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ABSTRACT 

Taking help of an iteration process to create from Dirac first order equation for the electron in a coulomb field. 

We bring out the cause why Schrödinger’s relativistic equation failed to come the solution for Kepler problem. 

Introduction 

The completion of sixty years of the Dirac equation is a good occasion for stock taking of the Vissicitudes in 

physical theory Since the birth of Quantum Mechanics with regard to covariance space and time were treated   

by Dirac on the same footing his equation contains first order derivatives with respect to each space co-

ordinate and time. Schrödinger gave a second order equation (i.e) an equation containing second order 

derivatives of the wave function in space and time. In this paper we shall try to relate Schrödinger second 

order relativistic equation with the Dirac equation with special reference to the Keplar problem (l.e) the 

problem of an electron in a coulomb field. 

 

 Schrödinger’s Relativistic Equation:- 

 For a free electron with momentum p and energy E we can write 

(𝐶2 𝑃2 + m2+c4) 𝜓= E2 𝜓……………(1) 

Where m is the rest mass of the electron C the velocity of light and 𝜓 the plane wave for the electron. From 

this we get the second order wave equation. 

-ħ2c2 ∇2 𝜓 +m2c4 𝜓 = -h2 
𝜕2𝜓

𝜕𝑡2
………………..(2) 

Its solution may be written in the form 

𝜓 = exp{i(𝑘.𝑟 − 𝑤t)}, with energy 

E=ħ𝑤 = ±(ħ2c2k2 +m2c4)1/2 

The signs + and – represent electrons and positrons respectively which is a non-trivial physical input from 

Dirac’s theory. 

we can now go over to the case of the electron in a coulomb field. we introduce the four potential 

𝐴((𝑟, 𝑡), ∅ (𝑟, 𝑡)) where ∅ and 1/c A have the same covariance behavior as E and P. So, we write 

(E-e∅)2 = (c p-eA)2+m2c4…………………..(3) 

 

 

 Now let A(r,t)=o and ∅ be the both time independent and Spherically symmetric writing 
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𝜓 (r,t)= u(r) exp (−𝑖𝐸 𝑡 ħ⁄ ) and  

u( r)= R(r)𝑦𝑙
𝑚 (𝜃, ∅)  we get the radial Schrödinger  equation for the relativistic electron 

[−
1

𝑟2
𝑑

𝑑𝑟
(𝑟2 𝑑

𝑑𝑟
) + 

𝑙(𝑙+1)

𝑟2
] 𝑅(𝑟) =  

(𝐸−𝑒𝜙)2−𝑚2𝑐2

ħ2𝑐2
R       (where  𝑙 = 0,1,2,...... ) 

We can now specialize to the coulomb field 

e∅ =
−𝑧𝑒2

𝑟
, z being  the nuclear charge, we get finally 

1

𝑟2
𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) + [

2𝑘𝜂

𝑟
+ 𝑘2 −

𝑙(𝑙 + 1) −∝2 𝑧2

𝑟2
] 𝑅 = 𝑂 

where  ∝= 𝑒
2

ℏ𝑐⁄   the fine structure constant and 𝜂 =
∝𝑍𝐸

ℏ𝑐𝑘
, the relativistic analogue  of sommerfeld’s 

parameter   𝑧𝑒
2

ℏ𝑣 ⁄ note the similarity  of this equation with the non-relativistic  Schrödinger coulomb 

equation. 

We have a non-integral orbital angular momentum 

𝑙(𝑙 + 1) → 𝑙(𝑙 + 1) −∝2 𝑧2 

where ∝  is the fine structure constant (i.e) coupling of the electron to the coulomb field. 

The energy levels are given by  

E= 𝑚𝑐2 (1 +
∝2𝑧2

𝜂𝑏2
) , 𝜂𝐵 =

∝𝑍𝐸

ℏ𝑐𝑘𝐵
 

𝜂𝐵  is the bound state similarity of sommerfeld’s parameter. 

 𝜂𝛽 = 𝑛
′ + 𝛾 + 1 where 𝑛′ is the positive integer or 0, and 𝛾 is a non negative solution of the equation. 

𝛾(𝛾 + 1) = 𝑙(𝑙 + 1) −∝2 𝑧2 

 in other words,  

𝛾 =−1 2⁄ ± 1 2⁄ [(2𝑙 + 1)2 − 4 ∝2 𝑧2]
1
2⁄  

For 𝑙 =o both the solution are negative the choice being based on boundary condition at r = o  

Two obvious limiting cases of the relativistic Schrödinger  coulomb equation  

i) Plane wave limit : z = 0, and 𝜂 = 0 and 𝜄 is an integer 

ii) Non relativistic coulomb case : E≫ ℏ𝑐𝑘𝛽 (i.e) E→ 𝑚𝑐2, so that  ∝2 𝑧2 ≪ 𝑙(𝑙 + 1) 

the term   remain in equation (5), but 𝜄 again becomes an integer.  To use  Sommerfeld’d language, the semi-

classical orbit  of the electron gets closed and there is no precession. Thus, the Schrödinger coulomb 

relativistic equation indicates a non-integer orbital angular momentum due to coupling of the electron to the 

coulomb field. 

