SOME RESULTS ON DISJUNCTIVE TOTAL DOMINATION NUMBER

${ }^{1}$ G. SANGEETHA, ${ }^{2}$ S. VETRISELVI
${ }^{1}$ Assistant Professor, ${ }^{2}$ Assistant Professor
${ }^{1}$ Department of Mathematics,
${ }^{1}$ Sri Kaliswari College, Sivakasi, Tamilnadu, India.

Abstract

In this paper, we discuss about the relationship between 2-dominating set, b-disjunctive dominating set and disjunctive total dominating set. We prove the realization theorems based on b-disjunctive total domination number and domination number. Also, we determine the value of b-disjunctive total domination number for some graphs especially for hypercube.

IndexTerms - domination number, \boldsymbol{b}-disjunctive domination number, \boldsymbol{b}-disjunctive total domination number, hypercube.

I. Introduction

A set S dominates vertex v if v is either in S or adjacent to (joined by an edge to) some vertex of S. For a graph G, a set $S \subseteq V(G)$ is a dominating set [5] of G if every vertex not in S is adjacent to S. The domination number, γ (G), is the minimum cardinality of a dominating set. In 2009, Dankelmann et al. [3] concentrated the case where the domination of a vertex reduces as distance [1] increases. Motivated by these ideas, the concept of b-disjunctive dominating sets was introduced by Goddard et al.[4] in 2014. To extend this concept with total dominating set, Henning et al. [6] established the concept of disjunctive total domination in 2016 and at the same year, Pandey et al. [7] developed the concept of b-disjunctive total domination. First we see about some known parameters.

Definition 1.1. [2] Let G_{l} and G_{2} be two graphs with disjoint vertex sets V_{l} and V_{2} and edge sets E_{l} and E_{2} respectively. If $\left|V_{l}\right|=$ p_{1} and $\left|V_{2}\right|=p_{2}$, then their corona $G_{1} \circ G_{2}$ is obtained by taking one copy of G_{l} of order p_{1} and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{l} to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.2. [2] Let G_{l} and G_{2} be two graphs with disjoint vertex sets V_{l} and V_{2} and edge sets E_{1} and E_{2} respectively. Then their cartesian product $G_{l} \square G_{2}$ has vertex set $V\left(G_{l}\right) \times V\left(G_{2}\right)$ and $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{l} \square G_{2}$ whenever $\left\{u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$ or $\left\{u_{2}=v_{2}\right.$ and $\left.u_{1} v_{1} \in E\left(G_{l}\right)\right\}$.

Definition 1.3. [2] The hypercube or n-cube Q_{n} is defined recursively by $Q_{1}=K_{2}$ and $Q_{n}=K_{2} \square Q_{n-1}$.
Definition 1.4. [3] A set $S \subseteq V(G)$ of vertices in a graph G is called a dominating set if every vertex $v \in V(G)$ is either an element of S or adjacent to an element of S. A dominating set S is a minimal dominating set of G if no proper subset $S^{\prime} \subset S$ is a dominating set. The minimum cardinality of a dominating set of G is called the domination number of G. It is denoted by $\gamma(G)$ and the corresponding dominating set is called a γ - set of G.

Definition 1.5. [4] For a graph G, a set $S \subseteq V(G)$ is a b-dominating set of G if every vertex v not in S has at least b neighbours in S. The minimum cardinality of a b-dominating set is the b-domination number of G. It is denoted by $\gamma_{b}(G)$.

Definition 1.6. [4] For a graph G and a positive integer b, a set S of vertices in a graph is said to be a b-disjunctive dominating set (b DDS) if every vertex v not in S is either adjacent to a vertex of S or there are at least b vertices of S within distance 2 of v (or both). For a graph G, the minimum cardinality of a b-disjunctive dominating set is the b-disjunctive domination number, denoted by $\gamma_{b}^{d}(G)$.

