Some Properties of Intuitionistic Fuzzy Near Algebras over a Fuzzy Field

¹K. R. Balasubramaniyan, ²R. Revathy

¹Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamil Nadu, India.

²Department of Mathematics, Government Arts College for women, Pudukkottai, Tamil Nadu, India.

Abstract

The concept of intuitionistic fuzzy near-algebra over a fuzzy field is studied and using this notion we obtained some results on fuzzy near-algebra. We study the "necessity" and "possibility" operators on intuitionistic fuzzy near-algebra over a fuzzy field and study the nature of intuitionistic fuzzy near-algebra.

1. Introductory Concepts

In [2] Brown introduced the concept of Near-algebras. Nanda [7] studied the notion of fuzzy algebras over fuzzy fields and then redefined by Wenxiang Gu and Tu Lu in [4]. Srinivas and Narasimha swamy introduced the concept of a fuzzy near-algebra over a fuzzy field and investigated the properties of this notion in [11]. In addition, many attempts has been made in the field of near-algebra according to the physical situation was studied in the finite dimensional continuous field by Irish [6] and Yamamuro [13]. The applications of near-algebra was studied by Srinivas and Narasimha Swamy [10,11]. In this paper we introduce the concept of intuitionistic fuzzy near-algebra over a fuzzy field and some results on fuzzy near-algebra were obtained.

Definition 1.1 Let X be the collection of objects denoted generally by x. Then a fuzzy set A in X is defined as $A = \{\langle x, \alpha_A(x) \rangle, x \in X\}$ where $\alpha_A(x)$ is called the membership value of x in A and $0 \le \alpha_A(x) \le 1$.

Definition 1.2 A (right) near-algebra *Y* over a field *X* is a linear space *Y* over *X* on which a multiplication is defined such that (i) *Y* forms a semi group under multiplication and (ii) multiplication is right distributive over addition and (iii) $(\lambda a)b = \lambda(ab)$ for all $a, b \in Y$ and $\lambda \in X$.

Definition 1.3 A fuzzy subset *F* of *X* is called a fuzzy field of *X*, if it satisfies the following four conditions for all $x, y \in X$:

(i)
$$\alpha_F(x+y) \ge \alpha_F(x) \land \alpha_F(y)$$
,
(ii) $\alpha_F(-x) \ge \alpha_F(x)$,
(iii) $\alpha_F(xy) \ge \alpha_F(x) \land \alpha_F(y)$,
(iv) $\alpha_F(x^{-1}) \ge \alpha_F(x)$ for any $x \ne 0$.

Definition 1.4 Let X be a field, F be a fuzzy field of X and Y be a (right) near-algebra over a field X. Let A be the fuzzy subset of Y. Then A is called a fuzzy near-algebra in Y, if the following conditions are satisfied,

(i) $\alpha_A(y_1 + y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$ (ii) $\alpha_A(\lambda y_1) \ge \alpha_F(\lambda) \land \alpha_A(y_1)$ (iii) $\alpha_A(y_1 y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$ (iv) $\alpha_F(1) \ge \alpha_A(y_1)$ for all $y_1, y_2 \in Y$ and $\lambda \in X$.

Definition 1.5 An intuitionistic fuzzy set *A* over *X* is an object having the form $A = \{\langle x, \alpha_A(x), \beta_A(x) \rangle, x \in X\}$, where $\alpha_A(x) : X \to [0,1]$ and $\beta_A(x) : X \to [0,1]$ with the condition $0 \le \alpha_A(x) + \beta_A(x) \le 1$ for all $x \in X$. The numbers $\alpha_A(x)$ and $\beta_A(x)$ denote, respectively, the degree of membership and degree of non membership of the element *x* in the set *A*. Obviously when $\beta_A(x) = 1 - \alpha_A(x)$ for every $x \in X$, the set *A* become a fuzzy set. A intuitionistic fuzzy set $A = \{\langle x, \alpha_A(x), \beta_A(x) \rangle, x \in X\}$ over *X* is denoted by $A = (\alpha_A, \beta_A)$.

Definition 1.6 A mapping f of a near-algebra Y_1 onto a near-algebra Y_2 is called a *near-algebra* homomorphism, if it satisfies the following three conditions:

(i)
$$f(y_1 + y_2) = f(y_1) + f(y_2)$$
,
(ii) $f(\lambda y_1) = \lambda f(y_1)$,
(iii) $f(y_1) = f(y_1) + f(y_2)$

for all $y_1, y_2 \in Y, \lambda \in X$.

2. Intuitionistic Fuzzy near-algebra over a Fuzzy field

We now study the concept of intuitionistic fuzzy near-algebra (IFN-algebra) over a fuzzy field and we investigate some properties and theorems related to this new concept.

