ON OPERATORS WITH SMALL SELF, **COMMUTATORS**

Md.Jawed IKbal Khan,PhD. **Deptt.of Mathematics** Mirza Ghalib College, Gaya

Ishteyaque Ahmad. Research Scholar M.U.Bodh Gaya(Bihar)India

ABSTRACT

Let T be a bounded operator on a Hilbert space H. The self Commutator of T, denoted [T] is T*T-TT*. An operator is of commutator rank n if n the rank of [T] is n. In this Paper operators of commutator rank one are studied. Two particular subclasses are Investigated in detail. T is completely non - normal, or subnormal, if T does not Posses a non – Zero reducting subspace M such that T/M is normal, and T is of Commutator rank n if the rank of [T] is n.

INTRODUCTION

Let H be a Hilbert space. An operater from H to a Hilber space K is understood to Be a bounded linear transformation from H to K.if H=K, the operater is said to be on H. if T is an oparater on H, the self commutator of T, denoted [T], is T*T-TT* is Completetly non – normal, or abnormal, if T does not possess a non – Zero reducting Subspace M such that T/M is norma, and T is of Commutator rank n if the rank of [T] Is n.

Let B (H) denote the set of all operaters on H, and for each non -

Negative integer n,

Let Dn (H) = $\{T:T \in B (H) \text{ and } Rank [T] = n\}$,

And $E_n(H) = \{T: T \in D_n (H) \text{ and } T^*T \text{ and } T^*T \text{ commute} \}.$

These last two sets will often be written respectively as D_n and E_n when their

Application to the underlying space H is not to be emphasized . it is immediate

That the classes D_n and E_n consist entirely of normal operators if and only if n

=0. If T is an operator in D₁, then by multiplying T by a non –Zero real =0. If T is an oprater in D1, then by multiplying T by its adjoint, it may be assumed, without loss of generality, that [T] = p, WHERE p is a one - dimensional self adjoint projection. The purpose of this paper is to study operators T for which [T] has rank one. Some of the theorems stated require the additional condition that T* T and TT* commute.

Theoren(1) Let T is an operator on H. if K is the smallest reducing subspace of T containing the rang of [T], then T/K is the completely non – normal component of T.

Proof:-Let K be as defined in the statement of this theorem by J.W DELALLE[1,TH1] T=T1+T2 onM⊕pM, where T1 is completely non-normal and T2 is normal.

 $since[T]=[T_1]+[since[T]=[T_1]+[T_2],[T_2]=0$ and so it is clear that $K \square M$, because M is a reducing subspace of T containing the range of[T]

then T₁ itself could be furtherreduce into T₁₁+T₁₂ on K+k¹ where K¹ is the orthogonal complement of K in M. but the definition of K implies that $[T_{12}]=0$, which is contradicts the fact that T_1 is completely nonnormal. Therefore K=M.

Theorem(2) Let T£B(H) and suppose that T has the factorization $T=U\sqrt{A}$, where U is unitary and $A=T^*T$.(it is not being assumed that Ker (A)=Ker (U): that is, it is not necessary that $U\sqrt{A}$ be the canonical polar factorization of T.) suppose T£E1 then there is a reducting subspace M of T such that T/M has matrix \mathcal{M} and T/M is normal.

Proof:- Let[T]=P,aProjection of rank one.

Then T*T-TT*=P,:.

So
$$\sqrt{AU*U}\sqrt{A-U}\sqrt{A}\sqrt{AU*=P}$$
,

 \implies A-UAU*=P (1)

U is unitary Since $T \in E', T^*T$ and TT^* commute, so that P commutes with both T^*T and TT^* .

Let e be a unit vecter in Range (P). By

Lemma (1), e is an eigenvector for both T*T and TT*. Since both of these operators are non negative, real scalars a and b such that

The Proof is by induction on n for n≥0. The case n=0 has been established in (2) Thus suppose n≥0 and suppose the existence of the specified eigen values for this n. Then by (3) and (4)

$$(TT^*)(U^{n+1}e) = (UU^*)(TT^*U)(U^ne)$$

$$= U(U^*TT^*U)U^ne$$

$$= U(T^*T)U^ne$$

$$= U(aU^ne)$$

$$= aU^{n+1}e$$
And $(T^*T)(U^{*n+1}e) = (U^*U)(T^*TU^*)(U^{*n}e)$

$$(5)$$

There exit constants c and d such that pUⁿ⁺¹e=ce and PU*n+1e=de

Thus,by (5)
$$T^*T(U^{n+1}e) = (TT^*+p)(U^{n+1}e)$$

= $aU^{n+1}e+pu^{n+1}e$

$$=aU^{n+1}e+ce (7)$$

Since p and T*T commute, $p(T*T)U^{n+1}e = (T*T)pU^{n+1}e$,

So,
$$p(aU^{n+1}e+ce) = (T*T)(ce),$$

 $a(pU^{n+1}e)+$

$$p(ce) = C(T*T)e,$$

ace+ce cae.

Thus C=0, so that from

$$(T*T)(U^{n+1}e)=aU^{n+1}e$$
 (8)

Observe here that C=0 also implies that pUn+1e=0,i.epUme=0 for all m>0.similarly,by (6),

$$TT^{*}(U^{*n+1}e) = (T^{*}T^{-}p)(U^{*n+1}e)$$

$$= bU^{*n+1}e^{-}pU^{*n+1}e$$

$$= bU^{*n+1}e^{-}de$$
(9)

And Therefore,

$$P(T^*T)U^{*n+1}e = (T^*T)PU^{*n+1}e.$$

$$P(bU*n+1e-de) = (TT*)(de).$$

bde-de =dbe

So that
$$d=0$$
,and(9)=(TT*)(U*n+1e)=bU*n+1e _____(10)

The induction is now complete from equation.(5),(6),(8)and(10)

REFERENCE

[1] J.W.Delvalle, A Structure theory for operators of commutator rank two.

Trans. American Math. Soc. Vol – 240 jun 1978 (183 – 194).

[2] P.R. Halmos, A Hilbert Space Problem book,

Van Nostrand, Princeton, N.J. 1967. MR 34, #8178.

[3] R.L. Kelley, Weighted Shifts on Hilbert space,

Ph.D. thesis, Univ.of Michigan, 1966.

[4] B.B Morrel, A decomposition for some operators,

Indiana Univ.Math J.23 (1973).

[5] C.R. Putnam, Commutation properties of Hilbert [497 – 511MR 49 # 7823] Space operators and related topics,

Spring Verlag, New York 1967.MR 36 # 707.

[6] F Riesz and B.SZ – Nagy, function analysis

Lenger, New York, 1955 MR 17, 175.