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Abstract 

The concept of intuitionistic fuzzy near-algebra over a fuzzy field is studied and using this notion we 

obtained some results on fuzzy near-algebra. We study the “necessity” and “possibility” operators on 

intuitionistic fuzzy near-algebra over a fuzzy field and study the nature of intuitionistic fuzzy near-algebra. 

1. Introductory Concepts 

 In [2] Brown introduced the concept of Near-algebras. Nanda [7] studied the notion of fuzzy algebras 

over fuzzy fields and then redefined by Wenxiang Gu and Tu Lu in [4]. Srinivas and Narasimha swamy 

introduced the concept of a fuzzy near-algebra over a fuzzy field and investigated the properties of this notion 

in [11]. In addition, many attempts has been made in the field of near-algebra according to the physical 

situation was studied in the finite dimensional continuous field by Irish [6] and Yamamuro [13]. The 

applications of near-algebra was studied by Srinivas and Narasimha Swamy [10,11]. In this paper we 

introduce the concept of intuitionistic fuzzy near-algebra over a fuzzy field and some results on fuzzy near-

algebra were obtained.  

Definition 1.1 Let X be the collection of objects denoted generally by x . Then a fuzzy set A in X is defined 

as { , ( ) , }AA x x x X    where ( )A x is called the membership value of x in A and 0 ( ) 1A x  .         

Definition 1.2 A (right) near-algebra Y over a field X is a linear space Y over X on which a multiplication is 

defined such that (i) Y forms a semi group under multiplication and                 (ii) multiplication is right 

distributive over addition and (iii)  ( )a b ab  for all ,a b Y and .X  

Definition 1.3 A fuzzy subset F of X is called a fuzzy field of X , if it satisfies the following four conditions 

for all ,x y X : 

(i)       ,F F Fx y x y      

(ii)     ,F Fx x    

(iii)       ,F F Fxy x y     

(iv)    1

F Fx x    for any 0.x   

Definition 1.4 Let X be a field, F  be a fuzzy field of X and Y  be a (right) near-algebra over a field X . Let 

A  be the fuzzy subset of Y . Then A  is called a fuzzy near-algebra in Y , if the following conditions are 

satisfied, 

(i) 1 2 1 2( ) ( ) ( )A A Ay y y y      

(ii) 1 1( ) ( ) ( )A F Ay y       

(iii) 1 2 1 2( ) ( ) ( )A A Ay y y y     

(iv) 1(1) ( )F A y   
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for all 1 2,y y Y and X .  

Definition 1.5 An intuitionistic fuzzy set A over X is an object having the form 

{ , ( ), ( ) , }A AA x x x x X     , where ( ) : [0,1]A x X   and ( ) : [0,1]A x X  with the condition 

0 ( ) ( ) 1A Ax x    for all x X . The numbers ( )A x  and ( )A x denote, respectively, the degree of 

membership and degree of non membership of the element x in the set A . Obviously when 

( ) 1 ( )A Ax x   for every x X , the set A become a fuzzy set. A intuitionistic fuzzy set 

{ , ( ), ( ) , }A AA x x x x X      over X is denoted by ( , )A AA   .  

Definition 1.6 A mapping f of a near-algebra 1Y  onto a near-algebra 2Y  is called a near-algebra 

homomorphism, if it satisfies the following three conditions: 

(i) 1 2 1 2( ) ( ) ( )f y y f y f y   ,  

(ii) 1 1( ) ( )f y f y  ,  

(iii) 1 2 1 2( ) ( ) ( )f y y f y f y , 

for all 1 2, , .y y Y X    

2. Intuitionistic Fuzzy near-algebra over a Fuzzy field 

We now study the concept of intuitionistic fuzzy near-algebra (IFN-algebra) over a fuzzy field and we 

investigate some properties and theorems related to this new concept. 

