$T_{g''}$ -SPACES

S.SHEERIN FARZANA

Research Scholar Madurai Kamaraj University ,Madurai -21,Tamilnadu,Madurai

K.S.ABDUL GANI

Research Scholar Madurai Kamaraj University ,Madurai -21,Tamilnadu,Madurai.

1.1 INTRODUCTION

Levine introduced the notion of $T_{1/2}$ -spaces which properly lie between T_1 -spaces and T_0 -spaces. Many authors studied properties of $T_{1/2}$ -spaces: Dunham [9], Arenas et al. [4] etc. In this chapter, we introduce the notions called Tg''-spaces, ${}_{g}Tg'''$ -spaces and $\alpha Tg'''$ -spaces and obtain their properties and characterizations.

1.2 PRELIMINARIES

Throughout this thesis (X, τ) (or X) represent topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ), cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition 1.2.1

A subset A of a space (X, τ) is called:

- (i) semi-open set [11] if $A \subseteq cl(int(A))$;
- (ii) preopen set [13] if $A \subseteq int(cl(A))$;
- (iii) α -open set [14] if A \subseteq int(cl(int(A)));
- (iv) β -open set [1] (= semi-preopen [3]) if A \subseteq cl(int(cl(A))).

The complements of the above mentioned open sets are called their respective closed sets.

The preclosure [15] (resp. semi-closure [6], α -closure [7], semi-pre-closure [2]) of a subset A of X, denoted by pcl(A) (resp. scl(A), α cl(A), spcl(A)), is defined to be the intersection of all preclosed (resp. semiclosed, α -closed, semi-preclosed) sets of (X, τ) containing A. It is known that pcl(A) (resp. scl(A), α cl(A), spcl(A)) is a preclosed (resp. semi-closed, α -closed, semi-preclosed) set. For any subset A of an arbitrarily chosen topological space, the semi-interior [6] (resp. α -interior [7], preinterior [15]) of A, denoted by sint(A) (resp. α int(A), pint(A)), is defined to be the union of all semi-open (resp. α -open, preopen) sets of (X, τ) contained in A.

Definition 1.2.2

A subset A of a space (X, τ) is called:

- (i) a generalized closed (briefly g-closed) set [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set;
- (ii) a generalized semi-closed (briefly gs-closed) set [5] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gs-closed set is called gs-open set;
- (iii) an α -generalized closed (briefly α g-closed) set [12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ). The complement of α g-closed set is called α g-open set;
- (iv) a generalized semi-preclosed (briefly gsp-closed) set [15] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of gsp-closed set is called gsp-open set;
- (v) a \hat{g} -closed set [17] (= ω -closed [16]) if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ). The complement of \hat{g} -closed set is called \hat{g} -open set;
- (vi) a g''-closed set [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gs-open in (X, τ) . The complement of g''closed set is called g''-open set;
- (vii) a g*-preclosed (briefly g*p-closed) set [18] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) . The complement of g*p-closed set is called g*p-open set.

The collection of all g''-closed (resp. ω -closed, α g-closed, gsp-closed, gs-closed, g*p-closed) sets is denoted by G''' C(X) (resp. ω C(X), α G C(X), α G C(X), α S C(X), α C(X), G^*P C(X)).

The collection of all g'''-open (resp. ω -open, α g-open, gsp-open, gs-open, α -open, g^* p-open) sets is denoted by G''' O(X) (resp. $\omega O(X)$, $\alpha G O(X)$, $\alpha SP O(X)$, GS O(X), $\alpha O(X)$, $G^*P O(X)$).

We denote the power set of X by P(X).

Definition 1.2.3

A space (X, τ) is called:

- (i) $T_{1/2}$ -space [10] if every g-closed set is closed.
- (ii) T_b -space [8] if every gs-closed set is closed.
- (iii) α T_b-space [7] if every α g-closed set is closed.
- (iv) $T \omega$ -space [16] if every ω -closed set is closed.
- (v) T_p^* -space [18] if every g^*p -closed set is closed.
- (vi) $*_{s}T_{p}$ -space [18] if every gsp-closed set is g*p-closed.
- (vii) α T_d-space [7] if every α g-closed set is g-closed.
- (viii) α -space [14] if every α -closed set is closed.

Definition 1.2.4 [45]

Let (X, τ) be a topological space and $A \subseteq X$. We define the gs-closure of A (briefly gs-cl(A)) to be the intersection of all gs-closed sets containing A.

Remark 1.2.5 [4]

For a topological space X, the followings hold:

- (i) Every closed set is g''-closed but not conversely.
- (ii) Every g''-closed set is ω -closed but not conversely.
- (iii) Every g''-closed set is g-closed but not conversely.