Definition 2.1 Let X be a field, F be a fuzzy field of X and Y be a (right) near-algebra over a field X. Let $A = (\alpha_A, \beta_A)$ be the intuitionistic fuzzy subset of Y. Then A is called a intuitionistic fuzzy near-algebra in Y over a fuzzy field F, if the following conditions are satisfied,

(i)
$$\alpha_A(y_1 + y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$$
 and $\beta_A(y_1 + y_2) \le \beta_A(y_1) \lor \beta_A(y_2)$
(ii) $\alpha_A(\lambda y_1) \ge \alpha_F(\lambda) \land \alpha_A(y_1)$ and $\beta_A(\lambda y_1) \le \alpha_F(\lambda) \lor \beta_A(y_1)$
(iii) $\alpha_A(y_1y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$ and $\beta_A(y_1y_2) \le \beta_A(y_1) \lor \beta_A(y_2)$
(iv) $\alpha_F(1) \ge \alpha_A(y_1)$ and $\beta_F(1) \le \beta_A(y_1)$

for all $y_1, y_2 \in Y$ and $\lambda \in X$. A intuitionistic fuzzy near-algebra A of Y is denoted by (A, Y).

Example 2.2 Let $X = Z_3 = \{0, 1, 2\}_{\oplus_3 \otimes_3}$ and let $F = (x, \alpha_F)$ be a fuzzy field over X defined by,

$$\alpha_F(x_1) = \begin{cases} 0.2 & \text{if } x_1 = 0\\ 0.1 & \text{otherwise} \end{cases}$$

For any $x_1, x_2 \in X$, we have $x_1 - x_2 \in X$ and for $x_2 \neq 0$, $x_1 x_2^{-1} \in X$. Thus X is a field. Let $Y = \{0, a, b, c\}$ be a set with operations "+" and "-" as follows,

+	0	a	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	b	а	0

•	0	а	b	С
0	0	0	0	0
а	0	b	0	b
b	0	0	0	0
С	0	b	0	b

Also, if a scalar multiplication on Y is defined by

$$\lambda x = \begin{cases} 0 & \text{if } \lambda = 0 \\ x & \text{otherwise} \end{cases}$$

for every $y_1 \in Y, \lambda \in X$. Clearly Y is a near-algebra over the field X. Let $A = (\alpha_A, \beta_A)$ be a intuitionistic fuzzy subset of Y defined by,

$$\alpha_A(y_1) = \begin{cases} 0.5 & \text{if } x = 0\\ 0.7 & \text{otherwise} \end{cases} \text{ and } \beta_A(y_1) = \begin{cases} 0.03 & \text{if } x = 0\\ 0.02 & \text{otherwise} \end{cases}$$

Let $\lambda, \mu \in X$ and $y_1, y_2 \in Y$, So that $A = (\alpha_A, \beta_A)$ is a intuitionistic fuzzy near-algebra over the fuzzy field F of Χ.

Theorem 2.3 Let $A = (\alpha_A, \beta_A)$ be a intuitionistic fuzzy near-algebra of Y. Then $\alpha_A(0) \ge \alpha_A(y_1)$ and $\beta_A(0) \le \beta_A(y_1)$, for all $y_1 \in Y$.

ProofSince
$$\alpha_A(0) = \alpha_A(1y_1 - 1y_1 \ge [\alpha_A(1) \land \alpha_A(y_1)] \land [\alpha_A(-1) \land \alpha_A(y_1)] \ge \alpha_A(y_1) \land \alpha_A(y_1) \ge \alpha_A(y_1).$$
Therefore $\alpha_A(0) \ge \alpha_A(y_1).$ Also

Therefore

$$\beta_A(0) = \beta_A(1y_1 - 1y_1) \le [\beta_A(1) \lor \beta_A(y_1)] \lor [\beta_A(-1) \lor \beta_A(y_1)] \le \beta_A(y_1) \lor \beta_A(y_1) \le \beta_A(y_1).$$
 Therefore
$$\beta_A(0) \le \beta_A(y_1).$$

Theorem 2.4 Let F be a fuzzy field of the filed X, Y be the near-algebra over X and A is a intuitionistic fuzzy set of Y. Then (A, Y) is a intuitionistic fuzzy near-algebra over a fuzzy field (F, X) if and only if (i)

$$\alpha_{A}(\lambda y_{1} + \mu y_{2}) \ge [\alpha_{F}(\lambda) \land \alpha_{A}(y_{1})] \land [\alpha_{F}(\mu) \land \alpha_{A}(y_{2})]$$
 and
$$\beta_{A}(\lambda y_{1} + \mu y_{2}) \le [\alpha_{F}(\lambda) \lor \beta_{A}(y_{1})] \lor [\alpha_{F}(\mu) \lor \beta_{A}(y_{2})]$$
(ii)
$$\alpha_{A}(y_{1}y_{2}) \ge \alpha_{A}(y_{1}) \land \alpha_{A}(y_{2})$$
and

$$\beta_A(y_1y_2) \le \beta_A(y_1) \lor \beta_A(y_2)$$
 (iii) $\alpha_F(1) \ge \alpha_A(y_1)$ and $\alpha_F(1) \le \beta_A(y_1)$ for any $y_1, y_2 \in Y$ and $\lambda, \mu \in X$

Proof Suppose that (A, Y) is a intuitionistic fuzzy near-algebra over a fuzzy field (F, X). Then (i) for any $y_1, y_2 \in Y$ and $\lambda, \mu \in X$, we have $\alpha_A(\lambda y_1 + \mu y_2) \ge \alpha_A(\lambda y_1) \land \alpha_A(\mu y_2) \ge [\alpha_F(\lambda) \land \alpha_A(y_1)] \land [\alpha_F(\mu) \land \alpha_A(y_2)].$ Clearly (ii) and (iii) holds directly from the definition of a intuitionistic fuzzy near-algebra of Y. Conversely, suppose that the three conditions of the hypothesis hold. Then

