ON OPERATORS WITH SMALL SELF, COMMUTATORS

Md.Jawed IKbal Khan, PhD.
Deptt.of Mathematics
Mirza Ghalib College,Gaya

Ishteyaque Ahmad.
Research Scholar
M.U.Bodh Gaya(Bihar)India

Abstract

Let T be a bounded operator on a Hilbert space H . The self Commutator of T, denoted [T] is $\mathrm{T}^{*} \mathrm{~T}-\mathrm{TT}$ *. An operator is of commutator rank n if n the rank of [T] is n. In this Paper operators of commutator rank one are studied. Two particular subclasses are Investigated in detail. T is completely non - normal, or subnormal, if T does not Posses a non - Zero reducting subspace M such that T / M is normal, and T is of Commutator rank n if the rank of $[T]$ is n.

INTRODUCTION

Let H be a Hilbert space. An operater from H to a Hilber space K is understood to Be a bounded linear transformation from H to K . if $\mathrm{H}=\mathrm{K}$, the operater is said to be on H . if T is an oparater on H , the self commutator of T, denoted $[T]$, is $T^{*} T-T T^{*}$ is Completetly non - normal, or abnormal, if T does not possess a non - Zero reducting Subspace M such that T / M is norma, and T is of Commutator rank n if the rank of [T] Is n.

Let $B(H)$ denote the set of all operaters on H, and for each non -
Negative integer n ,
Let $\operatorname{Dn}(H)=\{T: T € B(H)$ and Rank $[T]=n\}$,
And $E_{n}(H)=\left\{T: T € D_{n}(H)\right.$ and $T^{*} T$ and $T T^{*}$ commute $\}$.
These last two sets will often be written respectively as D_{n} and E_{n} when their
Application to the underlying space H is not to be emphasized. it is immediate
That the classes D_{n} and E_{n} consist entirely of normal operators if and only if n
$=0$. If T is an operator in $D_{1, \text { then }}$ by multiplying T by a non-Zero real $=0$. If T is an oprater in $D 1$, then by multiplying T by its adjoint, it may be assumed, without loss of generality, that $[T]=p$, WHERE p is a one - dimensional self adjoint projection. The purpose of this paper is to study operators T for which [T] has rank one. Some of the theorems stated require the additional condition that $\mathrm{T}^{*} \mathrm{~T}$ and TT^{*} commute.

Theoren(1) Let T is an operator on H . if K is the smallest reducing subspace of T containing the rang of [T], then T / K is the completely non - normal component of T .

Proof:-Let K be as defined in the statement of this theorem by J.W DELALLE[1,TH1] T=T1+T2 onM $\oplus \mathrm{pM}$, where T 1 is completely non-normal and T 2 is normal.
since $[T]=\left[T_{1}\right]+\left[\right.$ since $[T]=\left[T_{1}\right]+\left[T_{2}\right],\left[T_{2}\right]=0$ and so it is clear that K 田, because M is a reducing subspace of T containing the range of $[T]$
then T_{1} itself could be furtherreduce into $T_{11+}+T_{12}$ on $K+k^{1}$ where K^{1} is the orthogonal complement of K in M . but the definition of K implies that $\left[\mathrm{T}_{12}\right]=0$, which is contradicts the fact that T_{1} is completely nonnormal. Therefore $\mathrm{K}=\mathrm{M}$.

Theorem(2) Let $T £ B(H)$ and suppose that T has the factorization $T=U \sqrt{ } A$, where U is unitary and $A=T^{*} T$. (it is not being assumed that $\operatorname{Ker}(A)=\operatorname{Ker}(U)$: that is, it is not necessary that $U \sqrt{ } A$ be the canonical polar factorization of T.) suppose $\mathrm{T}_{\mathrm{E}} \mathrm{E}_{1}$ then there is a reducting subspace M of T such that T / M has matrix \mathcal{M} and T / M is normal.

Proof:- Let[T]=P,aProjection of rank one.
Then $\mathrm{T}^{*} \mathrm{~T}-\mathrm{TT}^{*}=\mathrm{P}, \therefore$
\perp

So $\sqrt{A} U^{*} U \sqrt{ } A-U \sqrt{ } A \sqrt{ } A U^{*}=P$,
$\Rightarrow \quad A-U A U^{*}=P$
U is unitary Since $T \in E^{\prime}, T^{*} T$ and $T T^{*}$ commute, so that P commutes with both $T^{*} T$ and $T T^{*}$.
Let e be a unit vecter in Range (P). By
Lemma (1), e is an eigenvector for both $\mathrm{T}^{*} \mathrm{~T}$ and TT^{*}. Since both of these operators are non negative, real scalars a and b such that

$$
\begin{equation*}
\mathrm{T} * \mathrm{~T} \mathrm{e}=\mathrm{ae} \tag{2}
\end{equation*}
$$

and $\mathrm{b} \mathrm{TT}^{*} \mathrm{e}=\mathrm{bc}$ with $\mathrm{a}=\mathrm{b}+1$
$\therefore\left(T^{*} T-T T^{*}\right) \mathrm{e}=\mathrm{pe} \quad(\mathrm{a}-\mathrm{b}) \mathrm{e}=\underset{\square}{\mathrm{e}}$

$$
\begin{equation*}
\mathrm{U}\left(\mathrm{~T}^{\star} \mathrm{T}\right) \mathrm{U}^{\star}=\mathrm{TT}^{*} \text { and } \mathrm{U}^{\star}\left(\mathrm{TT}^{\star}\right) \mathrm{U}=\mathrm{T}^{\star} \mathrm{T} \tag{3}
\end{equation*}
$$