- (iv) Every g''-closed set is α g-closed but not conversely.
- (v) Every g''-closed set is gs-closed but not conversely.
- (vi) Every g^{*m*}-closed set is gsp-closed but not conversely.

Theorem 1.2.6 [4]

A set A is g''-closed in X if and only if cl(A) - A contains no nonempty gs-closed set.

1.3 PROPERTIES OF T g^{*m*}**-SPACES**

We introduce the following definition:

Definition 1.3.1

A space (X, τ) is called a T g^{*m*}-space if every g^{*m*}-closed set in it is closed.

Example 1.3.2

Let X = {a, b, c} with $\tau = \{\phi, \{b\}, X\}$. Then $G''' C(X) = \{\phi, \{a, c\}, X\}$. Thus (X, τ) is a T g'''-space.

Example 1.3.3

Let
$$X = \{a, b, c\}$$
 with $\tau = \{\phi, \{a, c\}, X\}$. Then $G''' C(X) = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Thus (X, τ)

is not a T g^m-space.

Proposition 1.3.4

Every $T_{1/2}$ -space is Tg''-space but not conversely.

Proof

Follows from Remark 1.2.5 (iii).

The converse of Proposition 1.3.4 need not be true as seen from the following example.

Example 1.3.5

Let X and τ be as in the Example 1.3.2, $G C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is not a T_{1/2}-space.

Proposition 1.3.6

Every T ω -space is Tg''-space but not conversely.

Proof

Follows from Remark 1.2.5 (ii).

The converse of Proposition 1.3.6 need not be true as seen from the following example.

Example 1.3.7

Let X = {a, b, c} with $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then $\omega C(X) = P(X)$ and $G''' C(X) = \{\phi, \{a\}, \{b, c\}, X\}$.

Thus (X, τ) is Tg''-space but not a $T\omega$ -space.

Proposition 1.3.8

Every α T_b-space is T g''-space but not conversely.

Proof

Follows from Remark 1.2.5 (iv).

The converse of Proposition 1.3.8 need not be true as seen from the following example.

Example 1.3.9

Let X and τ be as in the Example 1.3.2. Then $\alpha G C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Thus

 (X, τ) is not a α T_b-space.

Proposition 1.3.10

Every $*_sT_p$ -space and T_p *-space is Tg''-space but not conversely.

Proof

Follows from Remark 1.2.5 (vi) and Definition 1.2.3 (vi) and (v).

The converse of Proposition 1.3.10 need not be true as seen from the following example.

Example 1.3.11

Let X and τ be as in the Example 1.3.2. Then $GSP C(X) = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $G^*PC(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Thus (X, τ) is neither $*_sT_p$ -space nor T_p^* -space.

Proposition 1.3.12

Every T_b-space is T g["]-space but not conversely.

Proof

Follows from Remark 1.2.5 (v).

The converse of Proposition 1.3.12 need not be true as seen from the following example.

Example 1.3.13

Let X and τ be as in the Example 1.3.2. Then *GS* C(X) = { ϕ , {a}, {c}, {a, b}, {a, c}, {b, c}, X}. Thus (X,

 τ) is not a T_b-space.

Remark 1.3.14

We conclude from the next two examples that Tg''-spaces and α -spaces are independent.

Example 1.3.15

Let X and τ be as in the Example 1.3.2. Then $\alpha C(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Thus (X, τ) is a Tg'''-space but not an α -space.

Example 1.3.16

Let X and τ be as in the Example 1.3.3. Then $\alpha C(X) = \{\phi, \{b\}, X\}$. Thus (X, τ) is an α -space but not

a T g^m-space.

Theorem 1.3.17

For a space (X, τ) the following properties are equivalent:

- (i) (X, τ) is a T g^m-space.
- (ii) Every singleton subset of (X, τ) is either gs-closed or open.

Proof

(i) \rightarrow (ii). Assume that for some $x \in X$, the set $\{x\}$ is not a gs-closed in (X, τ) . Then the only gs-open set containing $\{x\}^c$ is X and so $\{x\}^c$ is g''-closed in (X, τ) . By assumption $\{x\}^c$ is closed in (X, τ) or equivalently $\{x\}$ is open.

(ii) \rightarrow (i). Let A be a g^{m} -closed subset of (X, τ) and let $x \in cl(A)$. By assumption {x} is either gs-closed or open.

Case (a) Suppose that $\{x\}$ is gs-closed. If $x \notin A$, then cl(A)-A contains a nonempty gs-closed set $\{x\}$, which is a contradiction to Theorem 1.2.6. Therefore $x \in A$.

Case (b) Suppose that $\{x\}$ is open. Since $x \in cl(A)$, $\{x\} \cap A \neq \phi$ and so $x \in A$. Thus in both case, $x \in A$ and therefore $cl(A) \subseteq A$ or equivalently A is a closed set of (X, τ) .

