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1.1   INTRODUCTION 

Levine   introduced the notion of T1/2-spaces which properly lie between T1-spaces  and T0-spaces. Many 

authors studied properties of T1/2-spaces: Dunham [9], Arenas et al. [4] etc. In this chapter, we introduce the 

notions called T g  -spaces, gT g  -spaces and  T g  -spaces and obtain their properties and characterizations.  

1.2   PRELIMINARIES 

Throughout this thesis (X, ) (or X) represent topological space on which no separation axioms are 

assumed unless otherwise mentioned. For a subset A of a space (X, ), cl(A), int(A) and Ac denote the closure of 

A, the interior of A and the complement of A respectively.  

We recall the following definitions which are useful in the sequel. 

Definition 1.2.1 

A subset A of a space (X, ) is called: 

(i) semi-open set [11] if A  cl(int(A)); 

(ii) preopen set [13] if A   int(cl(A)); 

(iii)  -open set [14] if A  int(cl(int(A))); 

(iv) β-open set [1] ( = semi-preopen [3] ) if A  cl(int(cl(A))). 

The complements of the above mentioned open sets are called their respective closed sets. 
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The preclosure [15] (resp. semi-closure [6],  -closure [7], semi-pre-closure [2]) of a subset A of X, 

denoted by pcl(A) (resp. scl(A),  cl(A), spcl(A)), is defined to be the intersection of all preclosed (resp. semi-

closed,  -closed, semi-preclosed) sets of (X, ) containing A. It is known that pcl(A) (resp. scl(A),  cl(A), 

spcl(A)) is a preclosed (resp. semi-closed,  -closed, semi-preclosed) set. For any subset A of an arbitrarily 

chosen topological space, the semi-interior [6] (resp.  -interior [7], preinterior [15]) of A, denoted by sint(A) 

(resp.  int(A), pint(A)), is defined to be  the union of all semi-open  (resp.  -open, preopen) sets of (X, )  

contained in A.  

Definition 1.2.2 

A subset A of a space (X, ) is called: 

(i)  a generalized closed (briefly g-closed) set [10] if cl(A)  U whenever A  U and U is open in (X, ). The 

complement of  g-closed set is called g-open set; 

(ii)   a generalized semi-closed (briefly gs-closed) set [5] if scl(A)  U                      whenever A  U and U is 

open in (X, ). The complement of  gs-closed set is called gs-open set; 

(iii)  an  -generalized closed (briefly  g-closed) set [12] if  cl(A)  U                      whenever A  U and 

U is open in (X, ). The complement of   g-closed set is called  g-open set; 

(iv)  a generalized semi-preclosed  (briefly gsp-closed) set [15] if spcl(A)  U whenever A  U and U is open 

in (X, ). The complement of  gsp-closed set is called gsp-open set; 

(v)  a  ĝ-closed set [17] ( =  -closed [16]) if cl(A)  U whenever A  U and U is semi-open in (X, ). The 

complement of  ĝ-closed set is called ĝ-open set; 

(vi)  a g  -closed set [3] if cl(A)  U  whenever A  U and U is gs-open in (X, ). The complement of  g  -

closed set is called g  -open set; 

(vii)  a g*-preclosed  (briefly g*p-closed) set [18] if pcl(A)  U whenever A  U and U is g-open in (X, ). 

The complement of  g*p-closed set is called g*p-open set. 
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The collection of all  g  -closed (resp.  -closed,  g-closed, gsp-closed, gs-closed,  -closed, g*p-

closed)  sets is denoted by G  C(X) (resp.  C(X), G C(X), GSP C(X), GS C(X),  C(X), PG C(X)). 

The collection of all  g  -open (resp.  -open,  g-open, gsp-open, gs-open,  -open, g*p-open)  sets is 

denoted by G  O(X) (resp. O(X), G O(X), GSP O(X), GS O(X),  O(X), PG O(X)). 

We denote the power set of X by P(X). 

Definition 1.2.3 

A space (X, ) is called:  

(i) T1/2-space [10] if every g-closed set is closed. 