Definition 2.1 Let X be a field, F  be a fuzzy field of X and Y  be a (right) near-algebra over a field X . Let 

( , )A AA    be the intuitionistic fuzzy subset of Y . Then A  is called a intuitionistic fuzzy near-algebra in Y  

over a fuzzy field F , if the following conditions are satisfied,  

(i) 1 2 1 2( ) ( ) ( )A A Ay y y y      and 1 2 1 2( ) ( ) ( )A A Ay y y y      

(ii) 1 1( ) ( ) ( )A F Ay y      and 1 1( ) ( ) ( )A F Ay y       

(iii) 1 2 1 2( ) ( ) ( )A A Ay y y y     and 1 2 1 2( ) ( ) ( )A A Ay y y y     

(iv) 1(1) ( )F A y   and 1(1) ( )F A y   

for all 1 2,y y Y and X . A intuitionistic fuzzy near-algebra A of Y  is denoted by ( , )A Y . 

Example 2.2 Let 
3 33 {0,1,2}X Z     and let ( , )FF x  be a fuzzy field over X defined by, 
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For any 1 2,x x X , we have 1 2x x X  and for 2 0x  , 
1

1 2x x X  . Thus X is a field. Let {0, , , }Y a b c be a 

set with operations “+” and “ ” as follows, 

+ 0 a b c 

0 0 a b c 

 a a 0 c b 

b b c 0 a 

c c b a 0 
 

Also, if a scalar multiplication on Y  is defined by  

 

for every 1 ,y Y X  . ClearlyY is a near-algebra over the field X. Let ( , )A AA   be a intuitionistic fuzzy 

subset of Y defined by, 

                         and      

Let , X  and 1 2,y y Y , So that ( , )A AA   is a intuitionistic fuzzy near-algebra over the fuzzy field F of 

X .  

Theorem 2.3 Let ( , )A AA    be a intuitionistic fuzzy near-algebra of Y . Then 1(0) ( )A A y   and 

1(0) ( )A A y  , for all 1y Y .    

Proof  Since  1 1 1 1(0) (1 1 [ (1) ( )] [ ( 1) ( )]A A A A A Ay y y y            1 1( ) ( )A Ay y   1( )A y . 

Therefore 1(0) ( )A A y  . Also 

1 1(0) (1 1 )A A y y   1[ (1) ( )]A A y   1 1 1 1[ ( 1) ( )] ( ) ( ) ( )A A A A Ay y y y          . Therefore 

1(0) ( )A A y  .                       

Theorem 2.4 Let F be a fuzzy field of the filed X , Y be the near-algebra over X and A is a intuitionistic 

fuzzy set of Y . Then ( , )A Y is a intuitionistic fuzzy near-algebra over a fuzzy field ( , )F X if and only if (i) 

1 2 1 2( ) [ ( ) ( )] [ ( ) ( )]A F A F Ay y y y              and 

1 2 1 2( ) [ ( ) ( )] [ ( ) ( )]A F A F Ay y y y              (ii) 1 2 1 2( ) ( ) ( )A A Ay y y y     and 

1 2 1 2( ) ( ) ( )A A Ay y y y     (iii) 1(1) ( )F A y  and 1(1) ( )F A y  for any 1 2,y y Y and , X       

Proof  Suppose that ( , )A Y is a intuitionistic fuzzy near-algebra over a fuzzy field ( , )F X . Then (i) for any 

1 2,y y Y and , X  , we have 1 2 1 2( ) ( ) ( )A A Ay y y y           1 2[ ( ) ( )] [ ( ) ( )]F A F Ay y        . 

Clearly (ii) and (iii) holds directly from the definition of a intuitionistic fuzzy near-algebra of Y .  

