Generalization of Some Fixed Point Theorems in POSET related Metric Space

 ¹S. P. Birajdar, ²S. S. Zampalwad
¹Research Scholar, ²Associate Professor
¹Department of Mathematics, N. E. S. Science College, Nanded, Maharashtra, India.
²Department of Mathematics, Gramin Mahavidhyalaya, Vasantnagar, Maharashtra, India.

Abstract: In present work, we introduces the new generalizations of Banach Fixed Point Theorem and Hardy-Roger Fixed Point Theorem and its consequence as Kannan Fixed Point Theorem in the POSET related metric space.

Index Terms: Fixed Point, Contraction Mappings, POSET.

1. INTRODUCTION

Let (X, d) be a metric space and a mapping T: $X \to X$ is said to be a contraction mapping if there exists $\lambda \in [0,1)$ such that for all $x, y \in X$ we have $d(Tx, Ty) \le \lambda d(x, y)$

In 1922 Banach [1] proved that this contraction mapping has a unique fixed point Tx = x in a complete metric space (X, d).

In 2004 Ran and Reurings [2] introduced the Banach Fixed Point Theorem in ordered metric space as follows

Theorem 1.1

Let (X, \leq) be a partially ordered set with a metric d, then (X, d) be a complete metric space. Also, every pair x, $y \in X$ has a lower bound and an upper bound. If f is a continuous, monotone self-map from X into X then there exists $\lambda \in (0,1)$ such that $d(fx, fy) \leq \lambda d(x, y)$, $x \geq y$ and there exists $x_0 \in X$ such that $x_0 \leq fx_0$ or $x_0 \geq fx_0$ then f has a unique fixed point \hat{x} . Moreover, for every $x \in X$, $\lim_{n \to \infty} f^n x = \hat{x}$.

Also there are some following different Fixed Point results related to different contraction maps and some basic definitions are as follows.

Theorem 1.2

Let (X, d) be a metric space and T is a self-map on X satisfying the condition for x, $y \in X$,

 $d(Tx, Ty) \le \lambda_1 d(x, y) + \lambda_2 d(x, Tx) + \lambda_3 d(y, Ty) + \lambda_4 d(x, Ty) + \lambda_5 d(y, Tx)$

for all x, y \in X, where $\lambda_i \ge 0$, for i = 1, 2, 3, 4, 5, such that $\lambda = \sum_{i=1}^5 \lambda_i$ and $\lambda \in [0, 1)$.

This contraction is called as Hardy-Roger Contraction. [4] Also, if

- (I) X is Complete and $\lambda < 1$, T has a unique fixed point.
- (II) If $x \neq y$ and Hardy-Roger Contraction implies X is compact and T is continuous with $\lambda = 1$ then T has a unique fixed point.

Theorem 1.3

Let (X, d) be a complete metric space and a self-mapping T: $X \rightarrow X$ defined as

d (Tx, Ty) $\leq \alpha$ [d (x, Tx) + d (y, Ty)] where $\alpha \in [0, \frac{1}{2}]$ and for all x, y $\in X$,

then T has a unique fixed point. Then this mapping is called Kannan type mapping and result is known as Kannan Fixed Point Theorem [3].

Definition 1.4 [4]

Let (X, d) be a metric space and T is a self-map on X is said to be sequentially convergent for every sequence $\{x_n\}$, if $\{Tx_n\}$ is convergent then $\{x_n\}$ is also convergent.

Definition 1.5

Let S be the set of all functions $\Psi : [0, \infty) \to [0, \infty)$ satisfying the following conditions

(I) Ψ is continuous and monotonic increasing

(II)
$$\Psi(x) = 0 \text{ iff } x = 0$$

Remark: Now onwards from here wereferred POSET as partially ordered set in this paper.

Theorem 1.6

Let (X, \leq) be a POSET with a metric d and (X, d) be a complete metric space. Let f: $X \to X$ be a monotonic increasing self-map and T is one to one, continuous, subsequentially convergent order preserving or increasing self-map with $\Psi \in S$.

Then for all x, $y \in X$ with $x \leq y, \lambda \in [0, 1)$ and $\Psi(d(Tfx, Tfy)) \leq \lambda \Psi(d(Tx, Ty))$

Also, suppose that either

(I) f is continuous or

(II) Assume that if any increasing sequence $\{x_n\}$ in X converges to z, then $x_n \leq z$ for all $n \geq 0$.

If there exists $x_0 \in X$ with $x_0 \leq fx_0$, then f has a fixed point in X. Moreover, if for each x, $y \in X$ there exists $z \in X$ which is comparable to x and y, then the fixed point is unique.