Definition 1.3.18

A topological space (X, τ) is called generalized semi- R_0 (briefly gs- R_0) if and only if for each gs-open set G and $x \in G$ implies gs-cl($\{x\}$) $\subset G$.

Definition 1.3.19

A topological space (X, τ) is called:

- (i) generalized semi- T_0 (briefly gs- T_0) if and only if to each pair of distinct points x, y of X, there exists a gsopen set containing one but not the other.
- (ii) generalized semi- T_1 (briefly gs- T_1) if and only if to each pair of distinct points x, y of X, there exists a pair of gs-open sets, one containing x but not y, and the other containing y but not x.

Theorem 1.3.20

For a topological space X, each of the following statement is equivalent:

(i) X is a gs-T₁.

(ii) Each one point set is gs-closed set in X.

Proof

(i) \Rightarrow (ii) Let a space X be gs-T₁ and $x \in X$. Suppose gscl({x}) \neq {x}. Then we can find an element $y \in$ gscl({x}) with $y \neq x$. Since X is gs-T₁, there exist gs-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Now $x \in V^c$ and V^c is gs-closed. Therefore gscl({x}) $\subseteq V^c$ which implies $y \in V^c$, contradiction. Hence gscl({x}) = {x} or {x} is gs-closed.

(ii) \Rightarrow (i) Let x, y \in X with x \neq y. Then {x} and {y} are gs-closed. Therefore U = ({x})^c and V = ({y})^c are gs-open and x \in U, y \notin U and y \in V, x \notin V. Hence X is gs-T₁

Theorem 1.3.21

For a space (X, τ) the following properties hold:

- (i) If (X, τ) is gs-T₁, then it is T g''.
- (ii) If (X, τ) is T g''', then it is gs-T₀.

Proof

- (i) The proof is obvious from Theorem 1.3.20.
- (ii) Let x and y be two distinct elements of X. Since the space (X, τ) is Tg", we have that {x} is gs-closed or open. Suppose that {x} is open. Then the singleton {x} is a gs-open set such that x ∈ {x}and y ∉ {x}. Also, if {x} is gs-closed, then X \ {x} is gs-open such that y ∈ X \ {x} and x ∉ X \ {x}. Thus, in the above two cases, there exists a gs-open set U of X such that x ∈ U and y ∉ U or x ∉ U and y ∈ U. Thus, the space (X, τ) is gs-T₀.

Theorem 1.3.22

For a gs-R₀ topological space (X, τ) the following properties are equivalent:

- (i) (X, τ) is gs-T₀.
- (ii) (X, τ) is Tg'''.
- (iii) (X, τ) is gs-T₁.

Proof

It suffices to prove only (i) \Rightarrow (iii). Let $x \neq y$ and since (X, τ) is $gs-T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some gs-open set U. Then $x \in X \setminus gs-cl(\{y\})$ and $X \setminus gs-cl(\{y\})$ is gs-open. Since (X, τ) is $gs-R_0$, we have $gs-cl(\{x\}) \subseteq X \setminus gs-cl(\{y\}) \subseteq X \setminus \{y\}$ and hence $y \notin gs-cl(\{x\})$. There exists gs-open set V such that $y \in V \subseteq X \setminus \{x\}$ and (X, τ) is $gs-T_1$.

1.4 $_{g}Tg''$ -SPACES

Definition 1.4.1

A space (X, τ) is called a ${}_{g}Tg''$ -space if every g-closed set in it is g''-closed.

Example 1.4.2

Let X and τ be as in the Example 1.3.3, is a ${}_{g}Tg''$ -space and the space (X, τ) in the Example 1.3.2, is not a ${}_{g}Tg''$ -space.

Proposition 1.4.3

Every $T_{1/2}$ -space is ${}_{g}T g''$ -space but not conversely.

Proof

Follows from Remark 1.2.5 (i).

The converse of Proposition 1.4.3 need not be true as seen from the following example.

Example 1.4.4

Let X and τ be as in the Example 1.3.3, is a ${}_{g}Tg''$ -space but not a $T_{1/2}$ -space.

Remark 1.4.5

Tg''-spaces and gTg''-spaces are independent.

Example 1.4.6

The space (X, τ) in the Example 1.3.3, is a ${}_{g}Tg''$ -space but not a Tg''-space and the space (X, τ) in the

Example 1.3.2, is a Tg''-space but not a ${}_{g}Tg''$ -space.

Theorem 1.4.7

If (X, τ) is a ${}_{g}Tg''$ -space, then every singleton subset of (X, τ) is either g-closed or g''-open.