 It yields the non relativistic Schrödinger coulomb equation in the appropriate limit, but it does not explicitly 

contain electron spin. 
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     Dirac introduced electron spin as well as negative energy states in a natural way. We can see this by writing 

out the differential equation with generalized co-efficient, (i.e) without prejudice to the nature of the co-

efficient.  

𝒟𝐷𝜓 ≅ [𝑐 ∝. 𝑝 + 𝛽𝑚𝑐
2]𝜓= iℏ

𝜕𝜓

𝜕𝑡
 

𝒟𝒟 being the Dirac plane wave operator. On iterating with  𝒟𝒟 we should get the identity 

𝑐2𝑝2 +𝑚2𝑐4 = 𝐸2 

 this is the commutation relations for the Dirac matrices : 

∝𝑖∝𝑗+∝𝑗∝𝑖= 2𝛿𝑖𝑗 

∝𝑖 𝛽 + 𝛽 ∝𝑖= 𝑂 

A minimal realization of the anti-commutators may be obtained by 4X4 matrices of the type  

∝ 𝑖 = (
0 𝜎𝑖
𝜎𝑖 0

) 

𝛽 = (
𝐼2 𝑂
𝑜 −𝐼2

) 

Where 𝜎 are the well known pauli spin matrices. 

𝜎 1 = (
0 1
1 0

) 

𝜎 2 = (
0 −𝑖
𝑖 0

),   𝜎 3 = (
1 0
0 −1

), 

 

 

For convenience, we use another set of Dirac matrices 𝜌𝑖(𝑖=1,2,3)  and I, the 4x4 unit matrix, 

Where ∝𝑖= 𝑝1𝜎𝑖, 

𝛽= ρ3I2          Here 𝐼2 𝑖𝑠 

 the 2 x 2 unit matrix. 

 The 𝜌 matrices have the same form in energy space as the Pauli matrices have in spin space. The Dirac plane 

wave equation takes the form  

𝑂+𝜓 ≡ [𝜌2𝜎. ∇ − 𝜌3    𝐸 ℏ𝑐⁄
+𝑚𝑐 ℏ⁄ ]  𝜓 =0…………..(A) 

Assuming,   𝑂− ≡ 𝑂+-2  𝑚𝑐 ℏ⁄                          

Then, since (𝜌2𝜎. ∇)
2 = ∇2, 

𝑂−𝑂+∅ = [
1

𝑟2 
  
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) −

𝑙2

𝑟2
 + 𝑘2] ∅ = 0 

………(B) 
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Equation (B) is the second order equation corresponding to the first order eqn(A) note that spin is not explicit 

in this equation and that positive and negative energy States have been clubbed together by the process of 

iteration. 

 Also, every soln of eqn (A) satisfies eqn (B), But not vice versa, 

 Hence we use a different symbol ∅ to denote solution of equation (B). We can now bring out the spin 

dependence of these solutions by writing 

𝑙2 = (𝜎. 𝐿 + 1)2 − (𝜎. 𝐿 + 1)………..(C) 

 It is once seen that the constants of the motion for the second order equation are 𝜌3  and the Dirac operator 

K=𝜌3(𝜎. 𝐿 + 1), using the pauli spinor. 

𝑥1
2⁄

1
2⁄    =(

1
0
) and    𝑥1

2⁄

−1
2⁄ =   (

0
1
) 

 

We can introduced Spinor solutions,  

𝑥𝑘
𝑚 = ∑ 𝑐𝑇

𝑢 − 𝒯𝒯ℳ

𝑖 1 2⁄ 𝑡 𝑌𝑙
ℳ−𝒯(𝜃, ∅)𝑋1

2⁄
𝒯 ………….(D) 

which satisfy the equations  

(𝜎. 𝐿 + 1)𝑥𝑘
ℳ = −𝑘𝑥𝑘

ℳ…………(E) 

𝜎. 𝑟  𝑥−𝑘
ℳ=𝑥𝑘

𝑢 

From equation  © we see that the orbital angular momentum 𝑙 is given by 𝑙(𝑙 + 1) = 𝑘(𝑘 + 1),  so that 

𝑙(𝑘) = 𝐼𝐾𝐼 +
1

2
[𝑠𝑔𝑛(𝑘) − 1]……………(F) 

The plane wave soln with sharp K and 𝑝3 𝑎𝑟𝑒 

∅+ ≡ ∅𝜌3=+1 = (𝑗𝑙(−𝑘)(𝑘  𝑟)𝑋−𝑘
𝑢 )………….(G) 

∅− ≡ ∅𝜌3=−1 = (𝑗𝑙(𝑘)(𝑘  𝑟)𝑋𝑘
𝑢)……………(H) 

Now, Since [𝑂+𝑂−] = 0 obviously 

𝑂+𝑂− ∅ = 𝑂−𝑂+ ∅ = 0 from eqn (B). 

