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ABSTRACT 

In this paper, we define difference equation; an oscillation criterion for first order difference equation is 
various classifications of Basic definitions. This paper is organized as follows in section we adopt some usual 

terminology, notations and conventions which will be used later in the section we establish the single delay and 

General delay arguments. The first order difference equation is using basic notations of difference equation and also 

presents a sufficient condition for the oscillation of all solution of linear difference with general delay argument have 
also been presented. 
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1.1 INTRODUCTION 
In the last three decades, the study of difference equation has received significant interest as they provide the 

first step for developing techniques theory digital signal processing and in particular computer science because of 

their successful use in computers for solving difficult problem in applications. 
 In the paper, we study oscillation of solution of the delay difference equation 

x(n+1)-x(n)+p(n)x(n-k)=0, for n=0,1,2,……..,               (1.1) 

Where k ϵ N and {p (n)} n-   is a non-negative sequence of real numbers 

         By a solution of equation 1 we mean a sequence{x(n)} n=-k for which x(n+1)=x(n)-p(n)x(n-k) hold for 

n=0,1,2….., a solution {x(n)} n=-k of equation (1.1) is said to be oscillation if its terms are neither eventually positive 

nor eventually negative, otherwise the solution {x(n)} is called non-oscillatory 

Erbeand Zhang [1] proved that, if p (n) 0 then either one of the following conditions 

P (n) >  or                                               C1 

                      C2 

Implies that all solution of equation (1.1) oscillation then Ladas, Philos and Sficas proved that the same conclusion 

hold if p (n) ≥ 0 and 
    ( )  >     C3 

Therefore they improved the condition (C1) by replacing the p (n) of (C1) by the arithmetic mean of the terms p (n-

k)…….,p (n-1) in (C3) 

 In the paper, we obtain a further improvement of the above condition we also present a sufficient condition 

under which all solution of (1.1) oscillation without the assumption that p (n)  for all n  finally we extend our 

results to difference equation with single delay. 

1. 2 .INEQUALITIES AND EQUATIONS WITH A SINGLE DELAY 
Consider the difference inequalities 

∆x (n) +p (n) x (n-k) ≤0  n=0, 1……              (1.2) 

∆x (n) +p (n) x (n-k) ≥0  n=0, 1……              (1.3)    
and the difference equation 

∆x (n) +p (n) x (n-k) =0  n=0, 1……                                       (1.4) 

Where p (n) is a sequence of real numbers, k is a positive integer and ∆ denotes the forward difference operator                              

∆x (n) =x (n+1)-x (n) 
By a solution of (1.2), we mean a sequence {x (n)} which is defined for n≥-k and which satisfies (1.2) for      

n ≥0.Solution of (3) are defined in a similar manner 

To obtain our result we need the following lemma which is also very interesting in its own right 
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LEMMA 1   
Assume that {p (n)} is a sequence of non-negative real numbers and that there exists M > 0 such that  

                                               > M                           (1.5) 

If {x (n)} is an eventually positive solution of (2) then for every n sufficiently large, there exists an integer n’ with n-k 

≤ n’≤ n-1 such that 

                                                 ≤ ( ) 2                 (1.6) 

PROOF 
 Let {x (n)} be an eventually positive solution of (1.2) by (1.5) for n sufficiently large,  

say for n≥ n0 

 ≥ M 

Thus for n≥ n0+k, we can find an integer n’ with n-k ≤ n’ ≤ n-1 such that 

                                   ≥ and    ≥                       (1.7) 

From (1.2) taking into account inequalities (1.7) and the fact that the sequence {x (n)} is decreasing we have 

x (n-k) – x (n’-1) =  ≥ ≥ x (n’-k) 

Similarly,  

x (n’)-x (n+1) = ≥  ≥ ≥ x (n-k) 

Combining the last two inequalities, we obtain 

x (n’) ≥ x (n-k) ≥ x (n’-k) = ( ) 2x (n’-k) 

that is, inequality (1.6) holds. The proof is complete. 

