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ABSTRACT 

 It is shown how the two-dimensional equations for microwave planar circuits, which are 

in fact a generalization of the one-dimensional telegraphists equations, can be derived through 

a rigorous theory based on Maxwell’s equations. 

 These equations are used in the thesis to calculate the dispersion of the fundamental and 

of the higher-order modes of propagation on microstrip lines, the losses on microstrip lines, 

and the components of the equivalent circuit for symmetric, asymmetric, and cascaded 

microstrip lines. 
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INTRODUCTION 

 Transmission structures used as circuit elements in microwave circuits normally have a 

planar configuration. For such a configuration the element characteristics are determined by 

the dimensions in a single plane. For example, the width of a microstrip line on a given 

dielectric substrate can be adjusted to control its impedance. The required planar dimensions 

of these circuit elements can be conveniently 0obtained by photolithography and photoetching 

of thin films. Employment of such techniques at microwave frequencies has led to the 

development of microwave integrated circuits There are several transmission structures 

that satisfy the requirement of being planar. The most common of these are the microstrip, the 

slotline, and the coplanar strips. Microstriplines are widely used transmission structures, 

mainly due to the fact that the mode of propagation on micrpstrip is almost TEM (qussi –

TEM). Pure TEM lines consist of two separate perfect conductors surrounded by a 

homogeneous linear dielectric. Omy the triplate line belongs to this class. TEM modes are 

distinguished by having only transverse (to the direction of propagation) electric and magnetic 

field comp[onents. The TEM line is characterized by a phase velocity                              𝑣 =
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𝑐0/√𝜀𝑟𝜇𝑟    (c0 is the velocity of lighrt in free space, 𝜀𝑟 is the relative permittivity, 𝜇𝑟 is the 

relative permeability), and a characteristic impedance Zc, both of which are frequency 

independent. 

 Quasi-TEM lines also have two separated conductors, but unlike pure TEM lines, the 

area containing fields is filled with an inhomogeneous dielectric. This is the case for microstrip 

lines, which are composed of a non-magnetic substrate layer (𝜇𝑟 = 1, 𝜀𝑟 > 1) and air. A TEM 

wave should have a velocity Co in air and Co/√𝜀𝑟 in the substrate, and this apparent 

contadiction 

overcome by considering a quasi-TEM mode of propagation on the line. The quasi-TEM mode 

has at least one longitudinal field component along the direction of propagation and has the 

property of approaching a pure TEM mode as the frequency 𝜔 approaches zero.  

DEFINITION OF PLANAR CIRCUIT FIELD QUANTITIES 

 In planar structures the propagation of microwaves is two-dimensional if the thickness 

of the structure is much less than the minimal wavelength of the microwave spectrum. The 

following simplifications related to the electromagnetic field are assumed (Radulate and 

Tugulea, 1983): 

a) The modes of propagation have the electric field E normal to the plates of the structure, 

while the magnetic field H is parallel to these plates  (Figure – 1) 

 

 

 

 

 

 

 

Fig. – 1 Segment of an arbitrarily shaped planar structure showing the fields orientation. 
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If the system coordinates is chosen as in figure 1, the fields can be expressed as  

E = kEz(x,y,t)       1 

H = iHx(x,y,t) + jHy(x,y,t)     2 

b) The field are independent of the coordinate normal to the plates. 

Equations (1) and (2) describe rigorously only the case of the lossless structures. For lossy 

structure there is also a tangential component of the electric field which is neglected. For two 

opposite points of the plates, M and m’, an electric voltage can be defined as (Figure – 2) 

   𝑢(𝑥, 𝑦, 𝑡) = ∫ 𝐸𝑑𝑟 =  𝐸𝑧ℎ
𝑀′

𝑀
           3 

 

 

 

 

 

 

 

Fig. 2. Voltage between Plates and the direction of surface current density. 