Conversely, suppose that the three conditions of the hypothesis hold. Then  

(i) 1 2 1 2( ) (1 1 )A Ay y y y      

                     1 2(1 ) (1 )A Ay y    

                    1 2[ (1) ( )] [ (1) ( )]F A F Ay y         

                    1 1 2 2[ ( ) ( )] [ ( ) ( )]A A A Ay y y y         

• 0 a b c 

0 0 0 0 0 

a 0 b 0 b 

b 0 0 0 0 

c 0 b 0 b 
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                    1 2( ) ( )]A Ay y     

and 1 2 1 2( ) (1 1 )A Ay y y y     

                     1 2[ (1) ( )] [ (1) ( )]F A F Ay y                   

                                   1 1 2 2[ ( ) ( )] [ ( ) ( )]A A A Ay y y y         

                                   1 2( ) ( )A Ay y    

for every 1 2,y y Y  and , X  . By hypothesis, the remaining two conditions of the definition of a 

intuitionistic fuzzy near-algebra of Y  holds directly. Hence ( , )A Y  is a intuitionistic fuzzy near-algebra of Y  

over a fuzzy field F . 

Theorem 2.5 Suppose ( , )A Y  is a intuitionistic fuzzy near-algebra of Y  over a fuzzy field .F  Then the 

following conditions holds for any 1 2,y y Y  and , X   

(i)    2 21 1( )A A Ay yy y      and    2 21 1( )A A Ay yy y      

 (ii)    21A Ay y  implies    21 12( )A A Ay yy y     ,      2 21 1A A Ay yyy    and 

         21A Ay y   implies    21 12( )A A Ay yy y     ,      2 21 1A A Ay yyy      

(iii)  1 ( )A Fy   implies    1 1 1( )A A Ay y y     and  

        1 ( )A Fy   implies    1 1 1( )A A Ay y y     . 

Proof (i) (i) 1 2 1 2( ) (1 1 )A Ay y y y      

                      1 2(1 ( 1) )A y y    

                     1 2(1 ) [( 1) ]A Ay y     

                    1 2[ (1) ( )] [ ( 1) ( )]F A F Ay y          

                    1 1 2 2[ ( ) ( )] [ ( ) ( )]A A A Ay y y y         

                    1 2( ) ( )]A Ay y     

and 1 2 1 2( ) (1 [( 1) ]A Ay y y y      

                     1 2[ (1) ( )] [ ( 1) ( )]F A F Ay y                    

                                   1 1 2 2[ ( ) ( )] [ ( ) ( )]A A A Ay y y y         

                                   1 2( ) ( )A Ay y    

(ii) If    21A Ay y  and by the definition of intuionistic fuzzy Near algebra, we have  

       2 21 1 22 [( ) ]A A A A Ay y yy y y        

                            1 2 1] ,[ A A Ay y y    if    21A Ay y   

                            1 1 2[ ]A A Ay y y     

                         1 2A Ay y    

                         1 1A Ay y    if    21A Ay y   
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                       1A y  

Therefore    21 12( )A A Ay yy y      

Also,          2 2 21 21 ][A A A A Ay y yy y y         

       2 21 1 22 [( )A A A A Ay y yy y y        

                            1 2 1] ,[ A A Ay y y    if    21A Ay y   

                            1 1 2[ ]A A Ay y y     

                         1 2A Ay y    

                         1 1A Ay y    if    21A Ay y   

                       1A y  

     Similarly we prove    21A Ay y   implies    21 12( )A A Ay yy y     , 

     2 21 1A A Ay yyy    .                        

(iii) If  1 ( )A Fy   and by the definition of by the definition of intuionistic fuzzy Near algebra, we have  

            1 1 1 1( [) ]A A F A Ay y y y          

                            1 1[ ] ],F A Ay y    if  1 ( )A Fy    

                          1 1A Ay y   

                       1A y  

Therefore    1 1 1( )A A Ay y y      

Similarly we can prove  1 ( )A Fy   implies    1 1 1( )A A Ay y y     . 