(i)
$$\alpha_A(y_1 + y_2) = \alpha_A(1y_1 + 1y_2)$$

 $\geq \alpha_A(1y_1) \wedge \alpha_A(1y_2)$
 $\geq [\alpha_F(1) \wedge \alpha_A(y_1)] \wedge [\alpha_F(1) \wedge \alpha_A(y_2)]$
 $\geq [\alpha_A(y_1) \wedge \alpha_A(y_1)] \wedge [\alpha_A(y_2) \wedge \alpha_A(y_2)]$

 $\geq \alpha_A(y_1) \land \alpha_A(y_2)]$ and $\beta_A(y_1 + y_2) = \beta_A(1y_1 + 1y_2)$ $\leq [\alpha_F(1) \lor \beta_A(y_1)] \lor [\alpha_F(1) \lor \beta_A(y_2)]$ $\leq [\beta_A(y_1) \lor \beta_A(y_1)] \lor [\beta_A(y_2) \lor \beta_A(y_2)]$ $\leq \beta_A(y_1) \lor \beta_A(y_2)$

for every $y_1, y_2 \in Y$ and $\lambda, \mu \in X$. By hypothesis, the remaining two conditions of the definition of a intuitionistic fuzzy near-algebra of Y holds directly. Hence (A, Y) is a intuitionistic fuzzy near-algebra of Y over a fuzzy field F.

Theorem 2.5 Suppose (A, Y) is a intuitionistic fuzzy near-algebra of Y over a fuzzy field F. Then the following conditions holds for any $y_1, y_2 \in Y$ and $\lambda, \mu \in X$

(i)
$$\alpha_A(y_1 - y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$$
 and $\beta_A(y_1 - y_2) \le \beta_A(y_1) \lor \beta_A(y_2)$
(ii) $\alpha_A(y_1) \le \alpha_A(y_2)$ implies $\alpha_A(y_1 + y_2) \land \alpha_A(y_2) = \alpha_A(y_1), \ \alpha_A(y_1y_2) \land \alpha_A(y_2) = \alpha_A(y_1)$ and
 $\beta_A(y_1) \ge \beta_A(y_2)$ implies $\beta_A(y_1 + y_2) \lor \beta_A(y_2) = \beta_A(y_1), \ \beta_A(y_1y_2) \lor \beta_A(y_2) = \beta_A(y_1)$
(iii) $\alpha_A(y_1) \le \alpha_A(y_2)$ implies $\alpha_A(y_1 + y_2) \lor \beta_A(y_2) = \beta_A(y_1), \ \beta_A(y_1y_2) \lor \beta_A(y_2) = \beta_A(y_1)$

(*iii*) $\alpha_A(y_1) \le \alpha_F(\lambda)$ implies $\alpha_A(\lambda y_1) \land \alpha_A(y_1) = \alpha_A(y_1)$ and

$$\beta_A(y_1) \ge \alpha_F(\lambda) \text{ implies } \beta_A(\lambda y_1) \lor \beta_A(y_1) = \beta_A(y_1).$$

Proof (i) (i) $\alpha_A(y_1 - y_2) = \alpha_A(1y_1 - 1y_2)$

$$\geq \alpha_A(1y_1 + (-1)y_2)$$

$$\geq \alpha_A(1y_1) \wedge \alpha_A[(-1)y_2]$$

$$\geq [\alpha_F(1) \wedge \alpha_A(y_1)] \wedge [\alpha_F(-1) \wedge \alpha_A(y_2)]$$

$$\geq [\alpha_A(y_1) \wedge \alpha_A(y_1)] \wedge [\alpha_A(y_2) \wedge \alpha_A(y_2)]$$

$$\geq \alpha_A(y_1) \wedge \alpha_A(y_1)]$$

and
$$\beta_A(y_1 - y_2) = \beta_A(1y_1 + [(-1)y_2])$$

 $\leq [\alpha_F(1) \lor \beta_A(y_1)] \lor [\alpha_F(-1) \lor \beta_A(y_2)]$
 $\leq [\beta_A(y_1) \lor \beta_A(y_1)] \lor [\beta_A(y_2) \lor \beta_A(y_2)]$
 $\leq \beta_A(y_1) \lor \beta_A(y_2)$