THEOREM 1.1 
 Assume that there exists a sequence n(m)→∞ such that  

p(n)≥0 for nϵ[n (m)-(N+1)k, n(m)] and 

  ≥c ≥ ( )k+1, for nϵ[n (m)-N k, n (m)] m=1,2…..                (1.8) 

Where  

                       N=1+ [ ]                             (1.9) 

and [.] denotes the greatest integer function then 

a. has no eventually positive solution 

b. has no eventually negative solution and 

c. has oscillatory solution only 

PROOF 
First we prove that inequality (2) has no eventually positive solutions. To this end assume for the sake of 

contradiction that {x (n)} is an eventually positive solution of (1.2) then we obtain 

(c ( )k+1)N ≤  for nϵ [n (m)-N k, n (m)] 

On the other hand by lemma1 we have  

 ≤  , for nϵ [n (m)-N k, n (m)] 

From the above inequalities it follows that  

(c ( )k+1)N ≤  

That is   N≤   which contradicts the definition of  N 

From the above it follows that (4) has neither positive nor eventually negative solutions and therefore, every solution 
of (1.4) oscillates. the proof is complete. 

THEOREM  1.2 
 Assume that {p (n)} is a non-negative sequence of real numbers and let k be a positive integers. Assume that 

there exists M>0 such that 

>M                      (1.10) 

and            µ=  p (n) > 1- ( )2                                  (1.11) 

Then a. has no eventually positive solution 

b. has no eventually negative solution 
c. has oscillatory solution only 

PROOF 

  First we prove that (1.2) has no eventually positive solutions. To this end assume for the sake of contradiction 
that {x (n)} is an eventually positive solution of (1.2) then eventually 

∆x (n) = x (n+1)-x (n) ≤-p (n) x (n-k) ≤ 0 
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And so {x (n)} is eventually decreasing sequence of positive numbers. Summing (1.2) from n-k to n-1 

We have,                                 x (n)-x (n-k)+  x (i-k) ≤ 0 

And because {x (n)} is eventually decreasing it follows that for n sufficiently large 

x (n)-x (n-k) + ( ) x (n-k) ≤ 0 or 

x (n-k) ( ) ≤ 0 

and using lemma1, for N sufficiently large there exist an integer n’ with N-k≤n’≤N-1 such that 

x (n’-k) ( -1) ≤ 0 

now let λ (n) be a sequence such that p (λ (n)) →µ for N=λ (n) +k+1, n’ satisfies 
λ (n) +1 ≤ n’ ≤ λ (n) +k or n’-k ≤ λ (n) ≤ n’-1 

Thus,                  x (n’-k) (p (λ (n) + ( ) 2-1) ≤ x (n’-k) ( 2-1)  

Which is view of (1.11) leads to a contradiction. Hence the equation (1.2) has no eventually positive solution equation 
(1.4) has neither positive nor eventually negative solution and therefore every solution of (1.4) oscillate. The proof is 

complete 

1.3 OSCILLATION CRITERIOR FOR THE GENERAL DELAY ARGUMENT 
 Our main result is to prove the oscillation solution of the general delay argument. The proof of the theorem is 

based on the following lemma 

LEMMA 2 

 Assume that the sequence (τ (n)) n≥0 is increasing. Moreover, assume that 0 <α ≤-1+ , where α is defined 

by . Then every non-oscillatory solution (x (n)) n≥-k of the delay difference equation  

                                            ∆x (n) +p (n) x (τ (n)) =0                                    (1.11a) 
Where (p (n)) with n≥0 is a sequence of non-negative real numbers and τ (n)with n≥0 is a sequence of integers such 

that (n) ≤ n-1 for all n≥0 and =∞ satisfies  

 ≥ (1-α- ))                                       (1.12) 

PROOF 
 Define q (t) =p (n)       for   n ≤ t < n+1 (n=0, 1…..) 

Clearly q is a non-negative real-valued function on the interval [0, ∞), which is continuous on each one of the 

intervals (n, n+1) (n=0, 1…). Note that q (n) = p (n) for every integer n≥0. Furthermore, consider the real-valued 
function σ defined on the interval [0, ∞) by 

σ (t) = τ (n))       for n ≤ t < n+1  (n=0, 1…..) 