Theorem 2.6 If A and B are two intuitionistic fuzzy near-algebras of Y  over a fuzzy field F , then A B and 

A are also intuitionistic fuzzy near-algebra of Y  over a fuzzy field F . 

Proof  Since    21 1 2( )A A Ay yy y     , then  

(i)     1 1 2 12 2( )A B A By y yy y y        

                1 2 21[ ( ) ( )] [ ( ) ( )]A A B By yy y        

               1 1 2 2[ ( ) ( )] [ ( ) ( )]A B A By yy y        

       1 2( ) ( )A B A By y     

Similarly, 1 2 1 2( ) ( ) ( )A B A B A By y y y        

(ii)    1 1 1( ) ( ) ( )A B A By y y         

      1 1[ ( ) ( )] [ ( ) ( )]F A F By y          

     1 1( ) [ ( ) ( )]F A By y       

     1( ) ( )F A B y      
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Similarly, 1 1( ) ( ) ( )A B F A By y        

(iii)     1 2 1 2 1 2( ) ( ) ( )A B A By y y y y y      

      1 2 1 2[ ( ) ( )] [ ( ) ( )]A A B By y y y        

      1 1 2 2[ ( ) ( )] [ ( ) ( )]A B A By y y y        

      1 2( ) ( )A B A By y     

Similarly, 1 2 1 2( ) ( ) ( )A B A B A By y y y       

(iv) Since 1(1) ( )F A y  and 1(1) ( )F B y   

     1 1(1) ( ) ( )F A By y    1( )A B y   

Similarly, 1(1) ( )F A B y    

Therefore A B is a intuitionistic fuzzy near-algebra of Y  over a fuzzy field F . 

 Now, to show that A are also intuitionistic fuzzy near-algebra of Y  over a fuzzy field F . 

(i)  1 212 ( ) ( )( )A A Ayy y y       

                1 1 2 2[ ( ) ( )] [ ( ) ( )]A Ayy yy         

               1 2 21[ ( ) ( )] [ ( ) ( )]A Ay yy y         

       1 12 2( ) ( )Ay y y y      

Similarly, 1 2 1 2 1 2( ) ( ) ( )A Ay y y y y y         

(ii)    1 1 1( ) ( ) ( )A Ay y y         

      1 1[ ( ) ( )] [ ( ) ( )]F F Ay y          

      1 1[ ( ) ( )] [ ( ) ( )]F F Ay y          

      1( ) ( )F A y     

Similarly, 1 1( ) ( ) ( )A F Ay y        

(iii)     1 2 1 2 1 2( ) ( ) ( )A Ay y y y y y      

      1 2 1 2[ ( ) ( )] [ ( ) ( )]A Ay y y y         

      1 1 2 2[ ( ) ( )] [ ( ) ( )]A By y y y         

      1 2( ) ( )A Ay y     

Similarly, 1 2 1 2( ) ( ) ( )A A Ay y y y       

(iv) Since 1(1) ( )F A y  and 1(1) ( )F B y   

     1 1 1(1) ( ) ( ) ( )F A Ay y y        

Similarly, 1(1) ( )F A y   

Therefore A are also intuitionistic fuzzy near-algebra of Y  over a fuzzy field F . 

Theorem 2.7 Intersection of family of intuitionistic fuzzy near-algebras is a intuitionistic fuzzy near-algebra. 
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Proof  Let { ( , )}i i i iA    be a family of intuitionistic fuzzy near-algebras of Y over fuzzy field F of X . Let 

( ) ( ) inf ( ) ( )A i i i
i i

i

x x x x   
 



    . for any 1 2, , ,y y Y X   ,               we have 

(i)  
1 2 1 2( ) (nf )i

iA A
i

y y y y    


    

                         

1 2

1 2

1 2

1 2

1 2

1 2

( )]

(

inf[ ) (

inf[[ ( ) )] [ ( ) (

inf[[ ( ) ( )] [ ) (

inf[ ( ) )

inf ( )] [in

)]]