(ii) If $\alpha_A(y_1) \le \alpha_A(y_2)$ and by the definition of intuionistic fuzzy Near algebra, we have

$$\alpha_{A}(y_{1}+y_{2}) \wedge \alpha_{A}(y_{2}) = [\alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})] \wedge \alpha_{A}(y_{2})$$

$$\geq [\alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})] \wedge \alpha_{A}(y_{1}), \text{ if } \alpha_{A}(y_{1}) \leq \alpha_{A}(y_{2})$$

$$\geq [\alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{1})] \wedge \alpha_{A}(y_{2})$$

$$\geq \alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})$$

$$\geq \alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})$$

$$= \alpha_A(y_1)$$

Therefore
$$\alpha_A(y_1 + y_2) \land \alpha_A(y_2) = \alpha_A(y_1)$$

Also, $\alpha_A(y_1y_2) \land \alpha_A(y_2) = [\alpha_A(y_1) \land \alpha_A(y_2)] \land \alpha_A(y_2)$
 $\alpha_A(y_1y_2) \land \alpha_A(y_2) = [\alpha_A(y_1) \land \alpha_A(y_2)] \land \alpha_A(y_1), \text{if } \alpha_A(y_1) \le \alpha_A(y_2)$
 $\ge [\alpha_A(y_1) \land \alpha_A(y_2)] \land \alpha_A(y_2)$
 $\ge \alpha_A(y_1) \land \alpha_A(y_2)$
 $\ge \alpha_A(y_1) \land \alpha_A(y_1) \text{ if } \alpha_A(y_1) \le \alpha_A(y_2)$
 $\ge \alpha_A(y_1) \land \alpha_A(y_1) \text{ if } \alpha_A(y_1) \le \alpha_A(y_2)$

Similarly we prove $\beta_A(y_1) \ge \beta_A(y_2)$ implies $\beta_A(y_1 + y_2) \lor \beta_A(y_2) = \beta_A(y_1)$, $\beta_A(y_1y_2) \lor \beta_A(y_2) = \beta_A(y_1)$.

(*iii*) If $\alpha_A(y_1) \leq \alpha_F(\lambda)$ and by the definition of by the definition of intuionistic fuzzy Near algebra, we have

$$\alpha_{A}(\lambda y_{1}) \wedge \alpha_{A}(y_{1}) \geq [\alpha_{F}(\lambda) \wedge \alpha_{A}(y_{1})] \wedge \alpha_{A}(y_{1})$$

$$\geq \alpha_{F}(\lambda) \wedge [\alpha_{A}(y_{1})] \wedge \alpha_{A}(y_{1})], \text{ if } \alpha_{A}(y_{1}) \leq \alpha_{F}(\lambda)$$

$$\geq \alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{1})$$

$$= \alpha_{A}(y_{1})$$

Therefore $\alpha_A(\lambda y_1) \wedge \alpha_A(y_1) = \alpha_A(y_1)$

Similarly we can prove $\beta_A(y_1) \ge \alpha_F(\lambda)$ implies $\beta_A(\lambda y_1) \lor \beta_A(y_1) = \beta_A(y_1)$.

Theorem 2.6 If A and B are two intuitionistic fuzzy near-algebras of Y over a fuzzy field F, then A + B and λA are also intuitionistic fuzzy near-algebra of Y over a fuzzy field F.

Proof Since $\alpha_A(y_1 + y_2) \ge \alpha_A(y_1) \land \alpha_A(y_2)$, then

(i)
$$\alpha_{A+B}(y_1 + y_2) \ge \alpha_A(y_1 + y_2) \land \alpha_B(y_1 + y_2)$$
$$\ge [\alpha_A(y_1) \land \alpha_A(y_2)] \land [\alpha_B(y_1) \land \alpha_B(y_2)]$$
$$\ge [\alpha_A(y_1) \land \alpha_B(y_1)] \land [\alpha_A(y_2) \land \alpha_B(y_2)]$$
$$\ge \alpha_{A+B}(y_1) \land \alpha_{A+B}(y_2)$$

Similarly, $\beta_{A+B}(y_1 + y_2) \le \beta_{A+B}(y_1) \lor \beta_{A+B}(y_2)$

(ii)
$$\alpha_{A+B}(\lambda y_1) \ge \alpha_A(\lambda y_1) \land \alpha_B(\lambda y_1)$$
$$\ge [\alpha_F(\lambda) \land \alpha_A(y_1)] \land [\alpha_F(\lambda) \land \alpha_B(y_1)]$$
$$\ge \alpha_F(\lambda) \land [\alpha_A(y_1) \land \alpha_B(y_1)]$$
$$\ge \alpha_F(\lambda) \land \alpha_{A+B}(y_1)$$

Similarly, $\beta_{A+B}(\lambda y_1) \le \alpha_F(\lambda) \lor \beta_{A+B}(y_1)$ (iii) $\alpha_{A+B}(y_1y_2) \ge \alpha_A(y_1y_2) \land \alpha_B(y_1y_2)$ $\ge [\alpha_A(y_1) \land \alpha_A(y_2)] \land [\alpha_B(y_1) \land \alpha_B(y_2)]$ $\ge [\alpha_A(y_1) \land \alpha_B(y_1)] \land [\alpha_A(y_2) \land \alpha_B(y_2)]$ $\ge \alpha_{A+B}(y_1) \land \alpha_{A+B}(y_2)$

Similarly, $\beta_{A+B}(y_1y_2) \le \beta_{A+B}(y_1) \lor \beta_{A+B}(y_2)$

(iv) Since $\alpha_F(1) \ge \alpha_A(y_1)$ and $\alpha_F(1) \ge \alpha_B(y_1)$

$$\alpha_F(1) \ge \alpha_A(y_1) \land \alpha_B(y_1) = \alpha_{A+B}(y_1)$$

Similarly, $\alpha_F(1) \leq \beta_{A+B}(y_1)$

Therefore A + B is a intuitionistic fuzzy near-algebra of Y over a fuzzy field F.