(ii) Tb-space [8] if every gs-closed set is closed. 

(iii)  Tb-space [7] if every  g-closed set is closed. 

(iv) T -space [16] if every  -closed set is closed. 

(v) Tp*-space [18] if every g*p-closed set is closed. 

(vi) *sTp-space [18] if every gsp-closed set is g*p-closed. 

(vii)  Td-space [7] if every  g-closed set is g-closed. 

(viii)  -space [14] if every  -closed set is closed. 

Definition 1.2.4 [45] 

Let (X, ) be a topological space and A  X. We define the gs-closure of A (briefly gs-cl(A)) to be the 

intersection of all gs-closed sets containing A. 

Remark 1.2.5 [4]  

For a topological space X,  the followings hold:  

(i)  Every closed set is g  -closed but not conversely. 

(ii)  Every g  -closed set is  -closed but not conversely. 

(iii)  Every g  -closed set is g-closed but not conversely. 
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(iv)  Every g  -closed set is  g-closed but not conversely. 

(v) Every g  -closed set is gs-closed but not conversely. 

(vi)  Every g  -closed set is gsp-closed but not conversely. 

Theorem 1.2.6 [ 4 ] 

A set A is g  -closed in X if and only if cl(A)  A contains no nonempty gs-closed set. 

1.3   PROPERTIES OF T g  -SPACES 

We introduce the following definition: 

 

Definition 1.3.1 

A space (X, ) is called a T g  -space if every g  -closed set in it is closed. 

Example 1.3.2 

Let X = {a, b, c} with  = {, {b}, X}. Then G  C(X) = {, {a, c}, X}. Thus  (X, )  is a T g  -space. 

Example 1.3.3 

Let X = {a, b, c} with  = {, {a, c}, X}. Then G  C(X) = {, {b}, {a, b},          {b, c}, X}. Thus  (X, )  

is not a T g  -space. 

Proposition 1.3.4  

Every T1/2-space is T g  -space but not conversely. 

Proof 

Follows from Remark 1.2.5 (iii). 

The converse of Proposition 1.3.4 need not be true as seen from the following example. 
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Example 1.3.5 

Let X and   be as in the Example 1.3.2, G C(X) = {, {a}, {c}, {a, b}, {a, c}, {b, c}, X}. Thus  (X, )  is 

not a T1/2-space. 

Proposition 1.3.6 

Every T -space  is T g  -space but not conversely. 

 

Proof 

Follows from Remark 1.2.5 (ii). 

The converse of Proposition 1.3.6 need not be true as seen from the following example.  

Example 1.3.7 

Let X = {a, b, c} with  = {, {a}, {b, c}, X}. Then  C(X) = P(X) and G  C(X)  = {, {a}, {b, c}, X}. 

Thus  (X, )  is T g  -space  but not a T -space.  

Proposition 1.3.8 

Every  Tb-space  is T g  -space but not conversely. 

Proof 

Follows from Remark 1.2.5 (iv). 

The converse of Proposition 1.3.8 need not be true as seen from the following example. 

Example 1.3.9 

Let X and  be as in the Example 1.3.2. Then G C(X) = {, {a}, {c}, {a, b}, {a, c}, {b, c}, X}.  Thus 

(X, )  is not a  Tb-space.  

Proposition 1.3.10 

Every *sTp-space and Tp*-space is T g  -space but not conversely. 
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Proof 

Follows from Remark 1.2.5 (vi) and Definition 1.2.3 (vi) and (v). 

The converse of Proposition 1.3.10 need not be true as seen from the following example. 

Example 1.3.11 

Let X and  be as in the Example 1.3.2. Then GSP C(X) = {, {a}, {c}, {a, b}, {a, c}, {b, c}, X} and 

PG C(X) = {, {a}, {c}, {a, c}, {b, c}, X}.    Thus (X, )  is  neither *sTp-space nor  Tp*-space. 

Proposition 1.3.12 

Every Tb-space  is T g  -space but not conversely. 