Definition 1.7. [6] A set S of vertices in G is a disjunctive total dominating set of G if every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. The disjunctive total domination number, $\gamma_{t}^{d}(G)$, is the minimum cardinality of such a set.

Definition 1.8. [7] Let $G=(V, E)$ be a connected graph with at least two vertices. For a fixed positive integer $b>1$, a set $D \subseteq V$ is called a b-disjunctive total dominating set (b DTDS) of G if for every vertex $v \in V, v$ is either adjacent to a vertex of D or has at least b vertices in D at distance 2 from it. The minimum cardinality of a b-disjunctive total dominating set of G is called the b-disjunctive total domination number of G and is denoted by $\gamma_{b}^{t d}(G)$.

II. Main Results.

First we discuss about the relationships of various disjunctive domination number of a graph.
Theorem 2.1. Every 2-dominating set is a b-disjunctive dominating set.
Proof. Let S be a 2-dominating set. Then every vertex v not in S has at least 2 neighbours in S. That is, every vertex v not in S is adjacent to a vertex of S. Therefore, S is a b-disjunctive dominating set.

Theorem 2.2. For any graph $G, \gamma_{2}^{d}(G) \leq \gamma_{t}^{d}(G)$.

Proof. Let S be a disjunctive total dominating set of G. Then every vertex is adjacent to a vertex of S or has at least two vertices in S at distance 2 from it. Then every vertex v not in S is either adjacent to a vertex of S or there are at least 2 vertices of S within distance 2 of v. Therefore, S is a 2 -disjunctive dominating set.

Observation 2.3. For any graph G, the following hold.
(i). When $\mathrm{b}=2, \gamma_{t}^{d}(G)=\gamma_{b}^{t d}(G)$ and
(ii). $\gamma_{b}^{t d}(G) \leq \gamma_{b+1}^{t d}(G)$. In particular, $\gamma_{t}^{d}(G) \leq \gamma_{b}^{t d}(G)$ for any b.

Lemma 2.4. If v is a support vertex of a graph G with exactly one neighbour w that is not a leaf, then there is a $\gamma_{b}^{t d}(G)$-set that contains v. Also, if $d(w)=2$, then there is a $\gamma_{b}^{t d}(G)$ - set which contains both v and w where v is a support vertex.
Proof. Let S be a $\gamma_{b}^{t d}(G)$-set. Since v is a support vertex in a graph G with exactly one neighbour w that is not a leaf, to b disjunctively dominate the leaf neighbours of v, at least b leaf neighbours of v belong to S. But to get the b-disjunctive dominating set with minimum cardinality, we can replace all the leaf neighbours of v in S with the vertex v. Therefore, $v \in S$. Further if $d(w)$ $=2$ and $w \notin \mathrm{~S}$, then at least one leaf neighbor of v belongs to S in order to totally dominate or disjunctively totally dominate v. We can replace such a leaf neighbor of v in S with the vertex w.

Lemma 2.5. [4] For $\mathrm{b} \geq 3, \gamma_{b}^{d}\left(C_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
The following Theorem 2.6 describes the realization theorem of b-disjunctive domination number and domination number.

Theorem 2.6. For any two positive integers b and y, if $\mathrm{b}=y$, then there exists a connected graph G with $\gamma_{b}^{d}(G)=\gamma(G)=b$ and if $b<y$, then there exists a connected graph G with $\gamma_{b}^{d}(G)=\gamma_{t}^{d}(G)=b$ and $\gamma(G)=y, b \geq 2$.
Proof. For $b=y=k \geq 1$, let G be the cycle of 3 k vertices. Then by Lemma $2.5, \gamma_{b}^{d}(G)=\gamma(G)=\frac{3 k}{3}=3$. For $b<y$, let G be the graph of order $2 y$ obtained from the Corona product of K_{y} and K_{1}. Every vertex of K_{y} form the minimal dominating set with minimum cardinality. Therefore, $\gamma(G)=y$. Since $d(u, v) \leq 2$ for all $u \in V\left(K_{y}\right)$ and $v \in V(G)-V\left(K_{y}\right)$, for $2 \leq b<$ $y, \gamma_{b}^{d}(G)=b=\gamma_{t}^{d}(G)$.

