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Abstract :  Compressive sensing (CS) is the concept of reducing sampling rate of a signal. CS builds upon the fundamental fact that 

we can represent many signals using only a few non-zero coefficients in a suitable basis or dictionary. Nonlinear optimization technique 

enables recovery of such signals from very few measurements. While, the Nyquist’s sampling theorem suggests that to have a lossless 

recovery of the original signal, it is necessary to sample the signal at frequency twice that of the maximum frequency of the signal. The 

major drawback is the requirement of huge number of samples in case of applications like: digital image, video cameras, high speed 

analog to digital convertors, imaging systems (medical scanners and radar). It reduces the required number of samples for signal 

representation at much lower rate than Nyquist’s rate. High speed applications require high sampling rate that over burdens the role of 

ADC in signal processing. So in such cases compressive sensing plays a major role for improvement of performance. This combination 

gives an optimum value of Signal to Noise Ratio (SNR).  

 

IndexTerms – Compressive Sensing (CS), Signal to Noise Ratio (SNR).  

I. INTRODUCTION 

Conventional knowledge and many other common apply in acquisition and reconstruction of pictures from frequency information 

follow the fundamental principle of the Nyquist sampling theory. In recent years, compressed sensing (CS) has attracted wide attention in 

areas of applied math, and technology by suggesting that it's going to be attainable to surpass the standard limits of sampling theory. 

During this section, we offer associate in nursing up-to-date review of the fundamental theory underlying cesium. When a quick historical 

summary, we start with discussion of meagerness and different low-dimensional signal models. Then we tend to treat the central question 

of the way to accurately recover a high-dimensional signal from a tiny low set of measurements and supply performance guarantees for a 

range of thin recovery algorithms. We conclude a discussion of some extensions of the thin recovery framework. In subsequent  chapters 

of the work, square measure going to see however the basics during this chapter are extended in several exciting directions as well as new 

models for describing structure in each analog and discrete-time signals, new sensing style techniques, additional advanced recovery 

results and rising applications. 

Looking at all on top of points we tend to come with an answer in sort of “Compressive sensing”. The thought of compressive sensing 

is employed to compress the signal before storing/transmitting [1][2]. The necessity of high operative speed ends up in high rate. 

Compressive sensing is one of the rising answer to attenuate the over burdening of system. This system is useful wherever the signal is 

sampled at a rate below than the Nyquist’s rate [3][4]. It takes few samples rather than processing sizable amount of samples. These 

samples area represent the signal expeditiously. Thus, compressive sensing technique improves the process speed and will increase the 

storing capability of the system [5]. 

We are in the middle of a digital revolution which is driving the development and distribute systematically of new kinds of sensing 

systems with increasing the quality of being faithful and resolution. The pioneering work of Kotelnikov, Nyquist, Shannon, and 

Whittaker is the theoretical foundation of this revolution on sampling continuous-time band-limited signals [6, 7, 8, 9].Their results 

demonstrate that videos, images, signals and other type of data can be exactly recovered from a unique set of samples which are 

uniformly spaced taken very frequently called Nyquist rate of twice the highest frequency which is present in the signal of interest. 

Capitalizing on this most unique discovery, most of the signal processing has moved from the analog to another form which is digital 

domain and ridden the wave of Moore's law. Digitization is one of the most valuable works that has enabled creation of sensing and 

processing systems that are more robust, cheaper and consequently most widely used than their analog counterparts. 

While going through this idea which has recently gained significant attraction in field of the signal processing community, over a 

great hints in this direction getting back as far as the eighteenth century. In 1795, for estimating parameters which are associated with a 

small number of complex exponentials sampled in the presence of noise, Prony has proposed an algorithm [10]. In the early 1900's the 

next theoretical leap came, when Caratheodory showed a positive linear combination of any k number of sinusoids which can be 

determined uniquely by its value at t = 0 and at any other 2k points in the time [11, 12]. Now this type of representation is few samples 

than the number of samples according to the Nyquist rate when k is assumed to be small and the range of expected frequencies is large. In 

the 1990's, George, Gorodnitsky, and Rao generalized this work, who had studied sparsity in the field like biomagnetic imaging and other 

contexts [13-15, 16]. Simultaneously, Bresler, Feng, and Venkataramani had proposed a new scheme of sampling, for acquiring a specific 

classes of signals having only k components with nonzero bandwidth (as contrast to pure sinusoids) with some restrictions on the possible 

signal spectral supports, although the accurate recovery was not guaranteed in general of original signal [17, 18, 19, 20]. In the early 