Proof 

Follows from Remark 1.2.5 (v). 

The converse of Proposition 1.3.12 need not be true as seen from the following example. 

Example 1.3.13 

Let X and  be as in the Example 1.3.2. Then GS C(X) = {, {a}, {c}, {a, b}, {a, c}, {b, c}, X}.  Thus (X, 

)  is not a Tb-space.  

Remark 1.3.14 

We conclude from the next two examples that T g  -spaces and  -spaces are independent. 

Example 1.3.15 

Let X and  be as in the Example 1.3.2. Then  C(X) = {, {a}, {c}, {a, c}, X}.  Thus (X, )  is  a T g  -

space but not an  -space.  

Example 1.3.16 

Let X and  be as in the Example 1.3.3. Then  C(X) = {, {b}, X}.  Thus  (X, )  is   an  -space but not 

a T g  -space.  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR1907A78 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 372 
 

Theorem 1.3.17 

For a space (X, ) the following properties are equivalent: 

(i) (X, ) is a T g  -space. 

(ii) Every singleton subset of   (X, ) is either gs-closed or open. 

Proof 

(i)  (ii). Assume that for some x  X, the set {x} is not a gs-closed in (X, ). Then the only gs-open set 

containing {x}c is X and so {x}c is  g  -closed  in (X, ). By assumption {x}c is closed in (X, ) or equivalently 

{x} is open. 

(ii)  (i). Let A be a g  -closed subset of (X, ) and let x  cl(A). By assumption {x} is either gs-closed 

or open. 

Case (a) Suppose that {x} is gs-closed. If x  A, then  cl(A)A contains a nonempty gs-closed set {x}, 

which is a contradiction to Theorem   1.2.6. Therefore              x  A. 

Case (b) Suppose that {x} is open. Since x  cl(A), {x}  A   and so              x  A. Thus in both case,  

x A and therefore cl(A)  A or equivalently A is a closed set of (X, ).  

Definition 1.3.18  

A topological space (X, ) is called generalized semi-R0 (briefly gs-R0)  if and only if for each gs-open set 

G and x  G implies gs-cl({x})  G. 

Definition 1.3.19  

A topological space (X, ) is called:  

(i)  generalized semi-T0 (briefly gs-T0) if and only if to each pair of distinct points x, y of X, there exists a gs-

open set containing one but not the other. 

(ii)  generalized semi-T1 (briefly gs-T1) if and only if to each pair of distinct points x, y of X, there exists a 

pair of gs-open sets, one containing x but not y, and the other containing y but not x. 
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Theorem 1.3.20  

For a topological space X, each of the following statement is equivalent:  

(i) X is a gs-T1. 

(ii) Each one point set is gs-closed set in X. 

Proof 

(i)  (ii) Let a space X be gs-T1 and x  X. Suppose gscl({x})  {x}. Then we can find an element y  

gscl({x}) with y  x. Since X is gs-T1, there exist gs-open sets U and V such that x  U, y  U and y  V, x  

V. Now x  Vc and Vc is gs-closed. Therefore gscl({x})  Vc which implies y   Vc, contradiction. Hence 

gscl({x}) = {x} or {x} is gs-closed. 

            (ii)  (i)  Let x, y  X with x ≠ y. Then {x} and {y} are gs-closed. Therefore U = ({x})c and V = ({y})c 

are gs-open and x  U, y  U and y  V, x  V. Hence X is gs-T1     

Theorem 1.3.21 

For a space (X, ) the following properties hold: 

(i) If (X, ) is gs-T1, then it is T g  . 

(ii) If (X, ) is T g  , then it is gs-T0 . 

Proof 

(i) The proof is obvious from Theorem  1.3.20. 

(ii) Let x and y be two distinct elements of X. Since the space  (X, ) is T g  , we have that {x} is gs-closed or 

open. Suppose that {x} is open. Then the singleton {x} is a gs-open set such that x  {x}and y  {x}. 

