & Homotopy perturbation method. The problem of laminar, 

incompressible and viscous flow between two moving porous walls, which enable the fluid to enter or exit 

during successive expansions or contractions by using Laplace transform and Homotopy Perturbation 

Method (HPM). The effects of heat generation and chemical reaction on unsteady MHD flow heat and mass 

transfer near a stagnation point of a three dimensional porous body in the presence of a uniform magnetic 

field is studied by similarity transformation and Homotopy Perturbation Method. A rotating disk in an 

infinite viscous fluid is extended to the case where the disk surface admits partial slip and the flow due to a 

rough rotating disk solved by Similarity Transformation & Homotopy Perturbation Method.  

  The velocity profile, temperature profile, skin friction coefficient and rate of heat transfer of the flow 

have been presented through graphs and tables. The numerical data has been derived through computer 

programming software MATLAB. The problem has been solved by using Homotopy perturbation method 

along with one of the methods mentioned as follows (i) Regular perturbation method (ii) Similarity 

Transform and (iii) Laplace Transform. The numerical results obtained have been mentioned in the end 

chapters in detail. It has been observed that Homotopy perturbation method when employed to solve 

governing equations of flow and heat and mass transfer along with traditional method after reducing the 
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problem in ordinary differential equations (whether linear of non-linear, coupled or uncoupled), gives the 

solution very quickly, accurate and at a great ease as campared to tranditional methods when they employed 

alone. The beauty of HPM lies that it handles the non linearity of the equations in a very smooth way.  

Although it has been observed that an initial solution is to be assumed satisfying the boundary conditions of 

the problem. The velocity and temperature distributions in all the problems studied in the thesis using HPM 

have the same patterns which have been obtained by the other researchers satisfying the corresponding initial 

and boundary conditions of the respective problems. Numerical results obtained by HPM method in all the 

problems have good agreement with the numerical results obtained by other researchers. So it may be 

concluded that HPM method is very fast accurate and simple method to solve the problems in fluid dynamics 

if it is used along with some traditional method such as regular perturbation or similarity transforms. 
This study was carried out by the numerical solution of the Navier-Stokes equations coupled with the 

energy equation, using finite element and adaptive meshes. The Darcian approximation was implemented in 
order to take account of the damping of the velocity when the solidification occurs in a glass flow. We studied 

the interaction between fluid dynamics, heat transfer and phase change in an out flowing fluid from a short 

channel with hot temperature at the entrance of the channel. The outflow velocity of the fluid was imposed at the 
inferior boundary of the domain and on the left inferior lateral boundary of the domain to simulate the casting 

velocity when the fluid is solidified or the jet velocity when the fluid experiments no phase change. No-slip 

boundary conditions were imposed at all solid walls is also easy to apply and understand. 

 

FUTURE SCOPE  

 Since study of fluid dynamics has great importance and significance in the field of science and 

technology. So efforts should be made to do more research to find the problems of fluid dynamics which 

occurs in other fields like biotechnology, nano technology, chemical industry etc. and to find new methods 

and techniques which make the solution obtaining procedure more accurate, exact, fast, easy and compatible 

to modern computing machine. HPM is such a method. It may be employed to above mentioned problems 

and areas and problems of turbulent flows also. Further research is require to carry out to employ HPM 

method without using any traditional methods. 

NOMENCLATURE 

ca    - Liquid phase fraction 

cb  -  Permeability constant 

h   - Spatial step m 

k t  -  hermal conductivity W/m⋅K 

L   - Length m 

Loh   - Space of trial function for 

           pressure Pa   

Lh - Space of finite element trial 

         function for pressure Pa 

p - Pressure Pa 

P1 - Polynomial space of degree one 

ph   Approximation of pressure 

        finite element  Pa 

qh - Trial function of pressure Pa 
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