Notation 2.7. [4] Let v be the vertex of a graph. Then $N_{1}(v)$ is the set of vertices which are at distance one from v and $N_{2}(v)$ is the set of vertices which are at distance two from v.

The following Theorem 2.8 determines the disjunctive total domination number of $P_{2} \square C_{n}$.
Theorem 2.8. Let $P_{2} \square C_{n}, n \geq 3$ be a graph. Then $\gamma_{t}^{d}\left(P_{2} \square C_{n}\right)=\left\{\begin{array}{ll}\left\lceil\frac{n}{4}\right\rceil+1 & \text { if } n \equiv 0,3(\bmod 4) \\ \left\lceil\frac{n}{4}\right\rceil & \text { otherwise }\end{array}\right.$.
Proof. Consider the Cartesian product $P_{2} \square C_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the outer and inner cycle in $P_{2} \quad \square \quad C_{n}$. Then $\left|V\left(P_{2} \quad \square C_{n}\right)\right|=2 n$ and $\left|E\left(P_{2} \quad \square \quad C_{n}\right)\right|=3 n$. For $n \geq 3$, let $S=$ $\left\{\begin{array}{cll}\left\{v_{1}, u_{1}, v_{5}, u_{5}, \ldots, v_{4 i+1}, u_{4 i+1}\right\} \cup\left\{v_{n}, u_{n}\right\} & \text { if } n \equiv 0,3(\bmod 4) \\ \left\{v_{1}, u_{1}, v_{5}, u_{5}, \ldots, v_{4 i+1}, u_{4 i+1}\right\} & \text { otherwise }\end{array}\right.$. Since each vertex in $P_{2} \square C_{n}$ is either in S or adjacent to at least one vertex in S or there are at least two vertices in S at distance two from it, S is a disjunctive total dominating set of $P_{2} \square C_{n}$. Therefore, $\gamma_{2}^{d}\left(P_{2} \square C_{n}\right) \leq|S|=\left\{\begin{aligned} {\left[\frac{n}{4}\right\rceil+1 } & \text { if } n \equiv 0,3(\bmod 4) \\ {\left[\frac{n}{4}\right] } & \text { otherwise }\end{aligned}\right.$. Since any vertex removal from S affects the disjunctive total property, S is a minimum disjunctive dominating set.

