SOME RESULTS ON DISJUNCTIVE TOTAL DOMINATION NUMBER

¹G. SANGEETHA,²S. VETRISELVI

¹Assistant Professor, ²Assistant Professor ¹Department of Mathematics, ¹Sri Kaliswari College, Sivakasi, Tamilnadu, India.

Abstract : In this paper, we discuss about the relationship between 2-dominating set, b-disjunctive dominating set and disjunctive total dominating set. We prove the realization theorems based on b-disjunctive total domination number and domination number. Also, we determine the value of b-disjunctive total domination number for some graphs especially for hypercube.

Index Terms – domination number, b-disjunctive domination number, b-disjunctive total domination number, hypercube.

I. INTRODUCTION

A set *S* dominates vertex *v* if *v* is either in *S* or adjacent to (joined by an edge to) some vertex of *S*. For a graph *G*, a set $S \subseteq V(G)$ is a dominating set [5] of *G* if every vertex not in *S* is adjacent to *S*. The domination number, γ (G), is the minimum cardinality of a dominating set. In 2009, Dankelmann et al. [3] concentrated the case where the domination of a vertex reduces as distance [1] increases. Motivated by these ideas, the concept of *b*-disjunctive dominating sets was introduced by Goddard et al.[4] in 2014. To extend this concept with total dominating set, Henning et al. [6] established the concept of disjunctive total domination in 2016 and at the same year, Pandey et al. [7] developed the concept of *b*-disjunctive total domination. First we see about some known parameters.

Definition 1.1. [2] Let G_1 and G_2 be two graphs with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 respectively. If $|V_1| = p_1$ and $|V_2| = p_2$, then their *corona* $G_1 \circ G_2$ is obtained by taking one copy of G_1 of order p_1 and p_1 copies of G_2 and then joining the *i*th vertex of G_1 to every vertex in the *i*th copy of G_2 .

Definition 1.2. [2] Let G_1 and G_2 be two graphs with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 respectively. Then their *cartesian product* $G_1 \square G_2$ has vertex set $V(G_1) \times V(G_2)$ and $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent in $G_1 \square G_2$ whenever $\{u_1 = v_1 \text{ and } u_2 v_2 \in E(G_2)\}$ or $\{u_2 = v_2 \text{ and } u_1 v_1 \in E(G_1)\}$.

Definition 1.3. [2] The hypercube or *n*-cube Q_n is defined recursively by $Q_1 = K_2$ and $Q_n = K_2 \square Q_{n-1}$.

Definition 1.4. [3] A set $S \subseteq V(G)$ of vertices in a graph *G* is called a *dominating set* if every vertex $v \in V(G)$ is either an element of *S* or adjacent to an element of *S*. A dominating set *S* is a *minimal dominating set* of *G* if no proper subset $S' \subset S$ is a dominating set. The minimum cardinality of a dominating set of *G* is called the *domination number* of *G*. It is denoted by $\gamma(G)$ and the corresponding dominating set is called a γ -set of *G*.

Definition 1.5. [4] For a graph G, a set $S \subseteq V(G)$ is a *b*-dominating set of G if every vertex v not in S has at least b neighbours in S. The minimum cardinality of a *b*-dominating set is the *b*-domination number of G. It is denoted by $\gamma_b(G)$.

Definition 1.6. [4] For a graph *G* and a positive integer *b*, a set *S* of vertices in a graph is said to be a *b*-disjunctive dominating set (*b*DDS) if every vertex *v* not in *S* is either adjacent to a vertex of *S* or there are at least *b* vertices of *S* within distance 2 of *v* (or both). For a graph *G*, the minimum cardinality of a *b*-disjunctive dominating set is the *b*-disjunctive domination number, denoted by $\gamma_b^d(G)$.

Definition 1.7. [6] A set *S* of vertices in *G* is a *disjunctive total dominating set* of *G* if every vertex is adjacent to a vertex of *S* or has at least two vertices in *S* at distance 2 from it. The *disjunctive total domination number*, $\gamma_t^d(G)$, is the minimum cardinality of such a set.