2000'sMarziliano, Vetterli and Blu, developed methods of sampling for certain classes of signals which are of parametric nature , 

governed with only k parameters with highly importance, showing that sampling and recovery of the signals can be done from just 2k 

samples only [21]. 
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II. LITERATURE REVIEW 

An audio signal is a representation of sound, typically as an electrical voltage format. Audio frequency ranges roughly from 20 to 

20,000 Hz (the limits of human hearing). Signals may be synthesized directly or may originate at a transducer such as a microphone, 

musical instrument pickup, phonograph cartridge, or tape head. Our work is mainly concentrated on non-speech audio signal. The reason 

for choosing an audio signal is that sparsity can be exemplified and also can be analyzed their degree of sparsity. Music signals are 

produced by various instruments each of them having their own operating frequency. The storage and exchange of signals requires 

compression. 

Needell & Vershynin [22] presented the relation between L1-minimization method and iterative method for sparse signal recovery 

from an incomplete set of linear measurements. Regularized Orthogonal Matching Pursuit (ROMP) has better speed and transparency 

than Orthogonal Matching Pursuit (OMP). If the uniform uncertainty principle is satisfied by linear measurement then ROMP algorithm 

can reconstruct a sparse signal. 

Sreenivas and Kleijn [23] showed possible recovery of compressive sensing signal (which is sparsely excited) even for unknown 

sparsely excited impulse response matrix. The method found joint estimation of both the impulse response and sparse excitation which 

found to be efficient due to matching pursuit. 

Xu et al.[24] proposed a method to compress the non-stationary signal by compressive sensing using K-L transform. The method 

provides an observation of compressing the signal during the sampling only. The approximation of reconstructed signal in frequency 

domain, time domain and time-frequency domain was well defined. The simulation results validated the method on Linear Frequency 

Modulated (LFM). 

Wang et al. [25] proposed hybrid dictionary function which combines DFT model and Linear prediction coding (LPC) as the basis for 

speech compression. The scheme employed Orthogonal Matching Pursuit (OMP) in hybrid dictionary domain for computation of sparse 

representation.  

Bryan & Leise [26] in their work offers a convenient but conscientious and very needful self-contained narration of the main ideas in 

compressed sensing, aiming at non-connoisseurs and undergraduates who had some probability and linear algebra. The basic undertaking 

is first ornamented by contemplating the problem of perceiving a defective items which are few in set of a large items i.e. they are having 

a large set of defective items and they are searching few defective items among them. We then invigorate up the mathematical 

substructure of compressed sensing to reveal how combining effective methods of sampling with fundamental ideas from optimization, a 

bit of approximation theory, linear algebra and probability allow the appraisal of unknown quantities with very less sampling rate of data 

then conventional methods. 

F. Duarte & C. Eldar [27] have worked with the random measurement matrix operator that can be replaced by sensing architecture 

which is highly structured , it has close similarity to the characteristic of realistic hardware. For sparsity in the standard form, prior has to 

be enlarged to include the richer signal class and broader data models to be encoded including signals in continuous time domain. In 

expressive overview, the essence is exploiting measurement structure and signal in the compressive sensing. In this review the author 

exercising in subsequent development theory and practice underlying CS: we specifically visualize extending the pre-existing frame to 

signal with broader class and motivating new design technique and implementation. Some of the examples mentioned previously 

throughout are ultrasound, MRI (which are medical devices), optical system cognitive radio and more. These gather well promised 

methodology for rethinking of several acquisition systems and extend the limit presently sensing capabilities. In this author also 

demonstrated, that the CS gathers the promise for improved resolution by elaborating signal structure. This thing can come with high 

revolution in many application like microscopy by efficient using the degree of freedom that is available for these technique. Many 

applications like radar, medical imaging, military surveillance , civilian surveillance and consumer electronics all rely on analog to digital 

converter and basically there are resolution-limited. So by removing Nyquist’s constrain in these devices and increasing resolution make 

better experience of user, increasing imaging quality, improving data transfer rate and reducing exposure time. 

