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ABSTRACT 

Let T be a bounded operator on a Hilbert space H. The self Commutator of T, denoted [T]  is T*T-TT*.  An operator 

is of commutator rank n if n the rank of  [T]  is n. In this Paper operators of commutator rank one are studied. Two 

particular subclasses are Investigated in detail. T is completely non – normal, or subnormal, if T does not Posses a 

non – Zero reducting subspace M such that T/M is normal, and T is of Commutator rank n if the rank of [T] is n. 

 

INTRODUCTION 

Let H be a Hilbert space. An operater from H to a Hilber space K is understood to Be a bounded linear 

transformation from H to K.if H=K, the operater is said to be on H. if T is an oparater on H, the self commutator of 

T , denoted [T], is T*T-TT* is Completetly non – normal, or abnormal, if T does not possess a non – Zero reducting 

Subspace M such that T/M is norma,and T is of Commutator rank n if the rank of [T] Is n. 

  Let B (H) denote the set of all operaters on H, and for each non – 

 Negative integer n, 

 Let Dn (H) ={T:T€ B (H) and Rank [T] = n}, 

 And En(H)= {T:T€ Dn (H) and T*T and TT* commute}. 

 These last two sets will often be written respectively as Dn and En when their 

 Application to the underlying space H is not to be emphasized . it is immediate 

 That the classes Dn and En consist entirely of normal operators if and only if n 

 =0. If T is an operator in D1,then by multiplying  T by a non –Zero real =0.If T is an oprater in D1, then 

by multiplying T by its adjoint, it may be assumed, without loss of generality, that [T] = p, WHERE p is a  one 

– dimensional self adjoint projection. The purpose of this paper is to study operators T for which [T] has rank 

one. Some of the theorems stated require the additional condition that T* T and TT* commute. 

Theoren(1)   Let T is an operator on H. if K is the smallest reducing subspace of T containing the rang of [ T ], 

then T/K is the completely non – normal component of T. 

Proof:-Let K be as defined in the statement of this theorem by J.W DELALLE[1,TH1] T=T1+T2  onM+pM , 

where T1 is completely non-normal and T2 is normal. 

since[T]=[T1]+[since[T]=[T1]+[T2],[T2]=0 and so it is clear that K©M,because M is a reducing subspace of T 

containing the range of[T] 
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then T1 itself could be furtherreduce into T11+T12 on K+k1 where K1 is the orthogonal complement of K in 

M. but the definition of K implies that[T12]=0,which is contradicts the fact that T1 is completely non-

normal. Therefore K=M. 

Theorem(2)   Let T£B(H) and suppose that T has the factorization T=U√A,where U is unitary and 

A=T*T.(it is not being assumed that Ker (A)=Ker (U): that is, it is not necessary that U√A be the canonical 

polar factorization of T.) suppose T£E1 then there is a reducting subspace M of T such that T/M has 

matrix M and T/M is normal. 

Proof:- Let[T]=P,aProjection of rank one. 

 Then T*T-TT*=P,∴ 

 So   √AU*U√A-U√A√AU*=P, 

    A-UAU*=P (1)                                                      

U is unitary Since T𝜖E’,T*T and TT* commute, so that P commutes with  both   T*T and TT*. 

Let e be a unit vecter in Range (P). By  

Lemma (1), e is an eigenvector for both T*T and TT*.  Since both of these operators are non -      

negative, real scalars a and b such that 

     T*T e = ae  

and b  TT*e = bc  with a =b+1                                                                                        (2) 

∴ (T*T — TT*) e = pe     (a-b)e = e  

    U(T*T)U* = TT* and U* (TT*)U = T*T                                                                         (3) 

                        T*T     TT 

               (U*)n e          b      b        n>o 

                  e                a      b 

               (Un)e            a       b            n>o                                                                      (4) 

 

 

The Proof is by induction on n for n≥0. The case n=0 has been established in (2) Thus suppose n≥0 and 

suppose the existence of the specified eigen values for this n. Then by (3) and (4) 

 (TT*)(Un+1e)     = (UU*)(TT*U)(Une) 

                       =U(U*TT*U)Une 

                 =U(T*T)Une 

             =U(aUne) 

           =aUn+1e  (5) 

 And (T*T)(U*n+1e)   =(U*U)(T*TU*)(U*ne) 
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                         =U*(UT*TU*)(U*ne) 

                   =U*(TT*)(U*ne) 

            =U*(bU*ne) 

         =bU*n+1e (6) 

           There exit constants c and d such that pUn+1e=ce and PU*n+1e=de 

Thus,by (5)   T*T(Un+1e)   =(TT*+p)(Un+1e) 

 =aUn+1e+pun+1e 

 =aUn+1e+ce (7) 

Since p and T*T commute, p(T*T)Un+1e =(T*T)pUn+1e, 

 So,    p(aUn+1e+ce)  =(T*T)(ce), 

 a(pUn+1e)+ 

p(ce)  =C(T*T)e, 

 ace+ce     cae. 

Thus C=0, so that from (7) 

 (T*T)(Un+1e)=aUn+1e (8) 

Observe here that C=0 also implies that pUn+1e=0,i.epUme=0 for all m>0.similarly,by (6), 

 TT*(U*n+1e) =(T*T-p)(U*n+1e) 

 =bU*n+1e-pU*n+1e 

 =bU*n+1e-de (9) 

And Therefore, 

               P (T*T)U*n+1
e =(T*T)PU*

n+1
e. 

                       P(bU*n+1e-de) =(TT*)(de). 

                bde-de =dbe 

So that d=0,and(9)=(TT*)(U*n+1e)=bU*n+1e                                                                                 (10) 

    The induction is now complete from equation.(5),(6),(8)and(10) 
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