Proof: Let $x_0 \in X$ be an arbitrary point such that $x_n = f^n x_0$, for all $n \in \mathbb{N}$. As f is monotonic increasing and $x_0 \leq f x_0$

Continuing the process n times we get Ψ (d (Tx_n, Tx_{n+1})) $\leq \lambda^n \Psi$ (d (Tx_0, Tx_1)), as $n \to \infty$ and $\lambda \in [0, 1)$ We have Ψ (d (Tx_n, Tx_{n+1})) $\to 0$ since d $(Tx_n, Tx_{n+1}) \to 0$

Also, for m, $n \in N$, m > n then Ψ (d (Tx_n, Tx_m)) $\leq \lambda^n \Psi$ (d (Tx_0, Tx_{m-n})) Let m, $n \to \infty$ then we get $d(Tx_n, Tx_m) \to 0$ hence Ψ (d $(Tx_n, Tx_m)) \to 0$. Hence, we get a sequence $\{Tx_n\}$ which is Cauchy sequence but (X, d) be a complete metric space then there exists $\omega \in X$ such that $\lim_{n \to \infty} Tx_n = \omega$.

As T is one to one, continuous, subsequentially convergent order preserving self-map on X, so that the sequence $\{x_n\}$ has a convergent subsequence then there exists $\widehat{\omega} \in X$ such that $\lim_{k \to \infty} Tx_{n_k} = \widehat{\omega}$.

As T is continuous and $x_{n_k} \to \hat{\omega}$ therefore $\lim_{k \to \infty} Tx_{n_k} = T\hat{\omega}$ and $\lim_{k \to \infty} d(Tx_{n_k}, T\hat{\omega}) = 0$. Now we prove $\hat{\omega} \in X$ is a fixed point of f in two cases as follows:

Case(I):- Suppose that f is continuous thenby continuity of f, we have

 $T\widehat{\omega} = \lim_{k \to \infty} Tx_{n_k} = \lim_{k \to \infty} Tx_{n_{k-1}} = Tf\widehat{\omega}$

But T is one to one we get $f\hat{\omega} = \hat{\omega}$, this shows that $\hat{\omega}$ is a fixed point of f.

Case(II):- Suppose that if any increasing sequence $\{x_n\}$ in X converges to z, then $x_n \leq z$ for all $n \geq 0$.

As $\{Tx_{n_k}\}$ converges to $T\widehat{\omega} \in X$ for all $\epsilon > 0$ there is $N_1 \in \mathbb{N}$ such that for all $n_k > \mathbb{N}$ we have $d(Tx_{n_k}, T\widehat{\omega}) < \epsilon$

this gives us $Tx_{n_k} \leq T\widehat{\omega}$ and $\Psi(d(Tf^{n_{k+1}}x, Tf\widehat{\omega})) \leq \lambda \Psi(d(Tf^{n_{k+1}}x, Tf\widehat{\omega}))$ as $k \to \infty$ we get $T\widehat{\omega} = Tf\widehat{\omega}$ but T is one to one we get $\widehat{\omega} \in X$ as a fixed point of f.

Now we prove the uniqueness of the fixed point by showing $\lim_{k \to \infty} f^{n_k} x = \hat{\omega}$ for every $x \in X$.

Let x and x_0 be comparable then $x \le x_0$ implies $f^{n_k}x \le f^{n_k}x_0$ or $x_0 \le x$ implies $f^{n_k}x_0 \le f^{n_k}x$ Hence we get $\lim_{k \to \infty} f^{n_k}x = \lim_{k \to \infty} f^{n_k}x_0 = \widehat{\omega}$.

If x and x_0 are not comparable then x_1 , x_2 are upper bound, lower bound of x and x_0 respectively, then $x_2 \le x \le x_1$ and $x_2 \le x_0 \le x_1$ gives us $\lim_{k \to \infty} f^{n_k} x = \lim_{k \to \infty} f^{n_k} x_0 = \widehat{\omega}$.

Hence fixed point is unique.

2.GENERALIZATION OF FIXED POINT THEOREMS

Theorem 2.1

Let (X, \leq) be a POSET with a metric d and (X, d) be a complete metric space. Let $f: X \to X$ be a monotonic increasing self-map and T is one to one, continuous, subsequentially convergent order preserving or increasing self map with $\Psi \in S$. Then for all x, y $\in X$ with $x \leq y$, $\lambda_i \in [0, 1)$ and

 $\Psi(d(Tfx, Tfy)) \leq \lambda_1 \Psi(d(Tx, Ty)) + \lambda_2 \Psi(d(Tx, Tfx)) + \lambda_3 \Psi(d(Ty, Tfy)) + \lambda_4 \Psi(d(Tx, Tfy)) + \lambda_5 \Psi(d(Ty, Tfx)) + \lambda_5 \Psi(d($

where $\lambda_i \ge 0$, for i = 1, 2, 3, 4, 5, such that $\lambda = \sum_{i=1}^5 \lambda_i$

Also, suppose that either

(I) f is continuous or

(II) Assume that if any increasing sequence $\{x_n\}$ in X converges to z, then $x_n \leq z$ for all $n \geq 0$.