Now, to show that λA are also intuitionistic fuzzy near-algebra of Y over a fuzzy field F.

(i)
$$\alpha_{\lambda A}(y_1 + y_2) \ge \alpha_{\lambda A}(y_1) \land \alpha_{\lambda A}(y_2)$$
$$\ge [\alpha_{\lambda}(y_1) \land \alpha_{A}(y_1)] \land [\alpha_{\lambda}(y_2) \land \alpha_{A}(y_2)]$$
$$\ge [\alpha_{\lambda}(y_1) \land \alpha_{\lambda}(y_2)] \land [\alpha_{A}(y_1) \land \alpha_{A}(y_2)]$$
$$\ge \alpha_{\lambda}(y_1 + y_2) \land \alpha_{A}(y_1 + y_2)$$

Similarly, $\beta_{\lambda A}(y_1 + y_2) \le \beta_{\lambda}(y_1 + y_2) \lor \beta_A(y_1 + y_2)$

(ii)
$$\alpha_{\lambda A}(\lambda y_{1}) \geq \alpha_{\lambda}(\lambda y_{1}) \wedge \alpha_{A}(\lambda y_{1})$$
$$\geq [\alpha_{F}(\lambda) \wedge \alpha_{\lambda}(y_{1})] \wedge [\alpha_{F}(\lambda) \wedge \alpha_{A}(y_{1})]$$
$$\geq [\alpha_{F}(\lambda) \wedge \alpha_{F}(\lambda)] \wedge [\alpha_{\lambda}(y_{1}) \wedge \alpha_{A}(y_{1})]$$
$$\geq \alpha_{F}(\lambda) \wedge \alpha_{\lambda A}(y_{1})$$

Similarly, $\beta_{\lambda A}(\lambda y_1) \le \alpha_F(\lambda) \lor \beta_{\lambda A}(y_1)$

(iii)
$$\alpha_{\lambda A}(y_1 y_2) \ge \alpha_{\lambda}(y_1 y_2) \land \alpha_{A}(y_1 y_2)$$
$$\ge [\alpha_{\lambda}(y_1) \land \alpha_{\lambda}(y_2)] \land [\alpha_{A}(y_1) \land \alpha_{A}(y_2)]$$
$$\ge [\alpha_{\lambda}(y_1) \land \alpha_{A}(y_1)] \land [\alpha_{\lambda}(y_2) \land \alpha_{B}(y_2)]$$

$$\geq \alpha_{\lambda A}(y_1) \wedge \alpha_{\lambda A}(y_2)$$

Similarly, $\beta_{\lambda A}(y_1y_2) \le \beta_{\lambda A}(y_1) \lor \beta_{\lambda A}(y_2)$

(iv) Since $\alpha_F(1) \ge \alpha_A(y_1)$ and $\alpha_F(1) \ge \alpha_B(y_1)$

$$\alpha_F(1) \ge \alpha_\lambda(y_1) \land \alpha_A(y_1) \ge \alpha_{\lambda A}(y_1)$$

Similarly, $\alpha_F(1) \leq \beta_{\lambda A}(y_1)$

Therefore λA are also intuitionistic fuzzy near-algebra of Y over a fuzzy field F.

Theorem 2.7 Intersection of family of intuitionistic fuzzy near-algebras is a intuitionistic fuzzy near-algebra.

Proof Let $\{A_i = (\alpha_i, \beta_i)\}_{i \in \Lambda}$ be a family of intuitionistic fuzzy near-algebras of *Y* over fuzzy field *F* of *X*. Let

$$\alpha_A(x) = \bigcap_{i \in \Lambda} \alpha_i(x) = \inf_{i \in \Lambda} \alpha_i(x) = \bigwedge_{i \in \Lambda} \alpha_i(x) \text{ for any } y_1, y_2 \in Y, \lambda, \mu \in X, \quad \text{we have}$$

(i)
$$\alpha_A(\lambda y_1 + \mu y_2) = \inf_{i \in \Lambda} \alpha_{A_i}(\lambda y_1 + \mu y_2)$$

$$\geq \inf_{i \in \Lambda} [\alpha_{A_{i}}(\lambda y_{1}) \land \alpha_{A_{i}}(\mu y_{2})]$$

$$\geq \inf_{i \in \Lambda} [[\alpha_{F}(\lambda) \land \alpha_{A_{i}}(y_{1})] \land [\alpha_{F}(\mu) \land \alpha_{A_{i}}(y_{2})]]$$

$$\geq \inf_{i \in \Lambda} [[\alpha_{F}(\lambda) \land \alpha_{F}(\mu)] \land [\alpha_{A_{i}}(y_{1}) \land \alpha_{A_{i}}(y_{2})]]$$

$$\geq \inf_{i \in \Lambda} [\alpha_{F}(\lambda \mu) \land \alpha_{A_{i}}(y_{1}y_{2})]$$

$$\geq [\inf_{i \in \Lambda} \alpha_{F}(\lambda \mu)] \land [\inf_{i \in \Lambda} \alpha_{A_{i}}(y_{1}y_{2})]$$

$$\geq \alpha_{F}(\lambda \mu)] \land \alpha_{A}(y_{1}y_{2})]$$

Similarly, $\beta_A(\lambda y_1 + \mu y_2) \le \beta_F(\lambda \mu) \lor \beta_A(y_1 y_2)$