Proof

Assume that for some $x \in X$, the set $\{x\}$ is not a g-closed in (X, τ) . Then $\{x\}$ is not a closed set, since every closed set is a g-closed set. So $\{x\}^c$ is not open and the only open set containing $\{x\}^c$ is X itself. Therefore $\{x\}^c$ is trivially a g-closed set and by assumption, $\{x\}^c$ is an g''-closed set or equivalently $\{x\}$ is g''-open.

The converse of Theorem 1.4.7 need not be true as seen from the following example.

Example 1.4.8

Let X and τ be as in the Example 1.3.2. The sets {a} and {c} are g-closed in (X, τ) and the set {b} is g''open. But the space (X, τ) is not a ${}_{g}Tg''$ -space.

Theorem 1.4.9

A space (X, τ) is T_{1/2} if and only if it is both T g["] and gT g["].

Proof

Necessity. Follows from Propositions 1.3.4 and 1.4.3.

Sufficiency. Assume that (X, τ) is both Tg'' and ${}_{g}Tg''$. Let A be a g-closed set of (X, τ) . Then A is g''-closed, since (X, τ) is a ${}_{g}Tg''$. Again since (X, τ) is a Tg'', A is a closed set in (X, τ) and so (X, τ) is a $T_{1/2}$.

1.5 $\alpha T_g''$ -SPACES

Definition 1.5.1

A space (X, τ) is called a α T g["]-space if every α g-closed set in it is g["]-closed.

Example 1.5.2

Let X and τ be as in the Example 1.3.3, is a α T g^{*m*}-space and the space (X, τ) in the Example 1.3.2, is

not a $\alpha T g'''$ -space.

Proposition 1.5.3

Every α T_b-space is α T_g["]-space but not conversely.

Proof

```
Follows from Remark 1.2.5 (i).
```

The converse of Proposition 1.5.3 need not be true as seen from the following example.

Example 1.5.4

Let X and τ be as in the Example 1.3.3, is a $\alpha Tg''$ -space but not a αT_b -space.

Proposition 1.5.5

Every $\alpha T g''$ -space is a αT_d -space but not conversely.

Proof

Let (X, τ) be an $\alpha T g''$ -space and let A be an α g-closed set of (X, τ) . Then A is a g''-closed subset of

 (X, τ) and by Remark 1.2.5 (iii), A is g-closed. Therefore (X, τ) is an α T_d-space.

The converse of Proposition 1.5.5 need not be true as seen from the following example.

Example 1.5.6

Let X and τ be as in the Example 1.3.3, is a α T_d-space but not a α T_g["]-space.

Theorem 1.5.7

If (X, τ) is a $\alpha T g''$ -space, then every singleton subset of (X, τ) is either α g-closed or g''-open.

Proof

Similar to Theorem 1.4.7.

The converse of Theorem 1.5.7 need not be true as seen from the following example.

Example 1.5.8

Let X and τ be as in the Example 1.3.2. The sets {a} and {c} are α g-closed in (X, τ) and the set {b} is g''-open. But the space (X, τ) is not a α T g''-space.

REFERENCES

- [1] Abd El-Monsef, M. E., El-Deeb, S. N. and Mahmoud, R. A.: β-open sets and β-continuous mappings, Bull.
 Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik., 38 (1986), 24-32.
- [3] Antony Rex Rodrigo., Ravi, O., Jeyashri, S. and Vijayalakshmi, K.: g^m-closed sets in topology, International Journal of Advances in Pure and Applied Mathematics, 2(1) (2012), 31-47.
- [4] Arenas, F. G., Dontchev, J. and Ganster, M.: On λ-sets and dual of generalized continuity, Questions
 Answers Gen. Topology, 15 (1997), 3-13.

- [5] Arya, S. P. and Nour, T.: Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21(8) (1990), 717-719.
- [6] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22 (1971), 99-112.
- [7] Devi, R., Balachandran, K. and Maki, H.: Generalized α -closed maps and α -generalized closed maps, Indian J. Pure Appl. Math., 29 (1998), 37-49.
- [8] Devi, R., Balachandran, K. and Maki, H.: Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Kochi Univ. Ser. A. Math., 14 (1993), 41-54.
- [9] Dunham, W.: T_{1/2}-spaces, Kyungpook Math. J., 17 (1977), 161-169.
- [10] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [11] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 41.
- [12] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15 (1994), 51-63.
- [13] Mashhour, A. S., Abd El-Monsef, M. E. and El-Deeb, S. N.: On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53 (1982), 47-53.
- [14] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [15] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19 (1998), 13-20.
- [16] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September 2002.
- [17] Veera Kumar, M. K. R. S.: g*-preclosed sets, Acta Ciencia Indica, Vol. XXVIIIM, (1) (2002), 51-60.
- [18] Veera Kumar, M. K. R. S.: g[#] semi-closed in topological spaces, Indian J. Math., 44(1) (2002), 73-87.