The following Theorem 2.9 gives the lower bound for b-disjunctive total domination number of the graph $P_{2} \square C_{n}$.
Theorem 2.9. Let $P_{2} \square C_{n}, n \geq 3$ be a graph. Then for $b \geq 3, \gamma_{b}^{t d}\left(P_{2} \square C_{n}\right) \geq\left\{\begin{array}{cl}\left\lceil\frac{n}{2}\right\rceil+1 & \text { if } n \equiv 2(\bmod 4) \\ {\left[\frac{n}{2}\right\rceil} & \text { otherwise }\end{array}\right.$.
Proof. Consider the Cartesian product $P_{2} \square C_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the outer cycle and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the inner cycle in $P_{2} \square C_{n}$. Then $\left|V\left(P_{2} \square C_{n}\right)\right|=2 n$ and $\left|E\left(P_{2} \square C_{n}\right)\right|=3 n$. For $b \geq 3$ and $n \geq 3$, let $S=$ $\left\{\begin{array}{ll}\left\{v_{1}, u_{3}, v_{5}, u_{7}, \ldots, v_{4 i+1}, u_{4 i+3}\right\} & \text { if } n \equiv 0,3(\bmod 4) \\ \left\{u_{3}, v_{5}, u_{7}, v_{9} \ldots, v_{4 j-1}, u_{4 j+1}\right\} \cup\left\{v_{1}, v_{2}\right\} & \text { if } n \equiv 2(\bmod 4) \\ \left\{u_{3}, v_{5}, u_{7}, v_{9} \ldots, v_{4 k-1}, u_{4 k+1}\right\} \cup\left\{v_{1}\right\} & \text { if } n \equiv 1(\bmod 4)\end{array}\right.$ where $0 \leq i \leq\left\lceil\frac{n-1}{4}\right\rceil, 1 \leq j \leq\left\lceil\frac{n-3}{4}\right\rceil$ and $1 \leq k \leq\left\lceil\frac{n-1}{4}\right\rceil$ with
$|S|=\left\lceil\frac{n}{2}\right\rceil+1$ for $n \equiv 2(\bmod 4)$ and $|S|=\left\lceil\frac{n}{2}\right\rceil$ for otherwise. Each vertex in $\mathrm{V}-\mathrm{S}$ is adjacent to at least one vertex in S or there are at least b vertices in S at distance two from it. We enlarge S to $b \mathrm{DTDS}$ by adding some vertices of $\mathrm{V}-\mathrm{S}$. Therefore, $\gamma_{b}^{d}\left(P_{2} \square\right.$ $\left.C_{n}\right) \geq|S|=\left\{\begin{array}{cl}\left\lceil\frac{n}{2}\right\rceil+1 & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil & \text { otherwise }\end{array}\right.$.

Next, we discuss about the b-disjunctive total domination number of the graph hypercube Q_{n}. For that, we have the following observations.

Observation. 2.10 (i). For Q_{1} and $Q_{2}, \gamma_{t}^{d}\left(Q_{1}\right)=2$ and
(ii). For Q_{3} and $Q_{4}, \gamma_{t}^{d}\left(Q_{2}\right)=4$.

The following Theorem 2.11 determines the disjunctive total domination number of the hypercube.
Theorem 2.11. Let Q_{n} be the hypercube. Then for $5 \leq n \leq 8$, $\gamma_{t}^{d}\left(Q_{n}\right)=2^{n-3}$.
Proof. Consider the hypercube Q_{n}. Let $v_{1}^{i}, v_{2}^{i}, \ldots, v_{8}^{i}$ be the vertices of the cube Q_{4} which are in the $1^{\text {st }}$ column and in the $i^{\text {th }}$ row of Q_{n} and $u_{1}^{i}, u_{2}^{i}, \ldots, u_{8}^{i}$ be the vertices of the cube Q_{4} in the $2^{\text {nd }}$ column and in the $i^{\text {th }}$ row of Q_{n} where $1 \leq i \leq 2^{n-4}$. Then $\left|V\left(Q_{n}\right)\right|=2^{\mathrm{n}}$ and $\left|E\left(Q_{n}\right)\right|=\mathrm{n} 2^{\mathrm{n}-1}$. For $5 \leq n \leq 8$, let $S=\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{2^{n-4}}\right\} \cup\left\{u_{7}^{1}, u_{7}^{2}, \ldots, u_{7}^{2^{n-4}}\right\}$ with $|S|=2^{n-3}$. Since each vertex in Q_{n} is either in S or adjacent to a vertex in S or there are at least 2 vertices of S within distance two from it, S is a disjunctive total dominating set of Q_{n}. Therefore, $\gamma_{t}^{d}\left(Q_{n}\right) \leq 2^{n-3}$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a minimum disjunctive total dominating set of Q_{n}. Let $v \in W$. Each vertex in Q_{n} can dominate itself and n distinct vertices in $N_{1}(v)$ and contribute $\frac{1}{2}$ to $n(n-$ 1) distinct vertices in $N_{2}(v)$. Also, each vertex in W can dominate itself and five distinct vertices in $N_{1}(v)$ and contribute $\frac{1}{2}$ to six distinct vertices in $N_{2}(v)$. Since $|W|=k$, we get $k=2^{n-3}$. That is, $|W|=k=2^{n-3}=|S|$. Therefore, S is a minimum disjunctive total dominating set of Q_{n}.