(4)

The Proof is by induction on n for $n \geq 0$. The case $n=0$ has been established in (2) Thus suppose $n \geq 0$ and suppose the existence of the specified eigen values for this n. Then by (3) and (4)

$$
\begin{align*}
\left(\mathrm{TT}^{*}\right)\left(\mathrm{U}^{n+1} e\right)=\left(U^{*}\right) & \left(T T^{*} U\right)\left(U^{n} e\right) \\
& =U\left(U^{*} T T^{*} U\right) U^{n} e \\
& =U\left(T^{*} T\right) U^{n} e \\
& =U\left(a U^{n} e\right) \\
& =a U^{n+1} e \tag{5}
\end{align*}
$$

And $\left(T^{*} T\right)\left(U^{\star n+1} e\right)=\left(U^{*} U\right)\left(T^{*} T U^{*}\right)\left(U^{* n} e\right)$

$$
\begin{align*}
& =U^{*}\left(\mathrm{UT}^{*} T U^{*}\right)\left(U^{* n} e\right) \\
& =U^{*}\left(\mathrm{TT}^{*}\right)\left(\mathrm{U}^{\star n} e\right) \\
& =U^{*}\left(b U^{* n} e\right) \\
& =b U^{\star n+1} e \tag{6}
\end{align*}
$$

There exit constants c and d such that $p U^{n+1} e=c e$ and $P U^{\star n+1} e=d e$
Thus,by (5) $\quad T^{*} T\left(U^{n+1} e\right)=\left(T T^{*}+p\right)\left(U^{n+1} e\right)$

$$
\begin{align*}
& =a U^{n+1} e+p u^{n+1} e \\
& =a U^{n+1} e+c e \tag{7}
\end{align*}
$$

Since p and $T^{*} T$ commute, $p\left(T^{*} T\right) U^{n+1} e=\left(T^{*} T\right) p U^{n+1} e$,
So, $p\left(a U^{n+1} e+c e\right)=\left(T^{*} T\right)(c e)$,

$$
a\left(p U^{n+1} e\right)+
$$

$p(c e)=C\left(T^{*} T\right) e$,
ace+ce cae.
Thus $\mathrm{C}=0$, so that from

$$
\begin{equation*}
\left(T^{*} T\right)\left(U^{n+1} e\right)=a U^{n+1} e \tag{8}
\end{equation*}
$$

Observe here that $\mathrm{C}=0$ also implies that $p U^{n+1} e=0$, i.epU $\overline{\mathrm{m}} \mathrm{e}=0$ for all $\mathrm{m}>0$.similarly,by (6),

$$
\begin{align*}
T T^{*}\left(U^{* n+1} e\right)= & \left(T^{*} T-p\right)\left(U^{\star n+1} e\right) \\
& =b U^{\star n+1} e-p U^{\star n+1} e \\
& =b U^{* n+1} e-d e \tag{9}
\end{align*}
$$

And Therefore,

$$
\begin{align*}
& P\left(T^{*} T\right) U^{\star n+1} e=\left(T^{*}\right) P U^{n+1} e . \\
& P\left(b U^{*} n+1 e-d e\right)=\left(T T^{*}\right)(d e) . \\
& \text { bde-de }=d b e \tag{10}
\end{align*}
$$

So that $d=0, \operatorname{and}(9)=\left(T T^{*}\right)\left(U^{* n+1} e\right)=b U^{\star n+1} e$

The induction is now complete from equation.(5),(6),(8)and(10)

REFERENCE

[1] J.W.Delvalle, A Structure theory for operators of commutator rank two.
Trans. American Math. Soc. Vol - 240 jun 1978 (183-194).
[2] P.R. Halmos,A Hilbert Space Problem book,
Van Nostrand, Princeton,N.J. 1967. MR 34, \# 8178.
[3] R.L. Kelley, Weighted Shifts on Hilbert space,
Ph.D. thesis, Univ.of Michigan,1966.
[4] B.B Morrel, A decomposition for some operators,
Indiana Univ.Math J. 23 (1973).
[5] C.R. Putnam, Commutation properties of Hilbert [497 - 511MR 49 \# 7823] Space operators and related topics,

Spring Verlag, New York 1967.MR 36 \# 707.
[6] F Riesz and B.SZ - Nagy, function analysis
Lenger,New York, 1955 MR 17, 175.