(ii)
$$\alpha_A(y_1y_2) \ge \inf_{i \in \Lambda} [\alpha_{A_i}(y_1y_2)]$$

$$\geq \inf_{i \in \Lambda} [\alpha_{A_i}(y_1) \land \alpha_{A_i}(y_2)]$$

$$\geq [\inf_{i \in \Lambda} \alpha_{A_i}(y_1)] \land [\inf_{i \in \Lambda} \alpha_{A_i}(y_2)]$$

$$\geq \alpha_A(y_1) \land \alpha_A(y_2)]$$

(iii) Since each A_i ia intuitionistic fuzzy near-algebra, we have

$$\alpha_F(1) \ge \alpha_{A_i}(y) \ge \inf_{i \in \Lambda} \alpha_{A_i}(y) = \alpha_A(y) \text{ and } \beta_F(1) \ge \beta_{A_i}(y) \ge \sup_{i \in \Lambda} \beta_{A_i}(y) = \beta_A(y).$$

Therefore intersection of family of intuitionistic fuzzy near-algebras is a intuitionistic fuzzy near-algebra.

Theorem 2.8 If $\{A_i = (\alpha_i, \beta_i)\}_{i \in \Lambda}$ be a family of intuitionistic fuzzy near-algebras of Y over fuzzy field F of X, the so is $\bigvee_{i \in \Lambda} A_i$.

Proof Let $\{A_i = (\alpha_i, \beta_i)\}_{i \in \Lambda}$ be a family of intuitionistic fuzzy near-algebras of *Y* over fuzzy field *F* of *X*. Let $\alpha_A(x) = \bigcap_{i \in \Lambda} \alpha_i(x) = \inf_{i \in \Lambda} \alpha_i(x)$. for any $y_1, y_2 \in Y, \lambda \in X$, we have

(i)
$$\bigvee_{i \in \Lambda} \alpha_{\mathcal{A}_i}(y_1 + y_2) = \sup_{i \in \Lambda} [\alpha_{\mathcal{A}_i}(y_1 + y_2)]$$

$$\geq \sup_{i \in \Lambda} [\alpha_{A_i}(y_1) \land \alpha_{A_i}(y_2)]$$

$$\geq [\sup_{i \in \Lambda} \alpha_{A_i}(y_1)] \land [\sup_{i \in \Lambda} \alpha_{A_i}(y_2)]$$

$$\geq [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_1)] \land [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_2)]$$

Similarly, $\bigvee_{i \in \Lambda} \beta_{\mathcal{A}}(y_1 + y_2) = \sup_{i \in \Lambda} \beta_{\mathcal{A}}(y_1 + y_2)$

(ii)
$$\bigvee_{i \in \Lambda} \alpha_{\mathcal{A}_i}(\lambda y_1) = \sup_{i \in \Lambda} [\alpha_{\mathcal{A}_i}(\lambda y_1)]$$

$$\geq \sup_{i \in \Lambda} [\alpha_F(\lambda) \wedge \alpha_{A_i}(y_1)]$$

$$\geq [\sup_{i \in \Lambda} \alpha_F(\lambda)] \wedge [\sup_{i \in \Lambda} \alpha_{A_i}(y_1)]$$

$$\geq [\bigvee_{i \in \Lambda} \alpha_F(\lambda)] \wedge [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_1)]$$

Similarly, $\bigvee_{i \in \Lambda} \beta_A(\lambda y_1) = [\bigvee_{i \in \Lambda} \beta_F(\lambda)] \lor [\bigvee_{i \in \Lambda} \beta_{A_i}(y_1)]$

(iii)
$$\bigvee_{i \in \Lambda} \alpha_{\mathcal{A}_i}(y_1 y_2) = \sup_{i \in \Lambda} [\alpha_{\mathcal{A}_i}(y_1 y_2)]$$

$$\geq \sup_{i \in \Lambda} [\alpha_{A_i}(y_1) \land \alpha_{A_i}(y_2)]$$

$$\geq [\sup_{i \in \Lambda} \alpha_{A_i}(y_1)] \land [\sup_{i \in \Lambda} \alpha_{A_i}(y_2)]$$

$$= [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_1)] \land [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_2)]$$

Similarly, $\bigvee_{i \in \Lambda} \beta_{A_i}(y_1 y_2) = [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_1)] \lor [\bigvee_{i \in \Lambda} \alpha_{A_i}(y_2)]$

(iv) Since each A_i ia intuitionistic fuzzy near-algebra, we have

$$\alpha_F(1) \ge \sup_{i \in \Lambda} \alpha_{A_i}(y_1) = \bigvee_{i \in \Lambda} \alpha_{A_i}(y_1) \text{ and } \beta_F(1) \ge \sup_{i \in \Lambda} \beta_{A_i}(y_1) = \bigvee_{i \in \Lambda} \beta_{A_i}(y_1)$$

Therefore $\bigvee_{i \in \Lambda} A_i$ intuitionistic fuzzy near-algebra of Y over fuzzy field.