It is obvious that for each n=0, 1… the function σ is continuous on (n, n+1). We notice that σ (n) = τ (n) for all 
integers n≥0. We can immediately see that 

Σ (t) < t for all t ≥ 0 and  = ∞ 

Also, as the sequence (τ (n)) with n≥0 is assumed to be increasing, we observe that the function σ is increasing on [0, 

∞). 
Let (x (n)) with n ≥ -k be a solution of the delay difference equation(1.11a). We define 

y (t) = x (n) + (∆x (n)) (t-n) for n ≤ t ≤ n+1 

It is clear  

y (n) = x (n)  for all integers n≥ -k 

Moreover, it is easy to verify that the real-valued function y is continuous on the interval [-k, ∞). Also, we see that 

y is continuously differentiable on each one of the intervals (n, n+1) 

(n + -k, -k+1…) with 
'y  (t) = ∆ x (n)  for all integers (n =-k,-k+1,) 

Furthermore, as x (n) satisfies (1.11a) for all integers n≥0, we can easily conclude that the function y satisfies 

  
'y  (t)+ q (t)y(σ(t)) = 0 for all integers(n=0,1…….) 

Next assume that the solution x (n) with n≥-k is non-oscillatory. Then it is either eventually positive or eventually 

negative. As (–x (n)) with n ≥ -k is also a solution of (1’). We may restrict ourselves only to the case where x (n) > 0 

for all large n. 

Consider an arbitrary real number ε with 0<ε<α then we can choose an integer n0>r such that τ (n) ≥ r for n ≥ n0 such 
that 

                  >α-ε                               for every n ≥ n0 

For any point τ≥ n0, there exists an integer n ≥ n0 such that n ≤ t< n+1, and consequently 

 = ≥  = >α – ε. 

So we have 

  >α – ε for all t ≥ n0              (1.13) 
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Furthermore, we will establish the following claim 

            For each point t ≥ n0, there exists α t* >t such that σ (t*) < t and 

   =α –ε                                                        (1.14) 

To prove this claim, let us consider an arbitrary point t ≥ n0 set 

  f (v) =  for v ≥ t 

We see that f (t) = 0. Moreover, it is not difficult to show that (1.13) guarantees that 

  ds = ∞ 

And in particular, 

  ds = ∞ 

That is . Thus, as the function f is continuous on the interval [t, , there exists α point t* >t so that 

f (t*) = α – ε ,that is (14) is satisfied. By using (1.13), it follows that 

  y (t) = y (t*) +                          (1.15) 

Let s be any point with t ≤ s ≤ t*.  

As the function σ is increasing on [0, ∞), we have n0 ≤ σ (t) ≤ σ (t*) <t, 

and r ≤σ (u) ≤σ (t) for every u with σ (s) ≤ u with σ (s) ≤ u ≤ t. thus, by taking into account the fact that the function 

y is decreasing on [r, ∞), from (1.12) we obtain 

y (σ (s)) = y (t) +  

                                       ≥ y (t) +  y (σ (t)) 

So by applying (1.13), we get 

  y (σ (s)) > y (t) + [(α – ε)- ] y (σ (t)) 

As the inequality holds true for all s with t ≤ s ≤ t*, it follows from (1.15) that 

 y (t) ≥ y (t*) + {y (t) + [(α –ε)- ] y (σ (t))} ds 

        =y (t*) + [ ds] y (t) + {(α – ε) - [ ] ds} y (σ (t)) 

And consequently, in view of (1.14), 

    y (t) ≥ y (t*) + (α –ε) y (t) + {(α –ε )2- } y (σ (t))         (1.16) 

By the known formula 

  [ ] ds      =  { [ ] ds + [ ] ds} 

          =  ds 

           = [ ] ds =  [ ]2 

And therefore, by (1.14), 

[ ] ds =  (α –ε )2 

Hence, (1.15) is written as 

         y (t)≥ y (t*) + (α –ε) y (t) +  (α – ε )2y (σ (t))             (1.17) 

This gives 

         y (t) > (α –ε) y (t) +  (α – ε )2y (σ (t)) 

          y (t) >  y (σ (t)) 

We have thus proved that 
          y (t) > λ1y (σ (t)) for all t ≥ N,               (1.18) 

Where         λ1 = >  

Now in view of (1.18), we have 

                                   y (t*)> λ1 y (σ (t*)) 

but since σ (t*) < t and the function y is decreasing on [r, ∞), we also have  
           y (σ (t*)) ≥ y (t)  