The following Theorem 2.12 and 2.13 establish the b-disjunctive total domination number of Q_{n} if the value of n is between 5 and 8 and $b \geq 3$.

Theorem 2.12. Let Q_{n} be the hypercube. Then for $5 \leq n \leq 8, \gamma_{3}^{t d}\left(Q_{n}\right)=3\left(2^{n-4}\right)$.
Proof. Consider the hypercube graph Q_{n}. Let $v_{1}^{i}, v_{2}^{i}, \ldots, v_{8}^{i}$ be the vertices of the cube Q_{4} which are in the $1^{\text {st }}$ column and in the $i^{\text {th }}$ row of Q_{n} and $u_{1}^{i}, u_{2}^{i}, \ldots, u_{8}^{i}$ be the vertices of the cube Q_{4} in the $2^{\text {nd }}$ column and in the $i^{\text {th }}$ row of Q_{n} where $1 \leq i \leq 2^{n-4}$. Then $\left|V\left(Q_{n}\right)\right|=2^{\mathrm{n}}$ and $\left|E\left(Q_{n}\right)\right|=\mathrm{n} 2^{\mathrm{n}-1}$. For disjunctive total dominating set and for $5 \leq n \leq 8$, let $S=\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{2^{n-4}}\right\} \cup$ $\left\{u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{2 n-4}\right\} \cup\left\{v_{7}^{1}, v_{7}^{3}, \ldots, v_{7}^{2^{n-4}-1}\right\} \cup\left\{u_{7}^{2}, u_{7}^{4}, \ldots, u_{7}^{2^{n-4}}\right\}$ with $|S|=3\left(2^{n-4}\right)$. Since each vertex in Q_{n} is either in S or adjacent to a vertex in S or there are at least 3 vertices of S within distance two from it. Therefore, $\gamma_{3}^{t d}\left(Q_{n}\right) \leq 3\left(2^{n-4}\right)$. Let $W=$ $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a minimum 3DTDS of Q_{n}. Let $v \in W$. Each vertex in Q_{n} can dominate itself and n distinct vertices in $N_{1}(v)$ and contribute $\frac{1}{3}$ to $n(n-1)$ distinct vertices in $N_{2}(v)$. Also, $\left(k-2^{n-4}\right)$ distinct vertices in W can dominate itself and three distinct vertices in $N_{1}(v)$ and 2^{n-4} distinct vertices in W can dominate itself and four distinct vertices in $N_{1}(v)$. Also, ($k-$ $2\left(2^{n-4}\right)$) distinct vertices in W can contribute $\frac{1}{3}$ to no vertex in $N_{2}(v)$, one of 2^{n-4} distinct vertices in W can contribute $\frac{1}{3}$ to three distinct vertices in $N_{2}(v)$ and another one of 2^{n-4} distinct vertices in W can contribute $\frac{1}{3}$ to six distinct vertices in $N_{2}(v)$. Since $|W|=k$, we get $4\left(k-2^{n-4}\right)+5\left(2^{n-4}\right)+0\left(k-2\left(2^{n-4}\right)\right)+1\left(2^{n-4}\right)+2\left(2^{n-4}\right)=2^{n}$. This implies $4 k+\left(2^{n-4}\right)+3\left(2^{n-4}\right)=$ 2^{n} and hence $\mathrm{k}=3\left(2^{n-4}\right)$. That is, $|W|=k=3\left(2^{n-4}\right)=|S|$. Therefore, S is a minimum 3DTDS of Q_{n}. Hence $\gamma_{3}^{t d}\left(Q_{n}\right)=$ $3\left(2^{n-4}\right)$.