Definition 1.8. [7] Let G = (V, E) be a connected graph with at least two vertices. For a fixed positive integer b > 1, a set $D \subseteq V$ is called a *b*-disjunctive total dominating set (bDTDS) of G if for every vertex $v \in V$, v is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The minimum cardinality of a b-disjunctive total dominating set of G is called the *b*-disjunctive total domination number of G and is denoted by $\gamma_b^{td}(G)$.

II. Main Results.

First we discuss about the relationships of various disjunctive domination number of a graph.

Theorem 2.1. Every 2-dominating set is a *b*-disjunctive dominating set.

Proof. Let S be a 2-dominating set. Then every vertex v not in S has at least 2 neighbours in S. That is, every vertex v not in S is adjacent to a vertex of S. Therefore, S is a b-disjunctive dominating set.

Theorem 2.2. For any graph G, $\gamma_2^d(G) \le \gamma_t^d(G)$.

© 2019 JETIR June 2019, Volume 6, Issue 6

Proof. Let S be a disjunctive total dominating set of G. Then every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. Then every vertex v not in S is either adjacent to a vertex of S or there are at least 2 vertices of S within distance 2 of v. Therefore, S is a 2-disjunctive dominating set.

Observation 2.3. For any graph G, the following hold. (i). When b = 2, $\gamma_b^d(G) = \gamma_b^{td}(G)$ and (ii). $\gamma_b^{td}(G) \le \gamma_{b+1}^{td}(G)$. In particular, $\gamma_t^d(G) \le \gamma_b^{td}(G)$ for any *b*.

Lemma 2.4. If v is a support vertex of a graph G with exactly one neighbour w that is not a leaf, then there is a $\gamma_b^{td}(G)$ -set that contains v. Also, if d(w) = 2, then there is a $\gamma_b^{td}(G)$ - set which contains both v and w where v is a support vertex.

Proof. Let S be a $\gamma_b^{td}(G)$ -set. Since v is a support vertex in a graph G with exactly one neighbour w that is not a leaf, to bdisjunctively dominate the leaf neighbours of v, at least b leaf neighbours of v belong to S. But to get the b-disjunctive dominating set with minimum cardinality, we can replace all the leaf neighbours of v in S with the vertex v. Therefore, $v \in S$. Further if d(w)= 2 and $w \notin S$, then at least one leaf neighbor of v belongs to S in order to totally dominate or disjunctively totally dominate v. We can replace such a leaf neighbor of v in S with the vertex w.

Lemma 2.5. [4] For $b \ge 3$, $\gamma_b^d(C_n) = \gamma(C_n) = \left|\frac{n}{2}\right|$.

The following Theorem 2.6 describes the realization theorem of b-disjunctive domination number and domination number.

Theorem 2.6. For any two positive integers b and y, if b = y, then there exists a connected graph G with $\gamma_b^d(G) = \gamma(G) = b$ and if b < y, then there exists a connected graph G with $\gamma_b^d(G) = \gamma_t^d(G) = b$ and $\gamma(G) = y, b \ge 2$.

Proof. For $b = y = k \ge 1$, let G be the cycle of 3k vertices. Then by Lemma 2.5, $\gamma_b^d(G) = \gamma(G) = \frac{3k}{3} = 3$. For b < y, let G be the graph of order 2y obtained from the Corona product of K_y and K_1 . Every vertex of K_y form the minimal dominating set with minimum cardinality. Therefore, $\gamma(G) = y$. Since $d(u, v) \leq 2$ for all $u \in V(K_v)$ and $v \in V(G) - V(K_v)$, for $2 \leq b < 0$ y, $\gamma_b^d(G) = b = \gamma_t^d(G)$.

Notation 2.7. [4] Let v be the vertex of a graph. Then $N_1(v)$ is the set of vertices which are at distance one from v and $N_2(v)$ is the set of vertices which are at distance two from v.