For each of the plates a surface current density of the equivalent current layer can be defined 

as  

   𝐽𝑠(𝑥, 𝑦, 𝑡) =  ∫ 𝐽(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑧
𝑀

𝑀𝑜
′           4 

   𝐽𝑠
′ (𝑥, 𝑦, 𝑡) =  ∫ 𝐽′𝑀′

𝑀𝑜
′ (𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑧           5 

The instantaneous current densities J and J’ in the conducting plates are in general nonuniform 

due to the skin effect. In the case where the thickness d of the plates is much less than the 

penetration depth, the current densities are assumed independent od z and therefore 
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   𝐽𝑥 = 𝐽𝑑    6 

   𝐽𝑠
′ = 𝐽𝑑                                                                           7 

The boundary conditions for the magnetic field are  

   𝐻𝑀 =  𝐽𝑠  𝑋 𝑘 =  𝐻𝑀′ = 𝑘𝑋𝐽𝑠
′                                             8 

 

Yielding 

        9 

and 

               10 

               11 

the conduction current density through the dielectric medium is 

               12 

Where σ is the conductivity of the dielectric. Finally one can observe that the fundamental 

quantities in the field theory of the planar circuits are E and H while in the circuit theory the 

corresponding quantities are u and Js. the relationship between the two theories are ensured by 

equations (3) and (8). 

DEFINITION OF PLANAR CIRCUIT PARAMETERS 

 In Figure  an elementary parallelepiped ABCDA’B’C’D’ is considered. Which will 

enable us to define the two-dimensional parameters. On the opposite faces ABCD and 

A’B’C’D’ the electric charges are equal 

 

Where Ps is the surface charge density and 𝜀 is the permittivity of the material between the 

plates. The elementary capacitance is  
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Fig. 3 Definition of the capacitance and the conductance. 

Thus the capacitance per unit area is  

                13 

The conduction current through the dielectric medium is  

 

and the elementary conductance is  

 

the conductance per unit area is  

               14 

in Figure 4 two rectangularly contours Гx =abb’a’ and  Гy = cdd’c’ are considered. 
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Fig. 4 Definition of the inductance and the resistance. 

The magnetic flux through the surfaces bounded by the considered contours are 

 

 

The inductances per square are  

               15  

          

           16                                      

For isotropic media (𝜇𝑥  =  𝜇𝑦 ≡ 𝜇) 𝐿𝑥 =  𝐿𝑦 = 𝜇ℎ. the voltage along the plates are (Figure – 

4)  

 

 

 

 

The resistances per square are 

             17  
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             18 

Where σ’sx , σ”sx , σ’sy ,and σ”sy , are the surface conductivities for the upper plate (‘) and for 

the lower plate (“) in the x and y directions, respectively. For isotropic media (σsx = σsy ≡ σs) 

Rx = Ry ≡ I/σs , σs σcd , where σc is the conductivity of the plates. 

APPLICATIONS OF THE TWO-DIMENSIONAL EQUATIONS 

 Based on the two-dimensional equations, the following applications were developed and 

the results obtained were compared with those available in the literature: 

o A model to calculate the dispersion for the fundamental mode  

and simultaneously, that for the higher-order modes of propagation; 

o A modified model to include the losses, for the computation of both the dispersion 

and the attenuation, simultaneously; 

o A simple equivalent circuit for symmetric and symmetric step discontinuities in 

microstrip lines, along with efficient formulas to compute the scattering 

parameters, saving considerable computer resources; 

o An equivalent circuit and an analytic formula for the computation of the scattering 

parameters of a double step discontinuity that gives acceptable results, when 

compared to result by full-wave methods and to experimental data, reducing the 

computer time by two orders of magnitude as compared to that required by full-

wave techniques; 

o A simple model and equation to resonant frequencies of microstrip circular and 

ring resonators with inhomogeneous dielectrics. 

CONCLUSION 

 The two –dimensional equations for microwave planar circuits have been successfully 

used in the analysis of specific phenomena in microstrip lines. These equations are in fact a 

generalization of the classical, one-dimensional transmission line equations. The two-

dimensional equations allow the inclusion of losses in the analysis of microstrip structures. 
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 The frequency range of applicability for these equations extends up to the cutoff 

frequency of the first TM mode, covering the practical operating range of the microstrip 

circuits. 
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