Meinard et al.[28] in their paper furnishes a summary of some techniques of signal analysis that particularly address dimensions such 

as timbre, rhythm, harmony, melody. Now we will inspect how specific characteristics of music signals give their influence and ascertain 

these methodology and we are highlighting a number of unique music analysis and recoverable tasks that makes such processing 

possible. Our goal is to reveal that, to be triumphant, music signal in audio form processing methodologies must be enlightened by a 

unplumbed and thorough insight into the characteristic of music itself. Processing of music signal may be materialize to be the inferior 

relation of the mature and large field of speech signal processing, not minimal because many representation / procedures originally 

flourished for speech have been pertained to music with good results. However, the music signals possess desirable structural and 

acoustic characteristic that differentiate them non- musical signals or other spoken language. 

Bello, [29] in his paper demonstrate a unique method for computing the structural correlation between music recordings. Here author 

used the recurrence plot analysis to specify patterns of recapitulation in feature sequence and the normalized distance of compression, a 

pragmatic estimation of the joint Kolmogorov complexity, to compute the pairwise correlation between the plots. By computing the 

distance between transitional portrayals of signal structure and suggested methods differ from general approaches to the analysis of music 

structure which actually assume music with block-based model and thus centralize on segmenting & clustering sections. The approach 

ensures that global structure is consistently designated in the existence of key changes, instrumentation and tempo while the used matrix 

furnishes a straightforward to compute robust and versatile substitute to general approach in music resemble research. In the end, 

experiment results reveal success at designate similarity, while accord an optimal parameterization of the recommended approach. 

Urvashi et al. [30] in their paper, encapsulate the several approaches in the representation of speech signal in sparse domain. Each 

method discussed has its own advantages and disadvantages. Depending upon the prerequisite one could collect an accurate one. First one 

is straightforward and complexity less forms the point of view of execution while there are many ambivalences left unaltered. In the 

second techniques those restriction have been compensated but complexity has enlarged to a greater magnitude. In the third technique the 

triumph for obtaining the right degree of representation is not attained. It necessitates more advancement in the representation of 

unvoiced part of the speech that can strengthen execution of CS in this domain. 

Yue et al. [31] proposed the Linear Prediction Coding (LPC) that is basically a very organized tool for the compression of the speech 

signal, because speech signal can be considered as AR process. In its voiced criteria the speech signal is assumed to be a quasi-periodic. 

Hence better approximations are provided by using basis as Discrete Fourier Transform (DFT). Thus this DFT model and LPC model 

both combined with the efficiently proposed hybrid dictionary, for which the speech signal is taken as basis one. To complete the sparse 

representation the Orthogonal Matching Pursuit (OMP) employed in the domain of hybrid dictionary in their simulation. In this paper, 

they introduce a unique framework in the regard of speech coding deployed on CS concept. The OMP algorithm is enlisted to solve the 
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problem on the recovery side, offering a methodical estimation of   norm minimization for decision making of the transform domains. It 

authorizes for a trade-off between the waveform sparse domains have an adequately perceptual quality on the basis of the hazardous 

selection. Basically the hybrid dictionary propounds substitute logic in the CS for construction of basis matrix in which the signal along 

with several characters may be represented in the sparse domain, creating it for possible adaptive choice. For next analysis, the premise 

for unvoiced section and comparative interpretation on its performance in comparison with other methodology are under examination.  

Mads et al. [32] considered in this paper that the compressed sensing application (compressive sampling) to audio and speech signals. 

They discussed the design considerations and matters that must be taken in consideration in doing so, and they applied compressed 

sensing as a pre-processor to the decompositions in the sparse domain of real audio and speech signals using dictionaries that actually 

composed of windowed complex sinusoids. In their results, it is demonstrated that the postulates of compressed sensing can also 

applicable to sparse decompositions of audio and speech signals and also it provides a significant depletion of the complexity in the 

computational, but there is possibility for such signals may pose a provocation due to their complex and non-stationary nature with 

sparsity of varying levels. 

In this paper, they have contemplated the application of the compressed sensing principles to audio and speech signals. More certainly 

they have analyzed this particular in the surroundings of decompositions in sparse domain, established on dictionaries containing of 

windowed complex exponentials. They have argued that serving as a pre-processor for sparse decompositions in the compressed sensing 

as the complexity of deciphering caused reduction in problems of convex optimization to a great extent in this process. Furthermore, their 

results reveal that sparse decompositions perform equally accurately with and without compressed sensing nevertheless of the presumed 

sparsity level. This is very important consideration as the sparsity level cannot be well known a priori and can vary over a time range for 

audio and speech signals. This actually means that decompositions in the sparse domain with compressed sensing functions, no worse 

than the sparse decompositions have done in the first place. 