Theorem 2.13. Let Q_{n} be the hypercube. Then for $5 \leq n \leq 8$ and $b \geq 4, \gamma_{b}^{t d}\left(Q_{n}\right)=2^{n-2}$.
Proof. Consider the hypercube graph Q_{n}. Let $v_{1}^{i}, v_{2}^{i}, \ldots, v_{8}^{i}$ be the vertices of the cube Q_{4} which are in the $1^{\text {st }}$ column and in the $i^{\text {th }}$ row of Q_{n} and $u_{1}^{i}, u_{2}^{i}, \ldots, u_{8}^{i}$ be the vertices of the cube Q_{4} in the $2^{\text {nd }}$ column and in the $i^{\text {th }}$ row of Q_{n} where $1 \leq i \leq 2^{n-4}$. Then $\left|V\left(Q_{n}\right)\right|=2^{n}$ and $\left|E\left(Q_{n}\right)\right|=n 2^{n-1}$. For $5 \leq n \leq 8$, we construct the vertex set S of Q_{n} as follows. $S=\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{2^{n-4}}\right\} \cup$ $\left\{u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{2^{n-4}}\right\} \cup\left\{v_{7}^{1}, v_{7}^{2}, \ldots, v_{7}^{2^{n-4}}\right\} \cup\left\{u_{7}^{1}, u_{7}^{2}, \ldots, u_{7}^{2^{n-4}}\right\}$ with $|S|=2^{n-2}$. Since each vertex in Q_{n} is either in S or adjacent to a vertex in S or there are at least b vertices of S within distance two from it. Therefore, S is a b-disjunctive total dominating set of Q_{n}. Hence $\gamma_{b}^{t d}\left(Q_{n}\right) \leq|S|=2^{n-2}$. Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a minimum bDTDS and dominating set of Q_{n}. Let $v \in W$. Each vertex in Q_{n} can dominate itself and n distinct vertices in $N_{1}(v)$ and contribute $\frac{1}{b}$ to no vertex in $N_{2}(v)$ where $b \geq 4$. Also each vertex in W can dominate itself and three distinct vertices in $N_{1}(v)$ and contribute $\frac{1}{b}$ to no vertex in $N_{2}(v)$. Since $|W|=k$, we get $k+3 k=2^{n}$ which implies $k=2^{n-2}$. That is, $|W|=k=2^{n-2}=|S|$. Therefore, S is a minimum b DTDS and dominating set of Q_{n}. Thus, for $4 \leq n \leq 8$ and $b \geq 4, \gamma_{b}^{t d}\left(Q_{n}\right)=\gamma\left(Q_{n}\right)=2^{n-2}$.

References

[1]. Buckley. F and Harary. F. 1990. Distance in graphs. Addison-Wesley, Redwood city, CA.
[2]. Chartand. G. and Zhang. P. 2013. Introduction to graph theory. McGraw Hill Education Private Limited, India.
[3]. Dankelmann. P., Day, D., Ervin, D., Mukwembi. S. and Swart, H. 2009. Domination with exponential decay. Discrete Mathematics, 309 : 5877-5883.
[4] Goddard. W., Henning. M. A. and McPillan. C. A. 2014. The disjunctive domination number of a graph. Quaestiones Mathematicae, 37(4) : 547-561.
[5]. Haynes. T. H., Hedetniemi. S. T. and Slater P. J. 1998. Fundamentals of domination in graphs. Marcel Decker, Inc.
[6]. Henning. M. A. and Naicker. V. 2016. Disjunctive total domination in graphs. Journal of Combinatorial Optimization, 31(3): 1090-1110.
[7]. Pandey. A. and Panda. B.S. 2016. b-Disjunctive Total Domination in Graphs: Algorithm and Hardness Results. In: Govindarajan S., Maheshwari A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2016. Lecture Notes in Computer Science, 9602 : 277 - 288.