In other words, the function 𝑂−  ∅statistics the first order equation (A), 

Hence we can write  

𝑂−  ∅  = A 𝜓,  A being a a numrical factor which we can suppras for the moment,  For  𝜌3 = −1, we can write  

𝜓 = 𝑂− ∅− =(𝜌𝜎. ∇ −
𝜌3𝐸

ℏ𝑐
−𝑚𝑐/ℏ)∅−………..(1) 

 

Since, 

𝜎. ∇= 𝜎. 𝑟 [
𝜕

𝜕𝑟
+
1

𝑟
−
𝜎.𝐿+1

𝑟
], 
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𝑂−=[

(𝐸−𝑀𝐶2)

ℏ𝑐
          

𝑖𝜎. 𝑟 (
𝜕

𝜕𝑟
+
1−𝐾

𝑟
)
         

 −𝑖 𝜎. 𝑟 (
𝜕

𝜕𝑟
+
1+𝐾

𝑟
)

−(𝐸 +𝑚𝑐2)/ℏ𝑐
 ] 

Remembering ……the Bssel  function 

 

 

(
𝜕

𝜕𝑟
+
1+𝑘

𝑟
) 𝑗𝑙(𝑘)(𝑘𝑟) = 𝑘 𝑠𝑔𝑛 (𝑘)𝑗𝑙(−𝑘)(𝑘𝑟)……(K) 

Apart from normalization, this is just the spherical wave solution for the free electron. It has sharp k, 𝑗3 and 

parity. 

 

 

 

The Dirac coulomb wave  

The Dirac coulomb wave  is now obtained by similar way. we start with the first order equation 

𝑂+
𝑐𝜓 ≡ [𝜌2𝜎. ∇ − 𝜌3 (

𝐸

ℏ𝑐
+
∝𝑍

𝑟
) +

𝑚𝑐

ℏ
] 𝜓 = 0………(M) 

 in which the operator 𝑂+ differs from the plain wave operator 𝑂+ only is heving the additional coulomb 

term−𝜌3 
∝𝑍

𝑟
. In analogy with equation. 

 (B), we define 

𝑂−
𝑐 ≡ 𝑂+

𝑐 −
2𝑚𝑐

ℏ
  with which we iterofe equation (M) to get  

𝑂−
𝑐𝑂+

𝑐∅ = [
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
) −

⨅(⨅ − 1)

𝑟2
+
2𝑘𝑛

𝑟
+ 𝑘2] ∅ = 0 

Where ⨅ = 𝜌3k+ i∝ 𝑧𝜌1 𝜎. 𝑟 and  

⨅2 = 𝑘2 −∝2 𝑧2…………..(O) 

Note that ⨅  is the coulomb analogue of  

𝜎. 𝐿 + 1  and that the operators and 𝜌3k  and ρ1 𝜎. 𝑟  anti commute. 

  Their major difference lies in the non integral orbital analogue momentum ⨅ related to spin orbit as well as 

spin coulomb interaction. 

The non integral l is different by  

⨅  → 𝛾 = ± + 𝐼(𝑘2 −∝2 𝑧2)1/2 and  

⨅2 − ⨅ = 𝑙(𝑙 + 1) 
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Explicitly, 

L(𝛾)=1 𝛾 1+
1

2
[𝑠𝑔𝑛(𝛾)-1]………….(P) 

In the plane wave limit, 𝛾 →k and we get back the Dirac plane wave, comparing Equation (5) and (N) we at 

once see what was missing in the Schrödinger coulomb equation (5). It was just that instead of the operator 

⨅2 −⨅  it  contained 𝐿2 −∝2 𝑧2 = ⨅2 − ⨅  +i ∝ 𝑍𝜌 𝜎𝑟 in other words, there is an error of the order of the 

spin couloumb coupling. This messes up the non integral orbital angular momentum. Equation (N) is the 

correct relativistic extension of the Schrödinger equation for the  coulomb potential. 

 

By diagonaliiny ⨅  following the same method as in the Dirac plane wave case. We get the spherical wave 

solution for the Dirac coulomb electron with sharpk, j,j3 and parity: 

 

𝜓 =

(

 
 

𝑖𝑘  𝑠𝑔𝑛  (𝑘)𝐹𝑙(−𝛾),𝑙  (𝑘𝑟) 𝑥−𝑘
𝑢

−[
(
𝐾𝐸
𝛾 +𝑚𝑐2)

ℏ𝑐
] 𝐹𝑙(𝛾)𝑛(𝑘𝑟)𝑋𝑘

𝑢

)

 
 

 

This definite solution corresponds to positive energy States. ⨅ n1(kr) is the well-known radial coulomb wave 

function. 

 It will be seen that this method shows as Schrödinger’s attempt at a relativistic wave equation missed the 

point. The key lies in seeing at the first- order equation, which was Dirac’s real tour deforce. 

Reference:- 

1. Wang. Q, (2000) phys. Rev D62,041101® 

2. Martin, <.and Turyshev, S.G (2004) int. j. mod- phys D13,899-906 

3. R.P Feynman, Rev. mod. Phys 20(1948) 367 

4. R.C .Martin and R.J Glauber, phys. Rev. 109, 1307 (1958) 

5. P.R Holland.phys.Rep.169.(1988) 295 

http://www.jetir.org/