If there exists $x_0 \in X$ with $x_0 \leq fx_0$, then f has a fixed point in X. Moreover, if for each x, $y \in X$ there exists $z \in X$ which is comparable to x and y, then the fixed point is unique.

Proof:-Let $x_0 \in X$ be an arbitrary point such that $x_n = f^n x_0$, for all $n \in \mathbb{N}$. As f is monotonic increasing and $x_0 \leq fx_0$ and $Tx_n \leq Tx_{n+1}$ we have $Tx_0 \leq Tf x_0 \leq Tf^2 x_0 \leq \dots \leq Tf^n x_0 \leq \dots$

$$\begin{split} & \Psi \left(d \left(Tx_{n}, Tx_{n+1} \right) \right) = \Psi \left(d \left(Tfx_{n-1}, Tfx_{n} \right) \right) \\ & \leq \lambda_{1} \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{2} \Psi \left(d \left(Tx_{n-1}, Tfx_{n-1} \right) \right) + \lambda_{3} \Psi \left(d \left(Tx_{n}, Tfx_{n} \right) \right) \\ & + \lambda_{5} \Psi \left(d \left(Tx_{n}, Tfx_{n-1} \right) \right) \\ & \leq \lambda_{1} \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{2} \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{3} \Psi \left(d \left(Tx_{n}, Tx_{n+1} \right) \right) \\ & + \lambda_{5} \Psi \left(d \left(Tx_{n}, Tx_{n} \right) \right) \\ & + \lambda_{5} \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{2} \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{3} \Psi \left(d \left(Tx_{n}, Tx_{n+1} \right) \right) \\ & + \lambda_{5} \Psi \left(d \left(Tx_{n}, Tx_{n} \right) \right) \\ & \leq \left(\lambda_{1} + \lambda_{2} \right) \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) + \lambda_{3} \Psi \left(d \left(Tx_{n}, Tx_{n+1} \right) \right) \\ & \leq \left(\lambda_{1} + \lambda_{2} + \lambda_{4} \right) \Psi \left(d \left(Tx_{n-1}, Tx_{n} \right) \right) \\ & + \left(\lambda_{3} + \lambda_{4} \right) \Psi \left(d \left(Tx_{n}, Tx_{n+1} \right) \right) \end{split}$$

Hence we get, Ψ (d (Tx_n , Tx_{n+1})) $\leq \left(\frac{\lambda_1 + \lambda_2 + \lambda_4}{1 - \lambda_3 - \lambda_4}\right) \Psi$ (d (Tfx_{n-1} , Tfx_n)) Continuing the process n times we get
$$\begin{split} &\Psi\left(\mathrm{d}\left(Tx_{n},\mathrm{T}x_{n+1}\right)\right) \leq \left(\frac{(\lambda_{1}+\lambda_{2}+\lambda_{4})}{1-\lambda_{3}-\lambda_{4}}\right)^{n}\Psi\left(\mathrm{d}\left(Tx_{0},\mathrm{T}x_{1}\right)\right)\\ &\text{ as } n\to\infty \text{ we get }\Psi\left(\mathrm{d}\left(Tx_{n},\mathrm{T}x_{n+1}\right)\right)\to0\ .\\ &\text{ For all }m,n\in\mathrm{N}\ ,\text{ taking }m>n,\text{ we have }\Psi\left(\mathrm{d}\left(Tx_{n},\mathrm{T}x_{m}\right)\right)=\Psi\left(\mathrm{d}\left(Tf^{n}x_{0},\mathrm{T}f^{m}x_{0}\right)\right)\\ &\leq \left(\frac{(\lambda_{1}+\lambda_{2}+\lambda_{4})}{1-\lambda_{3}-\lambda_{4}}\right)^{n}\Psi\left(\mathrm{d}\left(Tx_{0},\mathrm{T}x_{1}\right)\right)\\ &\text{ as }m,n\to\infty \text{ we get }\Psi\left(\mathrm{d}\left(Tx_{n},\mathrm{T}x_{m}\right)\right)\to0. \end{split}$$

So we have d $(Tx_n, Tx_m) \rightarrow 0$ as m, n $\rightarrow \infty$.

Hence, we get a sequence $\{Tx_n\}$ which is a Cauchy sequence in a complete metric space (X, d) and then there exists $\omega \in X$ such that converges to $T\omega \in X$.

