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1.  INTRODUCTION 

Let (X, d) be a metric space and a mapping T: X → X is said to be a contraction mapping if there exists 𝜆 ∈ [0,1) such that for all 

x, y ∈ X we have d(Tx, Ty) ≤ 𝜆 d(x, y) 

In 1922 Banach [1] proved that this contraction mapping has a unique fixed point Tx = x in a complete metric space (X, d). 

In 2004 Ran and Reurings [2] introduced the Banach Fixed Point Theorem in ordered metric space as follows 

Theorem 1.1 

Let (X, ≼) be a partially ordered set with a metric d, then (X, d) be a complete metric space. Also, every pair x, y ∈ X has a lower 

bound and an upper bound. If f is a continuous, monotone self-map from X into X then there exists 𝜆 ∈ (0,1) such that  

 d(fx, fy) ≤ 𝜆 d(x, y) ,  x ≥ y and there exists 𝑥0 ∈ X such that  𝑥0  ≤  f𝑥0or 𝑥0  ≥  f𝑥0  then f has a unique fixed point 𝑥 . 

Moreover, for every x∈ X,   𝑓𝑛
𝑛 →∞

𝑙𝑖𝑚 𝑥 =  𝑥 . 

Also there are some following different Fixed Point results related to different contraction maps and some basic definitions are as 

follows. 

Theorem 1.2 

Let (X, d) be a metric space and T is a self-map on X satisfying the condition for x, y ∈ X, 

d (Tx, Ty) ≤ 𝜆1d (x , y) + 𝜆2 d (x , Tx) + 𝜆3 d (y, Ty) + 𝜆4 d (x, Ty)  + 𝜆5 d (y, Tx) 

for all x, y ∈ X, where 𝜆𝑖 ≥ 0 , for i = 1, 2, 3, 4, 5, such that 𝜆 = ∑ 𝜆𝑖
5
𝑖=1  and 𝜆 ∈ [0, 1) . 

This contraction is called as Hardy-Roger Contraction. [4] Also, if  

(I) X is Complete and 𝜆 <1, T has a unique fixed point. 

(II) If x ≠ y and   Hardy-Roger Contraction implies X is compact and T is continuous with 𝜆 = 1 then T has a unique fixed  

point.  

 

Theorem 1.3 

Let (X, d) be a complete metric space and a self-mapping T: X → X defined as  

d (Tx, Ty) ≤ 𝛼[d (x, Tx) + d (y, Ty)] where 𝛼 ∈ [0,
1

2
[and for all x, y ∈ X, 

then T has a unique fixed point. Then this mapping is called Kannan type mapping and result is known as Kannan Fixed Point 

Theorem [3]. 

Definition 1.4 [4] 

Let (X, d) be a metric space and T is a self-map on X is said to be sequentially convergent for every sequence {𝑥𝑛}, if {𝑇𝑥𝑛} is 

convergent then {𝑥𝑛} is also convergent. 

Definition 1.5 

Let S be the set of all functionsΨ : [0, ∞)  → [0, ∞)  satisfying the following conditions 

(I) Ψ is continuous and monotonic  increasing 

(II) Ψ (x) = 0 iff x = 0 

Remark: Now onwards from here wereferred POSET as partially ordered set in this paper. 

Theorem 1.6 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map 

and T is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S.  

Then for all x, y ∈ X with x ≼ y, 𝜆 ∈ [0, 1) andΨ (d (Tfx, Tfy)) ≤ 𝜆 Ψ (d(Tx, Ty)) 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

       If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is  

comparable to x and y , then the fixed point is unique. 

 

Proof: Let 𝑥0 ∈ X be an arbitrary point such that 𝑥𝑛= 𝑓𝑛𝑥0 , for all n ∈ Ν .As f is monotonic increasing and 𝑥0 ≼ f𝑥0 
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and 𝑇𝑥𝑛 ≼ T𝑥𝑛+1we have𝑇𝑥0 ≼ T𝑓𝑥0 ≼ T𝑓2𝑥0 ≼  … ≼ T𝑓𝑛𝑥0 ≼ … 

Ψ (d(𝑇𝑥𝑛 , T𝑥𝑛+1))= Ψ (d(𝑇𝑓𝑥𝑛−1, T𝑓𝑥𝑛)) ≤ 𝜆Ψ (d(𝑇𝑥𝑛−1, T𝑥𝑛))   

≤ 𝜆Ψ (d(𝑇𝑓𝑥𝑛−2, T𝑓𝑥𝑛−1))   

≤ 𝜆2Ψ (d(𝑇𝑥𝑛−2, T𝑥𝑛−1))   
     . 