The following Theorem 2.8 determines the disjunctive total domination number of $P_2 \square C_n$.

Theorem 2.8. Let $P_2 \square C_n$, $n \ge 3$ be a graph. Then $\gamma_t^d(P_2 \square C_n) = \begin{cases} \begin{bmatrix} n \\ 4 \end{bmatrix} + 1 & \text{if } n \equiv 0,3 \pmod{4} \\ \begin{bmatrix} n \\ 4 \end{bmatrix} & \text{otherwise} \end{cases}$ **Proof.** Consider the Cartesian product $P_2 \square C_n$. Let v_1, v_2, \dots, v_n and u_1, u_2, \dots, u_n be the vertices of the outer and inner cycle in $P_2 \square C_n$. Then $|V(P_2 \square C_n)| = 2n$ and $|E(P_2 \square C_n)| = 3n$. For $n \ge 3$, let $S = \{v_1, u_1, v_5, u_5, \dots, v_{4i+1}, u_{4i+1}\} \cup \{v_n, u_n\}$ if $n \equiv 0,3 \pmod{4}$. Since each vertex in $P_2 \square C_n$ is either in S or adjacent to at least otherwise $\{v_1, u_1, v_5, u_5, \dots, v_{4i+1}, u_{4i+1}\}$ otherwise one vertex in S or there are at least two vertices in S at distance two from it, S is a disjunctive total dominating set of $P_2 \square C_n$. Therefore, $\gamma_2^d(P_2 \square C_n) \le |S| = \begin{cases} \left[\frac{n}{4}\right] + 1 & \text{if } n \equiv 0,3 \pmod{4} \\ \left[\frac{n}{4}\right] & \text{otherwise} \end{cases}$. Since any vertex removal from S affects the disjunctive total

property, S is a minimum disjunctive dominating set.

The following Theorem 2.9 gives the lower bound for *b*-disjunctive total domination number of the graph $P_2 \square C_n$. **Theorem 2.9.** Let $P_2 \square C_n$, $n \ge 3$ be a graph. Then for $b \ge 3$, $\gamma_b^{td}(P_2 \square C_n) \ge \begin{cases} \left[\frac{n}{2}\right] + 1 & \text{if } n \equiv 2 \pmod{4} \\ \left[\frac{n}{2}\right] & \text{otherwise} \end{cases}$ **Proof.** Consider the Cartesian product $P_2 \square C_n$. Let v_1, v_2, \dots, v_n be the vertices of the outer cycle and u_1, u_2, \dots, u_n be the vertices

of the inner cycle in $P_2 \square C_n$. Then $|V(P_2 \square C_n)| = 2n$ and $|E(P_2 \square C_n)| = 3n$. For $b \ge 3$ and $n \ge 3$, let $S = \begin{cases} \{v_1, u_3, v_5, u_7, \dots, v_{4i+1}, u_{4i+3}\} & \text{if } n \equiv 0,3(mod \ 4) \\ \{u_3, v_5, u_7, v_9 \dots, v_{4j-1}, u_{4j+1}\} \cup \{v_1, v_2\} & \text{if } n \equiv 2(mod \ 4) \end{cases}$ where $0 \le i \le \left\lfloor \frac{n-1}{4} \right\rfloor$, $1 \le j \le \left\lceil \frac{n-3}{4} \right\rceil$ and $1 \le k \le \left\lceil \frac{n-1}{4} \right\rceil$ with $\{u_3, v_5, u_7, v_9 \dots, v_{4k-1}, u_{4k+1}\} \cup \{v_1\}$ if $n \equiv 1(mod \ 4)$

© 2019 JETIR June 2019, Volume 6, Issue 6

www.jetir.org (ISSN-2349-5162)

 $|S| = \left[\frac{n}{2}\right] + 1$ for $n \equiv 2 \pmod{4}$ and $|S| = \left[\frac{n}{2}\right]$ for otherwise. Each vertex in V – S is adjacent to at least one vertex in S or there are at least *b* vertices in S at distance two from it. We enlarge S to *b*DTDS by adding some vertices of V –S. Therefore, $\gamma_b^d(P_2 \square \left(\left[\frac{n}{2}\right] + 1\right)$ if $n \equiv 2 \pmod{4}$

$$|C_n| \ge |S| = \begin{cases} |\frac{1}{2}| + 1 & \text{if } n = 2(n) \\ \frac{|n|}{2} & \text{otherwise} \end{cases}$$

Next, we discuss about the *b*-disjunctive total domination number of the graph hypercube Q_n . For that, we have the following observations.