( )]]

( ]

[ ( ]

( ]

f )

( )] )

i i

i i

i i

i

i

A A
i

F A F A
i

F F A A
i

F A
i

F A
i i

F A

y y

y y

y y

y y

y y

y y

  

     

     

  

  

 













 







  

  















         

 Similarly, 1 2 1 2( ) (( ) )FA Ay y y y        

(ii)           21 1 2( ) inf[ ( )]
iA A

i
y yy y 


  

                                

1 2

1 2

21

inf[ ( ) ( )]

[inf ( )] [inf ( )]

( ) ( )]

i i

i i

A A
i

A A
i i

A A

y y

y

y y

y

 

 

 



 

 

 

 

 

(iii) Since each iA ia intuitionistic fuzzy near-algebra, we have  

                 (1) ( ) inf ( ) ( )
i iF A A A

i
y y y   


   and (1) ( ) sup ( ) ( )

i iF A A A
i

y y y   


   . 

Therefore intersection of family of intuitionistic fuzzy near-algebras is a intuitionistic fuzzy near-algebra. 

Theorem 2.8 If { ( , )}i i i iA    be a family of intuitionistic fuzzy near-algebras of Y over fuzzy field F of 

X , the so is . 

Proof Let { ( , )}i i i iA    be a family of intuitionistic fuzzy near-algebras of Y over fuzzy field F of X . Let 

( ) ( ) inf ( )A i i
i

i

x x x  




  . for any 21, ,yy Y X  , we have 

(i)   

                             

1 2

1 2

1 2

sup[ (

[sup s

( ) )]

( )] [ )]

( )

up (

[ (] )][

i i

i i

i i

A A

A A

i

i i

i
A

i
A

y y

y y

y y

 

 

 



 

 





 



          

 Similarly,  

(ii)   

                             

1

1

1

sup[ (

[sup su

( ) )]

( )] [ )]

( )

p (

] [ ][ ( )

i

i

i

i

i i

i

F A

F A

F A
i

y

y

y

  

  

  



 

 











  
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 Similarly,  

(iii)   

                             

1 2

1 2

1 2

sup[ (

[sup s

( ) )]

( )] [ )]

( )

up (

[ (] )][

i i

i i

i i

A A

A A

i

i i

i
A

i
A

y y

y y

y y

 

 

 



 

 





 



          

 Similarly,  

(iv) Since each iA ia intuitionistic fuzzy near-algebra, we have  

                 1(1) sup ( )
iF A

i

y 


  and 1(1) sup ( )
iF A

i

y 


  

Therefore  intuitionistic fuzzy near-algebra of Y over fuzzy field . 

Theorem 2.9 Let Y and Z be two near-algebras over a field X. Let :f Y Z  be an onto near-algebra 

homomorphism. If ( , )A    and ( , )B    are two intuitionistic fuzzy near-algebras of Z  and Y over 

fuzzy field F of X , then 
1( )f A

 and ( )f B  are two intuitionistic fuzzy near-algebras in Y and Z over the 

fuzzy field ( , )F x  . 

Proof For any 21, , ,y Yy X   , we have 

(i)  1 1 2 1 2( )
( ) [ ( )]Af A

y y f y y        

                         

1 2

1 2

1 2

1 1

1 2

1

1 2

[ ( ) (

( )) ( (

[ ( ) ( ))] [ ( ) ( ( )

[ ( ) ( )( )] [ (

)]

( ))]

( )]

)]) ( )(

( ) ( ))(

A

A A

F A F A

F A F A

F A

f y f y

f y f y

f y f y

f y f y

f y y

 

  

     

     

  





 



 



 









 





         

 Similarly, 1

1

1 1( 22)
( ) ( ))( ) (Ff A A y yyy f     

   

(ii)           1 1 212( )
( ) ( ( ))Af A

y fy y y    

                                

1

1

1

2

2

1 1

2

( ( ) ( ))

( ( )) ( ( ))

( )( ) ( )( )

A

A A

A A

f f y

f f

y

y

f f y

y

y



 

  



 

 

 

(iii) Since ( , )A   ia intuitionistic fuzzy near-algebra, we have  

   1

1

( ) 1 1 1(1) ( ) ( ( )) ( )( )F A Af A
y f y f y   

    and 1

1

( ) 1 1 1(1) ( ) ( ( )) ( )( )F A Af A
y f y f y   

   . 