     . 

    . 

Continuing the process n times we get 

Ψ (d (𝑇𝑥𝑛, T𝑥𝑛+1)) ≤ 𝜆𝑛Ψ (d(𝑇𝑥0, T𝑥1))  , as n → ∞  and 𝜆 ϵ [0, 1) 

We have 

Ψ (d (𝑇𝑥𝑛, T𝑥𝑛+1)) → 0  since d(𝑇𝑥𝑛, T𝑥𝑛+1)→ 0  

 

Also, for m, n ∈ Ν , m > n then Ψ (d (𝑇𝑥𝑛, T𝑥𝑚)) ≤ 𝜆𝑛Ψ (d(𝑇𝑥0, T𝑥𝑚−𝑛)) 

Let m, n → ∞ then we get d(𝑇𝑥𝑛, T𝑥𝑚)→ 0 hence Ψ (d (𝑇𝑥𝑛, T𝑥𝑚)) → 0. 

Hence, we get a sequence {𝑇𝑥𝑛} which is Cauchy sequence but (X, d) be a complete metric space then there exists 𝜔 ∈ X such 

that lim
𝑛 → ∞

𝑇𝑥𝑛 = 𝜔. 

As T is one to one, continuous, subsequentially convergent order preserving self-map on X, so that the sequence {𝑥𝑛} has a 

convergent subsequence then there exists �̂� ∈ X such that lim
𝑘 → ∞

𝑇𝑥𝑛𝑘
= �̂�.  

As T is continuous and 𝑥𝑛𝑘
→ �̂� therefore lim

𝑘 → ∞
𝑇𝑥𝑛𝑘

 = 𝑇�̂�and lim
𝑘 → ∞

𝑑(𝑇𝑥𝑛𝑘
 , 𝑇�̂�) = 0. 

Now we prove �̂� ∈ X is a fixed point of f in two cases as follows: 

 

Case(I):- Suppose that f is continuous thenby continuity of f, we have  

𝑇�̂� = lim
𝑘 → ∞

𝑇𝑥𝑛𝑘
 = lim

𝑘 → ∞
𝑇𝑥𝑛𝑘−1

 = 𝑇𝑓�̂� 

          But T is one to one we get 𝑓�̂�= �̂� , this shows that �̂� is a fixed point of f. 

 

Case(II):- Suppose that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

As {𝑇𝑥𝑛𝑘
} converges to 𝑇�̂� ∈ X for all 𝜖> 0 there is 𝑁1 ∈ Ν such that for all 𝑛𝑘> N we have   d(𝑇𝑥𝑛𝑘

 , 𝑇�̂�) <𝜖 

this gives us 𝑇𝑥𝑛𝑘
≤ 𝑇�̂� andΨ (d(𝑇𝑓𝑛𝑘+1𝑥, 𝑇𝑓�̂�)) ≤ 𝜆 Ψ (d(𝑇𝑓𝑛𝑘+1𝑥, 𝑇𝑓�̂�)) as k → ∞ we get 𝑇�̂� = 𝑇𝑓�̂� but T is one to one we 

get �̂� ∈ X as a fixed pointof f. 

Now we prove the uniqueness of the fixed point by showing lim
𝑘 → ∞

𝑓𝑛𝑘 𝑥 = �̂� for every x ∈ X. 

Let x and 𝑥0 be comparable then 𝑥 ≼ 𝑥0 implies 𝑓𝑛𝑘𝑥 ≼ 𝑓𝑛𝑘𝑥0 or 𝑥0 ≼ 𝑥 implies 𝑓𝑛𝑘𝑥0 ≼ 𝑓𝑛𝑘𝑥 

Hence we get lim
𝑘 → ∞

𝑓𝑛𝑘 𝑥 = lim
𝑘 → ∞

𝑓𝑛𝑘 𝑥0= �̂�. 