Theorem 2.9 Let Y and Z be two near-algebras over a field X. Let $f: Y \to Z$ be an onto near-algebra homomorphism. If $A = (\alpha, \beta)$ and $B = (\alpha, \beta)$ are two intuitionistic fuzzy near-algebras of Z and Y over fuzzy field F of X, then $f^{-1}(A)$ and f(B) are two intuitionistic fuzzy near-algebras in Y and Z over the fuzzy field $F = (x, \alpha)$.

Proof For any $y_1, y_2 \in Y, \lambda, \mu \in X$, we have

(i)
$$\alpha_{f^{-1}(A)}(\lambda y_1 + \mu y_2) = \alpha_A[f(\lambda y_1 + \mu y_2)]$$

$$= \alpha_{A}[\lambda f(y_{1}) + \mu f(y_{2})]$$

$$\geq \alpha_{A}(\lambda f(y_{1})) \wedge \alpha_{A}(\mu f(y_{2}))]$$

$$\geq [\alpha_{F}(\lambda) \wedge \alpha_{A}(f(y_{1}))] \wedge [\alpha_{F}(\mu) \wedge \alpha_{A}(f(y_{2}))]$$

$$\geq [\alpha_{F}(\lambda) \wedge f^{-1}(\alpha_{A})(y_{1})] \wedge [\alpha_{F}(\mu) \wedge f^{-1}(\alpha_{A})(y_{2})]$$

$$\geq \alpha_{F}(\lambda \mu) \wedge f^{-1}(\alpha_{A}(y_{1}y_{2}))$$

Similarly, $\beta_{f^{-1}(A)}(\lambda y_1 + \mu y_2) \le \beta_F(\lambda \mu) \lor f^{-1}(\beta_A(y_1y_2))$

(ii) $\alpha_{f^{-1}(A)}(y_1y_2) \ge \alpha_A(f(y_1y_2))$

$$\geq \alpha_A(f(y_1)f(y_2))$$

$$\geq \alpha_A(f(y_1)) \wedge \alpha_A(f(y_2))$$

$$\geq f^{-1}(\alpha_A)(y_1) \wedge f^{-1}(\alpha_A)(y_2)$$

(iii) Since $A = (\alpha, \beta)$ ia intuitionistic fuzzy near-algebra, we have

$$\alpha_F(1) \ge \alpha_{f^{-1}(A)}(y_1) = \alpha_A(f(y_1)) = f^{-1}(\alpha_A)(y_1) \text{ and } \beta_F(1) \le \beta_{f^{-1}(A)}(y_1) = \beta_A(f(y_1)) = f^{-1}(\beta_A)(y_1)$$

Therefore $f^{-1}(A)$ is a intuitionistic fuzzy near-algebra of Y over a fuzzy field F. Similarly, we can prove f(B) is intuitionistic fuzzy near-algebras in Z over the fuzzy field F.

Theorem 2.10 Let *Y* be a near-algebra. Then the fuzzy subset $A = (\alpha, \beta)$ of *Y* is intuitionistic fuzzy near-algebra over a fuzzy field of *F* if and only if A^{C} is a intuitionistic fuzzy near-algebra of *Y* over the fuzzy field of *F*.

Proof Let $A = (\alpha, \beta)$ be a intuitionistic fuzzy near-algebra of Y. Then for any $y_1, y_2 \in Y$, we have

(i)

$$\alpha_{A^{C}}(y_{1}+y_{2}) = 1 - \alpha_{A}(y_{1}+y_{2})$$

$$\geq 1 - [\alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})]$$

$$= (1 - \alpha_{A}(y_{1})) \wedge (1 - \alpha_{A}(y_{2}))$$

$$= \alpha_{A^{C}}(y_{1}) \wedge \alpha_{A^{C}}(y_{2})$$
Similarly, $\beta_{A^{C}}(y_{1}+y_{2}) = \beta_{A^{C}}(y_{1}) \vee \beta_{A^{C}}(y_{2})$

 $y, \ \rho_{A^{c}}(y_{1}+y_{2}) = \rho_{A^{c}}(y_{1}) \lor \rho_{A^{c}}(y_{2})$

(ii)
$$\alpha_{A^{C}}(y_{1}y_{2}) = 1 - \alpha_{A}(y_{1}y_{2})$$

$$\geq 1 - [\alpha_A(y_1) \land \alpha_A(y_2)]$$
$$= (1 - \alpha_A(y_1)) \land (1 - \alpha_A(y_2))$$
$$= \alpha_{A^c}(y_1) \land \alpha_{A^c}(y_2)$$

Similarly, $\beta_{A^c}(y_1y_2) = \beta_{A^c}(y_1) \vee \beta_{A^c}(y_2)$

 $\alpha_{A^{c}}(\lambda y_{1}) = 1 - \alpha_{A}(\lambda y_{1})$

....

$$\geq 1 - [\alpha_F(\lambda) \wedge \alpha_A(y_1)]$$
$$= (1 - \alpha_F(\lambda)) \wedge (1 - \alpha_A(y_1))$$
$$= \alpha_{F^c}(\lambda) \wedge \alpha_{A^c}(y_1)$$

Similarly, $\beta_{A^{C}}(\lambda y_{1}) = \alpha_{F^{C}}(\lambda) \vee \beta_{A^{C}}(y_{1})$

(iv)
$$\alpha_{F^{c}}(1) \ge 1 - \alpha_{F}(1) \ge 1 - \alpha_{A}(y_{1}) = \alpha_{F^{c}}(y_{1}) \text{ and } \beta_{F^{c}}(1) \le 1 - \beta_{F}(1) = 1 - \beta_{A}(y_{1}) = \beta_{A^{c}}(y_{1})$$

Thus A^{C} is a intuitionistic fuzzy near-algebra of Y over the fuzzy field of F.