Therefore 
1( )f A

is a intuitionistic fuzzy near-algebra of Y  over a fuzzy field F . Similarly, we can prove 

( )f B  is intuitionistic fuzzy near-algebras in Z  over the fuzzy field F . 

Theorem 2.10 Let Y  be a near-algebra. Then the fuzzy subset ( , )A    of Y  is intuitionistic fuzzy near-

algebra over a fuzzy field of F  if and only if 
CA  is a intuitionistic fuzzy near-algebra of Y  over the  fuzzy 

field of  F . 
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Proof Let ( , )A    be a intuitionistic fuzzy near-algebra of Y . Then for any 1 2,y y Y ,    we have   

 (i)           
2 21 1( ) 1 ( )C AA

y yy y       

                      1 21 [ ( ) ( )]A A yy      

                                 1 2(1 ( )) (1 ( ))A Ay y      

                                 
1 2( ) ( )C CA A

y y    

Similarly, 
1 2 1 2( ) ( ) ( )C C CA A A

y yy y         

(ii)              
2 21 1( ) 1 ( )C AA

y yy y     

                      1 21 [ ( ) ( )]A A yy      

                                 1 2(1 ( )) (1 ( ))A Ay y      

                                 
1 2( ) ( )C CA A

y y    

Similarly, 
1 2 1 2( ) ( ) ( )C C CA A A

y yyy      

(iii)              
1 1( ) 1 ( )C AA

y y       

                      11 [ ( ) ( )]F A y       

                                 1(1 ( )) (1 ( ))F A y       

                                 
1( ) ( )C CF A

y     

Similarly, 
1 1( ) ( ) ( )C C CA F A

y y        

(iv)  1 1(1) 1 (1) 1 ( ) ( )C CF AF F
y y         and 1 1(1) 1 (1) 1 ( ) ( )C CF AF A

y y        . 

Thus 
CA  is a intuitionistic fuzzy near-algebra of Y  over the  fuzzy field of  F . 

Conversely, Suppose 
CA  is a intuitionistic fuzzy near-algebra of Y  over the  fuzzy field of  F . Then 

(i)           
21 1 2( ) 1 ( )CA A

y yy y       

                      1 21 [ ( ) ( )]C CA A
yy      

                                 1 2(1 ( )) (1 ( ))C CA A
y y      

                                 1 2( ) ( )A A yy    

Similarly, 2 21 1( ) ( ) ( )A A Ayy y y         

(ii)              
2 21 1( ) 1 ( )CA A

y yy y     

                      1 21 [ ( ) ( )]C CA A
yy      

                                 1 2(1 ( )) (1 ( ))C CA A
y y      

                                 1 2( ) ( )A A yy    

Similarly, 2 21 1( ) ( ) ( )A A Ayy y y      

(iii)              
1 1( ) 1 ( )CA A

y y       

                      11 [ ( ) ( )]C CF A
y       
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                                 1(1 ( )) (1 ( ))C CF A
y       

                                 1( ) ( )F A y     

Similarly, 1 1( ) ( ) ( )A F Ay y        

(iv)  1 1(1) 1 (1) 1 ( ) ( )C CF FF A
y y         and 1 1(1) 1 (1) 1 ( ) ( )C CF AF A

y y        . 

Therefore ( , )A    of Y  is intuitionistic fuzzy near-algebra over a fuzzy field of F . 
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