Observation. 2.10 (i) . For Q_1 and Q_2 , $\gamma_t^d(Q_1) = 2$ and (ii). For Q_3 and Q_4 , $\gamma_t^d(Q_2) = 4$.

The following Theorem 2.11 determines the disjunctive total domination number of the hypercube.

Theorem 2.11. Let Q_n be the hypercube. Then for $5 \le n \le 8$, $\gamma_t^d(Q_n) = 2^{n-3}$.

Proof. Consider the hypercube Q_n . Let $v_1^i, v_2^i, ..., v_8^i$ be the vertices of the cube Q_4 which are in the 1st column and in the *i*th row of Q_n and $u_1^i, u_2^i, ..., u_8^i$ be the vertices of the cube Q_4 in the 2nd column and in the *i*th row of Q_n where $1 \le i \le 2^{n-4}$. Then $|V(Q_n)| = 2^n$ and $|E(Q_n)| = n 2^{n-1}$. For $5 \le n \le 8$, let $S = \{v_1^1, v_1^2, ..., v_1^{2^{n-4}}\} \cup \{u_7^1, u_7^2, ..., u_7^{2^{n-4}}\}$ with $|S| = 2^{n-3}$. Since each vertex in Q_n is either in S or adjacent to a vertex in S or there are at least 2 vertices of S within distance two from it, S is a disjunctive total dominating set of Q_n . Therefore, $\gamma_t^d(Q_n) \le 2^{n-3}$. Let $W = \{w_1, w_2, ..., w_k\}$ be a minimum disjunctive total dominating set of Q_n . Let $v \in W$. Each vertex in Q_n can dominate itself and five distinct vertices in $N_1(v)$ and contribute $\frac{1}{2}$ to six

distinct vertices in $N_2(v)$. Since |W| = k, we get $k = 2^{n-3}$. That is, $|W| = k = 2^{n-3} = |S|$. Therefore, S is a minimum disjunctive total dominating set of Q_n .

The following Theorem 2.12 and 2.13 establish the *b*-disjunctive total domination number of Q_n if the value of n is between 5 and 8 and $b \ge 3$.

Theorem 2.12. Let Q_n be the hypercube. Then for $5 \le n \le 8$, $\gamma_3^{td}(Q_n) = 3(2^{n-4})$.