If x and 𝑥0 are not comparable then  𝑥1 , 𝑥2  are upper bound, lower bound of x and 𝑥0 respectively, then 𝑥2 ≼ x ≼ 𝑥1 and 

𝑥2 ≼ 𝑥0 ≼ 𝑥1gives us lim
𝑘 → ∞

𝑓𝑛𝑘 𝑥 =  lim
𝑘 → ∞

𝑓𝑛𝑘 𝑥0 = �̂� . 

Hence fixed point is unique. 

 

2.GENERALIZATION OF FIXED POINT THEOREMS 

 

Theorem 2.1 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self-map 

and T is one to one, continuous, subsequentially convergent order preserving or increasing self map with Ψ ∈ S.  

Then for all x, y ∈X with x ≼ y, 𝜆𝑖  ∈ [0, 1) and   

Ψ(d(Tfx, Tfy))≤ 𝜆1Ψ (d(Tx , Ty)) + 𝜆2Ψ(d(Tx ,Tfx)) + 𝜆3Ψ(d(Ty, Tfy))+ 𝜆4Ψ (d(Tx, Tfy)) + 𝜆5Ψ (d(Ty, Tfx)) 

where𝜆𝑖 ≥ 0 , for i = 1, 2, 3, 4, 5, such that 𝜆 = ∑ 𝜆𝑖
5
𝑖=1  

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

 If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is  
comparable to x and y , then the fixed point is unique. 

 

Proof:-Let 𝑥0 ∈ X be an arbitrary point such that 𝑥𝑛= 𝑓𝑛𝑥0 , for all n ∈ Ν .As f is monotonic increasing and 𝑥0 ≼ f𝑥0and 

𝑇𝑥𝑛 ≼T𝑥𝑛+1we have 𝑇𝑥0 ≼ T𝑓𝑥0 ≼ T𝑓2𝑥0 ≼  … ≼ T𝑓𝑛𝑥0 ≼ … 

Ψ (d (𝑇𝑥𝑛, T𝑥𝑛+1)) = Ψ (d (𝑇𝑓𝑥𝑛−1, T𝑓𝑥𝑛))  

≤  𝜆1Ψ (d ( 𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) + 𝜆2Ψ (d ( 𝑇𝑥𝑛−1, Tf 𝑥𝑛−1)) + 𝜆3Ψ (d ( 𝑇𝑥𝑛, T𝑓𝑥𝑛))   + 𝜆4Ψ (d ( 𝑇𝑥𝑛−1 ,T𝑓𝑥𝑛))  

+ 𝜆5Ψ (d (𝑇𝑥𝑛, 𝑇𝑓𝑥𝑛−1)) 

 ≤  𝜆1Ψ (d ( 𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) + 𝜆2Ψ (d ( 𝑇𝑥𝑛−1, T 𝑥𝑛)) + 𝜆3Ψ (d ( 𝑇𝑥𝑛, T𝑥𝑛+1)) + 𝜆4Ψ (d ( 𝑇𝑥𝑛−1 ,T𝑥𝑛+1))  

+ 𝜆5Ψ (d (𝑇𝑥𝑛, 𝑇𝑥𝑛)) 

≤  (𝜆1 + 𝜆2)Ψ (d ( 𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) + 𝜆3Ψ (d ( 𝑇𝑥𝑛, T𝑥𝑛+1)) + 𝜆4Ψ [d ( 𝑇𝑥𝑛−1 ,T𝑥𝑛) + d ( 𝑇𝑥𝑛  ,T𝑥𝑛+1)] 

≤  (𝜆1 + 𝜆2 +  𝜆4)Ψ (d ( 𝑇𝑥𝑛−1, 𝑇𝑥𝑛)) + (𝜆3 + 𝜆4)Ψ (d ( 𝑇𝑥𝑛, T𝑥𝑛+1))   

 

Hence we get, Ψ (d (𝑇𝑥𝑛 , T𝑥𝑛+1))≤ (
𝜆1+𝜆2+ 𝜆4

1−𝜆3−𝜆4
) Ψ (d (𝑇𝑓𝑥𝑛−1, T𝑓𝑥𝑛)) 

   Continuing the process n times we get 
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Ψ (d (𝑇𝑥𝑛, T𝑥𝑛+1))≤ (
(𝜆1+𝜆2+ 𝜆4

1−𝜆3−𝜆4
)

n

Ψ (d (𝑇𝑥0, T𝑥1)) 

as n → ∞ we get Ψ (d (𝑇𝑥𝑛, T𝑥𝑛+1)) → 0 .  