Conversely, Suppose A^{C} is a intuitionistic fuzzy near-algebra of Y over the fuzzy field of F. Then

(1)
$$\alpha_{A}(y_{1} + y_{2}) = 1 - \alpha_{A^{c}}(y_{1} + y_{2})$$
$$\geq 1 - [\alpha_{A^{c}}(y_{1}) \wedge \alpha_{A^{c}}(y_{2})]$$
$$= (1 - \alpha_{A^{c}}(y_{1})) \wedge (1 - \alpha_{A^{c}}(y_{2}))$$
$$= \alpha_{A}(y_{1}) \wedge \alpha_{A}(y_{2})$$

Similarly, $\beta_A(y_1 + y_2) = \beta_A(y_1) \lor \beta_A(y_2)$

(ii)
$$\alpha_A(y_1y_2) = 1 - \alpha_{A^C}(y_1y_2)$$

$$\geq 1 - [\alpha_{A^c}(y_1) \wedge \alpha_{A^c}(y_2)]$$
$$= (1 - \alpha_{A^c}(y_1)) \wedge (1 - \alpha_{A^c}(y_2))$$
$$= \alpha_A(y_1) \wedge \alpha_A(y_2)$$

Similarly, $\beta_A(y_1y_2) = \beta_A(y_1) \lor \beta_A(y_2)$

(iii)
$$\alpha_A(\lambda y_1) = 1 - \alpha_{A^C}(\lambda y_1)$$

$$\geq 1 - [\alpha_{F^{c}}(\lambda) \wedge \alpha_{A^{c}}(y_{1})]$$

$$= (1 - \alpha_{F^{c}}(\lambda)) \wedge (1 - \alpha_{A^{c}}(y_{1}))$$
$$= \alpha_{F}(\lambda) \wedge \alpha_{A}(y_{1})$$

Similarly, $\beta_A(\lambda y_1) = \alpha_F(\lambda) \vee \beta_A(y_1)$

(iv) $\alpha_F(1) \ge 1 - \alpha_{F^C}(1) \ge 1 - \alpha_{A^C}(y_1) = \alpha_F(y_1)$ and $\beta_F(1) \le 1 - \beta_{F^C}(1) = 1 - \beta_{A^C}(y_1) = \beta_A(y_1)$.

Therefore $A = (\alpha, \beta)$ of Y is intuitionistic fuzzy near-algebra over a fuzzy field of F.

References

[1] K. T. Atanassov, Intuitionistic fuzzy set: Theory and Applications, Studies in Fuzziness and Soft Computing, Vol.35, Physica-Verlag, Heidelberg/New York, (1999).

[2] H. Brown, Near-algebras, Illinois Journal of Mathematics, 12(1968) 215-227.

[3] Chiranjibe Jana Et.all, On Intuitionistic Fuzzy G-subalgebras of G-algebra, Fuzzy Information and Engineering, 7, 195-209 (2015).

[4] W. Gu and T.Lu, Fuzzy algebras over fuzzy fields redefined, Fuzzy sets and systems 53(1993)105-107.

[5] L. Guangwen & G. Enrui, Fuzzy algebras and Fuzzy quotient algebras over fuzzy fields, Electronic Busefal, 85(2001) 1-4.

[6] J.W. Irish, Normed Near-Algebras and Finite Dimensional Near-Algebras of Continuous Functions, Doctoral Thesis, University of New Hampshire, USA, 1975.

[7] S. Nanda, Fuzzy fields and fuzzy linear spaces, Fuzzy sets and systems 19(1986) 89-94.

[8] Nobusawa, On a generalization of the ring theory, Osaka Journal of Mathematics, 1 (1964), 81-89.

[9] Bh. Satyanarayana, Contribution to Near-Ring Theory, Doctoral Dissertation, Acharya Nagarjuna University, India, 1984.

[10] T. Srinivas, Near-Rings and Application to Function Spaces, Doctoral Dissertation, Kakatiya University, India, 1996.

[11] T. Srinivas and P. Narasimha Swamy, A note on fuzzy near-algebras, Int. J. Algebra 5(22) (2011) 1085-1098.

[12] T. Srinivas, P.Narasimha Swamy, K. Vijaykumar Gamma near-algebras, International Journal of Algebra and Statistics, 1, No. 2, (2012), 107-117.

[13] S. Yamamuro, On near algebras of mappings of Banach spaces, Proceedigs of Japan Acadamy, 8, No. 3 (1965), 889-892.