Proof. Consider the hypercube graph Q_n . Let $v_1^i, v_2^i, ..., v_8^i$ be the vertices of the cube Q_4 which are in the 1st column and in the *i*th row of Q_n and $u_1^i, u_2^i, ..., u_8^i$ be the vertices of the cube Q_4 in the 2nd column and in the *i*th row of Q_n where $1 \le i \le 2^{n-4}$. Then $|V(Q_n)| = 2^n$ and $|E(Q_n)| = n 2^{n-1}$. For disjunctive total dominating set and for $5 \le n \le 8$, let $S = \{v_1^1, v_1^2, ..., v_1^{2^{n-4}}\} \cup \{u_1^1, u_1^2, ..., u_1^{2^{n-4}}\} \cup \{v_1^1, v_2^1, ..., v_7^{2^{n-4}-1}\} \cup \{u_7^2, u_7^4, ..., u_7^{2^{n-4}}\}$ with $|S| = 3(2^{n-4})$. Since each vertex in Q_n is either in S or adjacent to a vertex in S or there are at least 3 vertices of S within distance two from it. Therefore, $\gamma_3^{td}(Q_n) \le 3(2^{n-4})$. Let $W = \{w_1, w_2, ..., w_k\}$ be a minimum 3DTDS of Q_n . Let $v \in W$. Each vertex in Q_n can dominate itself and n distinct vertices in $N_1(v)$ and contribute $\frac{1}{3}$ to n(n-1) distinct vertices in $N_2(v)$. Also, $(k-2^{n-4})$ distinct vertices in $N_1(v)$. Also, $(k-2(2^{n-4}))$ distinct vertices in $N_1(v)$ and another one of 2^{n-4} distinct vertices in W can contribute $\frac{1}{3}$ to six distinct vertices in $N_2(v)$. Since |W| = k, we get $4(k-2^{n-4}) + 5(2^{n-4}) + 0(k-2(2^{n-4})) + 1(2^{n-4}) + 2(2^{n-4}) = 2^n$. This implies $4k + (2^{n-4}) + 3(2^{n-4}) = 2^n$ and hence $k = 3(2^{n-4})$. That is, $|W| = k = 3(2^{n-4}) = |S|$. Therefore, S is a minimum 3DTDS of Q_n . Hence $\gamma_3^{td}(Q_n) = 3(2^{n-4})$.

Theorem 2.13. Let Q_n be the hypercube. Then for $5 \le n \le 8$ and $b \ge 4$, $\gamma_b^{td}(Q_n) = 2^{n-2}$.

Proof. Consider the hypercube graph Q_n . Let $v_1^i, v_2^i, ..., v_8^i$ be the vertices of the cube Q_4 which are in the 1st column and in the *i*th row of Q_n and $u_1^i, u_2^i, ..., u_8^i$ be the vertices of the cube Q_4 in the 2nd column and in the *i*th row of Q_n where $1 \le i \le 2^{n-4}$. Then $|V(Q_n)| = 2^n$ and $|E(Q_n)| = n 2^{n-1}$. For $5 \le n \le 8$, we construct the vertex set *S* of Q_n as follows. $S = \{v_1^1, v_1^2, ..., v_1^{2^{n-4}}\} \cup \{u_1^1, u_1^2, ..., u_1^{2^{n-4}}\} \cup \{v_1^1, v_2^2, ..., v_7^{2^{n-4}}\} \cup \{u_1^1, u_1^2, ..., u_1^{2^{n-4}}\} \cup \{v_1^1, v_2^1, ..., v_2^{2^{n-4}}\} \cup \{u_1^1, u_2^2, ..., u_7^{2^{n-4}}\} \cup \{u_1^1, u_2^2, ..., u_8^{2^{n-4}}\}$. Let $V \in W$. Each vertex in *S* or there are at least *b* vertex is in *N*₁(*v*) and co

REFERENCES

- [1]. Buckley. F and Harary. F. 1990. Distance in graphs. Addison-Wesley, Redwood city, CA.
- [2]. Chartand. G. and Zhang. P. 2013. Introduction to graph theory. McGraw Hill Education Private Limited, India.
- [3]. Dankelmann. P., Day, D., Ervin, D., Mukwembi. S. and Swart, H. 2009. Domination with exponential decay. Discrete Mathematics, 309 : 5877-5883.

© 2019 JETIR June 2019, Volume 6, Issue 6

- [4] Goddard. W., Henning. M. A. and McPillan. C. A. 2014. The disjunctive domination number of a graph. Quaestiones Mathematicae, 37(4): 547-561.
- [5]. Haynes. T. H., Hedetniemi. S. T. and Slater P. J. 1998. Fundamentals of domination in graphs. Marcel Decker, Inc.
- [6]. Henning. M. A. and Naicker. V. 2016. Disjunctive total domination in graphs. Journal of Combinatorial Optimization, 31(3): 1090 1110.
- [7]. Pandey. A. and Panda. B.S. 2016. b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results. In: Govindarajan S., Maheshwari A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science, 9602 : 277 – 288.