    For all m, n ∈ Ν , taking m > n, we have   Ψ (d (𝑇𝑥𝑛 , T𝑥𝑚)) = Ψ (d (𝑇𝑓𝑛𝑥0, T𝑓𝑚𝑥0)) 

≤ (
(𝜆1+𝜆2+ 𝜆4

1−𝜆3−𝜆4
)

n

Ψ (d (𝑇𝑥0, T𝑥1))   

as m, n → ∞ we get Ψ (d (𝑇𝑥𝑛, T𝑥𝑚)) → 0.  

    So we have d (𝑇𝑥𝑛, T𝑥𝑚) →0  as  m, n → ∞ . 

 Hence, we get a sequence {𝑇𝑥𝑛} which is a Cauchy sequence in a complete metric space (X, d) and then there exists 𝜔 ∈ X  

such that  converges to T𝜔 ∈ X . 

Now, we prove𝜔 ∈ X is a fixed point of f in two cases; as similar approach as given in Theorem 2.1. 

 

Case(I):- Suppose that f is continuous thenby continuity of f, we have  

𝑇�̂� = lim
𝑘 → ∞

𝑇𝑥𝑛𝑘
= lim

𝑘 → ∞
𝑇𝑥𝑛𝑘−1

 = 𝑇𝑓�̂� 

          But T is one to one we get 𝑓�̂�= �̂� , this shows that �̂� is a fixed point of f. 

 

Case(II):- Suppose that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0. As {𝑇𝑥𝑛} converges to 

𝑇𝜔 ∈ X for all 𝜖> 0 there is 𝑁1 ∈ Ν such that for all n >𝑁1 we get d (𝑇𝑥𝑛, T𝜔) <𝜖. 

Also, as {𝑇𝑥𝑛} converges to 𝑇𝜔 we get 𝑇𝑥𝑛 ≼ 𝑇𝜔  and  

Ψ (d (𝑇𝜔, 𝑇𝑓𝜔)) ≤  Ψ [(d(𝑇𝜔, 𝑇𝑥𝑛)) + Ψ (d(𝑇𝑥𝑛 , 𝑇𝜔))] 

 

        ≤ Ψ[ 𝜆1 (d (𝑇𝜔, 𝑇𝑥𝑛) + 𝜆2 d ( 𝑇𝑥𝑛, T𝑥𝑛−1) + 𝜆3 (d ( 𝑇𝜔, T𝑓𝜔)  + 𝜆4 d ( 𝑇𝑥𝑛−1 ,T𝑓𝑥𝑛) + 𝜆5 (d (𝑇𝑓𝑥𝑛−1, T𝑓𝜔)] 

Ψ (d (𝑇𝜔, 𝑇𝑓𝜔)) → 0 , as n → ∞ this implies 𝑇𝜔 = 𝑇𝑓𝜔 but T is one to one we have 𝜔 ∈ X  is a fixed point of f. 

  Uniqueness of the fixed point follows from Hardy-Roger Contraction. 

Theorem 2.2 

Let (X, ≼) be a POSET with a metric d and (X, d) be a complete metric space. Let f: X → X be a monotonic increasing self- map 

and T is one to one, continuous, subsequentially convergent order preserving or increasing self-map with Ψ ∈ S.  

For all x, y ∈X with x ≼ y, 𝛼 ∈ [0,
1

2
[  andΨ (d(Tfx, Tfy)) ≤ 𝛼[Ψ (d(Tx, Tfx)) + Ψ (d(Ty, Tfy))] 

Also, suppose that either 

(I) f is continuous or  

(II) Assume that if any increasing sequence {𝑥𝑛} in X converges to z, then 𝑥𝑛 ≼ z for all n ≥ 0.  

       If there exists 𝑥0 ∈ X with 𝑥0 ≼ f𝑥0 , then f has a fixed point in X. Moreover, if for each x, y ∈ 𝑋 there exists z ∈ X which is  

comparable to x and y , then the fixed point is unique. 

 

       Proof:-This is Kannan Fixed Point Theorem in POSET metric space and proof follows if we consider𝜆2= 𝜆3 = 𝛼  and 

𝜆1 = 𝜆4 = 𝜆5 = 0 in Theorem 2.1 
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