Now, we prove $\omega \in X$ is a fixed point of f in two cases; as similar approach as given in Theorem 2.1.

Case(I):- Suppose that f is continuous thenby continuity of f, we have

 $T\widehat{\omega} = \lim_{k \to \infty} Tx_{n_k} = \lim_{k \to \infty} Tx_{n_{k-1}} = Tf\widehat{\omega}$ But T is one to one we get $f\widehat{\omega} = \widehat{\omega}$, this shows that $\widehat{\omega}$ is a fixed point of f.

Case(II):- Suppose that if any increasing sequence $\{x_n\}$ in X converges to z, then $x_n \leq z$ for all $n \geq 0$. As $\{Tx_n\}$ converges to $T\omega \in X$ for all $\epsilon > 0$ there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$ we get $d(Tx_n, T\omega) < \epsilon$. Also, as $\{Tx_n\}$ converges to $T\omega$ we get $Tx_n \leq T\omega$ and

 $\Psi \left(d\left(T\omega, Tf\omega\right) \right) \leq \Psi \left[\left(d(T\omega, Tx_n) \right) + \Psi \left(d(Tx_n, T\omega) \right) \right]$

 $\leq \Psi[\lambda_1 (d(T\omega, Tx_n) + \lambda_2 d(Tx_n, Tx_{n-1}) + \lambda_3 (d(T\omega, Tf\omega) + \lambda_4 d(Tx_{n-1}, Tfx_n) + \lambda_5 (d(Tfx_{n-1}, Tf\omega))]$

 Ψ (d ($T\omega$, $Tf\omega$)) $\rightarrow 0$, as $n \rightarrow \infty$ this implies $T\omega = Tf\omega$ but T is one to one we have $\omega \in X$ is a fixed point of f.

Uniqueness of the fixed point follows from Hardy-Roger Contraction.

Theorem 2.2

Let (X, \leq) be a POSET with a metric d and (X, d) be a complete metric space. Let f: $X \to X$ be a monotonic increasing self-map and T is one to one, continuous, subsequentially convergent order preserving or increasing self-map with $\Psi \in S$.

For all x, y \in X with x \leq y, $\alpha \in [0, \frac{1}{2}]$ and $\Psi(d(Tfx, Tfy)) \leq \alpha [\Psi(d(Tx, Tfx)) + \Psi(d(Ty, Tfy))]$

- Also, suppose that either
- (I) f is continuous or

(II) Assume that if any increasing sequence $\{x_n\}$ in X converges to z, then $x_n \leq z$ for all $n \geq 0$.

If there exists $x_0 \in X$ with $x_0 \leq fx_0$, then f has a fixed point in X. Moreover, if for each x, $y \in X$ there exists $z \in X$ which is comparable to x and y, then the fixed point is unique.

Proof:-This is Kannan Fixed Point Theorem in POSET metric space and proof follows if we consider $\lambda_2 = \lambda_3 = \alpha$ and $\lambda_1 = \lambda_4 = \lambda_5 = 0$ in Theorem 2.1

REFERENCES

- [1] S. Banach, Sur les Operations dans les ensembles abstrait set leaur application aux equations integrals, Fund. Math., (1922), 133-181.1
- [2] A. C. M. Ran, M. C. B. Reurings, A Fixed Point Theorems in Partially Ordered Set and Some Applications to Matrix Equations, Proc. Amer. Math. Soc., 132(2004), 1435-1443.1,1.1
- [3] R. Kannan, Some Results on Fixed Points, Bull. Cal. Math. Soc., 60(1968), 71-76,1-3
- [4] G. E. Hardy, T. D. Rogers, A Generalization of Fixed Point Theorem of Reich, Canad. Math. Bull. Vol. 16(2), 1973
- [5] Mehmet Kir, Hukmi Kiziltune, Some Generalized Fixed Point Theorem in the context of Ordered Metric Space, Journal of Nonlinear Sci. and Applications.8(2015), 529-539
- [6] M. E.Gordji, *Stability of a functional equation deriving from quartic and additive functions*, Bull. Korean Math. Soci.47 (2010) 491-502
- [7]T.A. Burton, A fixed point theorem of Krasnoselskii, Appl. Math. Lett.11(1998),83-88.
- [8] T. GnanaBhaskar, V. Lakshmikantham, *Fixed point theorems in partially ordered metric spaces and applications*, Nonlinear Anal., **65** (2006), 1379–1393.
- [9] Mustafa Z., Sims B., A new approach to genarlised metric spaces J. Nonlinear convex Anal. 7(2), 2006.
- [10] I. A. Bakhtin, *The contraction mapping principle in almost metric space*, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, (1989), 26–37.

3