Combining the last two inequalities, we obtain 

           y (t*) > λ1y (t) 
and hence (1.17) yields 

          y (t) > λ1y (t) + (α – ε) y (t) +  (α – ε) 2y (σ (t)) 

Or           [1-(α – ε)- ] y (t) >  (α – ε )2y (σ (t)) 

this implies, in particular, that 
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1-(α – ε)-λ1> 0 

Consequently, 

y (t) >  y (σ (t)) 

Thus, it has been shown that 

y (t) > λ2y (σ (t)) for all t ≥ N, 

λ2 =  

Following the above procedure, we can inductively construct a sequence of positive real numbers ) as v ≥ 1 with 

1-(α – ε) - λv> 0 (v=1, 2….) 

and    λv+1 =  for all (v = 1, 2….) 

such that  y (t) > λv y (σ (t)) for all (v = 1, 2….)             (1.19) 
as λ1 > 0, we obtain 

   λ2 = >    = λ1, 

by an easy induction, one can immediately see that the sequence ) as v ≥ 1 is strictly increasing. Furthermore, by 

taking into account the fact that the function y is decreasing on [r, ∞) and using (1.19) 

We get,    y (N) > y (σ (N)) ≥ y (N) for all (v = 1,2….) 

Therefore, for each integer v ≥ 1, we have <1.this ensures that the sequence is bounded 

Hence it follows that  

   Λ =  

Then (1.19) gives 

   y (t) ≥Λ y (σ (t))  for all t ≥ N             (1.20) 

Because of the definition of ) as v ≥ 1, it holds 

   Λ =  , 

   Λ2-[1-(α –ε)] Λ +  (α – ε )2  = 0 

Hence either 

   Λ =  [1 – (α – ε)- 2)] 

Or   Λ =  [1 – (α – ε) + 2)] 

In both cases, we have 

   Λ ≥  [1 – (α – ε)- 2)] 

And consequently (1.20) yields 

  y (t) ≥  [1 – (α – ε)- 2)] y (σ (t)) for n ≤ t < n+1          (1.21) 

but, y (σ (t)) = y (τ (n)) = x (τ (n)) for n ≤ t < n+1. So, 

   y (t) ≥  [1 – (α – ε)- 2)] x (τ (n))   

and therefore 

   ≥  [1 – (α – ε)- 2)] x (τ (n))  

Note that  = y (n+1) = x (n+1). We have thus proved that 

  x(n+1) ≥  [1 – (α – ε)- 2)] x (τ (n)) for all n≥ N           (1.22) 

Hence we get the inequality 

  ≥  [1 – (α – ε)- 2)]  

The last inequality holds true for all real numbers ε. Hence, we can obtain the required inequality 
The proof of our lemma is proved. 

 

THEOREM  1. 3 
Let the assumptions of lemma 2 hold then the condition 

  > 1- (1-α- ))              (1.23) 

PROOF 
 Assume, for the sake of contradiction, that there exists α non-oscillatory solution (x (n))n ≥ -k of the delay 

difference equation (1’). Since (-x (n))n ≥ -k  is also a solution of (1.11a), we can confine our solution to the case where  
solution (x (n))n ≥ -k is eventually positive. 
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  Now we choose an integer n0> r such that τ (n) ≥ r for n ≥ n0. Furthermore, we consider an integer and the 

sequence (x (n))n ≥ r is decreasing, it follows from (1.11a) that, for every n ≥ N, 

x (τ (n)) –x (n+1) = x (τ (j)) ≥ [ ] x (τ (n)) 

this gives                       ≤ 1-     for all n ≥ N 

Hence,                         ≤ 1 -  

but in view of lemma 2 inequality (1.12) holds. So we obtain 

≤ 1- (1-α- )) 

Which contradicts condition (1.23) hence the proof of the theorem is complete. 

CONCLUSION 
In this paper we obtain an oscillation criterion for first order Difference Equation is introduced. This single delay and 

general delay is effectives and easy to understand because of its natural similarity to classical method of single delay and general 

delay arguments. The method of first order difference equation and arguments e is shows in this paper guarantees the correctness 

and effectiveness of the working produce of the method. Since the difference equation with delay does possess oscillatory 

solution and also by the fact that the mathematical models of most real-world problems lead to a difference equation with α 

constant and the variable argument. This method of delay and general arguments is also easy to apply and understand. 
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