III. COMPRESSIVE SENSING THEORY 

To address the challenges which are involved in dealing with logistical and computational such high-dimensional data, we generally 

depend on compression, which actually aims at finding the highly dense representation of the signal that is able to achieve a fine target 

level with some acceptable distortion. One of the most popular and valuable techniques for signal compression is known as transform 

coding, and distinctive relies on searching a basis or frame that provides sparse or compressible representations for signals which is in a 

class of interest . By taking the advantage of sparse representation, we mean that for a signal of length n, we can represent it only with k 

<< n nonzero coefficients; by a technique called as compressible representation, we mean that the signal can be well-approximated by a 

useful signal with only k nonzero coefficients. Both compressible and sparse signals can be well represented with a great fidelity by 

preserving few of the values and locations of the largest coefficients of the signal. This most valuable process is called sparse 

approximation, and forms the foundation of useful technique called as the transform coding schemes that make fully use of signal sparsity 

and compressibility, including the standards like JPEG, JPEG2000, MPEG, and MP3.  

 

 

Figure 1. CS Based Measurement 

 

Figure 2. CS Reconstruction 

A. Power Law 

If any signal X is compressible then it will follow power law. 
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|ΧL| is the largest value among all the values of X, provided that r >1, Cr is a constant and depends only on r [3]. This means that most 
entries of a compressible vector are small while only few entries are large. Such a model is appropriate for the wavelet coefficients of a 
piecewise smooth signal, for example. Here higher frequency signal are having small magnitude coefficients while low frequency 
component having large magnitude coefficients. 

B. Sparse representation of signal 

 X is a real, finite length, discrete time signal. In vector form this signal can be represented in RN vector space as the Nx1 column 
vectors like X [0], X[1],.......X [N]. Basis vector has this vector property by which any high dimension signal in vector space RN can be 
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X is a representation of the signal in time or space domain while S is a representation of signal in basis matrix ψ domain. For sparse 

representation of signal X it is necessary that it must have few (K) large magnitude coefficients which must be retained and many (N-K) 
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small magnitude coefficients which must be discarded. In these large magnitude coefficients (which represents K-sparse) signal 

structure must be preserved for accurate recovery of the signal. After acquiring the K-sparse signal these coefficients are encoded. 

IV. RECOVERY VIA COSAMP 

Here we are going to presents and analyses a unique algorithm of signal reconstruction that obtains these desiderata. The 

technique/algorithm is known as CoSaMP, from the matching pursuit of acrostic compressive sampling. As get the idea 

from the name, this new technique is basically realised on orthogonal matching pursuit (OMP), from the literature, it 

basically suggests many other concepts to accelerate the algorithm and furnish high guarantees that cannot achieved by 

OMP.  

The overview of the algorithm is given in this section with some straightforward pseudo code. Major theorems 

presented on algorithm performance. Then it goes through deep meaning of bound and implementation of source.  

A. Overview of CoSaMP  

Algorithm of CoSaMP basically requires some piece of information as an input.  

• Via matrix-vector multiplication to access the sampling operator.  

• Unknown signal with noise sample vector.  

• Approximated sparsity that to be produced.  

• Criteria for halting.  

 

Along with trivial approximation of signal the algorithm is initialized this making sense that the unknown target 

signal basically equal to the initial residual. The CoSaMP’s pseudocode which exists in the algorithm is given below. 

The code is actually describing the class of algorithm that we examined in this work. Besides, there are many 

parameters which are adjustable, that can make performance better: the components those we selected at the step of 

identification and retained at pruning step. 
 

IV. CONCLUSION 

 

All signals in real world are non-stationary in nature. Application of sample and frame work on these is done based on 

windowing concept and also the compression is done with the help of direct transform. Through, our analysis we have 

projected that through compressive sensing, the amount of compression achieved is better and also the method is 

independent of the kind of signal and its characteristics. The major requisites for CS to work in order to obtain faithful 

recovery are satisfaction of RIP and Incoherence properties. The various combinations of sensing matrix and basis 

matrix are experimented and study in term of SNR obtained. As we saw that for particular sensing matrix there is 

basis matrix exists for which sensing matrix has dense representation in basis matrix. 
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