Also, if {x} is    gs-closed, then X \ {x} is gs-open such that y  X \ {x} and x  X \ {x}. Thus, in the 

above two cases, there exists a gs-open set U of X such that      x   U and y  U or  x  U and y  U. 

Thus, the space (X, )  is gs-T0.  
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Theorem 1.3.22 

For a gs-R0 topological space (X, ) the following properties are equivalent: 

(i) (X, ) is gs-T0. 

(ii) (X, ) is  T g  . 

(iii) (X, ) is gs-T1. 

Proof 

It suffices to prove only (i)  (iii). Let x  y and since (X, ) is  gs-T0, we may assume that x  U  X \ 

{y} for some gs-open set U. Then x  X \ gs-cl({y}) and X \ gs-cl({y}) is gs-open. Since (X, ) is gs-R0, we have 

gs-cl({x})  X \ gs-cl({y})  X \ {y} and hence y  gs-cl({x}). There exists gs-open set V such that                y 

 V  X \ {x} and (X, ) is gs-T1. 

1.4   gT g  -SPACES 

Definition 1.4.1 

A space (X, ) is called a gT g  -space if every g-closed  set in it is g  -closed.  

 

 

Example 1.4.2 

Let X and  be as in the Example 1.3.3, is a gT g  -space and the space (X, ) in the Example 1.3.2,  is not a 

gT g  -space. 

Proposition 1.4.3 

Every T1/2-space is  gT g  -space  but not conversely. 

Proof 

Follows from Remark 1.2.5 (i). 

The converse of Proposition 1.4.3 need not be true as seen from the following example. 
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Example 1.4.4 

Let X and  be as in the Example 1.3.3, is a  gT g  -space but not a T1/2-space.  

Remark 1.4.5 

T g  -spaces and  gT g  -spaces are independent. 

Example 1.4.6 

The space (X, ) in the Example 1.3.3, is a  gT g  -space but not a T g  -space  and the space (X, ) in the 

Example 1.3.2, is a  T g  -space but not a gT g  -space.  

Theorem 1.4.7 

If (X, ) is  a  gT g  -space, then every singleton subset of (X, ) is either g-closed or g  -open. 

 

Proof 

Assume that for some x  X, the set {x} is not a g-closed in (X, ). Then {x} is not a closed set, since 

every closed set is a g-closed set. So {x}c is not open and the only open set containing {x}c is X itself. Therefore 

{x}c is trivially a g-closed set and by assumption, {x}c is an g  -closed set or equivalently {x} is g  -open. 

The converse of Theorem 1.4.7 need not be true as seen from the following example. 

 

 

Example 1.4.8 

Let X and  be as in the Example 1.3.2. The sets {a} and {c} are g-closed in (X, ) and the set {b} is g  -

open. But the space (X, ) is not a gT g  -space. 

Theorem 1.4.9 

A space (X, ) is T1/2 if and only if it is both T g   and gT g  . 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                                    www.jetir.org (ISSN-2349-5162) 

JETIR1907A78 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 376 
 

Proof 

Necessity. Follows from Propositions  1.3.4  and 1.4.3. 

Sufficiency. Assume that (X, ) is both T g   and gT g  . Let A be a g-closed set of (X, ). Then A is g  -

closed, since (X, ) is a gT g  .  Again since (X, ) is a T g  , A is a closed set in (X, ) and so (X, ) is a T1/2. 

 

 

 

1.5    T g  -SPACES 

Definition 1.5.1 

A space (X, ) is called a  T g  -space if every  g-closed  set in it is g  -closed.  

Example 1.5.2 

Let X and  be as in the Example 1.3.3, is a   T g  -space and the space (X, ) in the Example 1.3.2,  is 

not a  T g  -space. 

Proposition 1.5.3 

Every  Tb-space  is   T g  -space  but not conversely. 

Proof 

Follows from Remark 1.2.5 (i). 

The converse of Proposition 1.5.3 need not be true as seen from the following example. 

Example 1.5.4 

Let X and   be as in the Example 1.3.3, is a   T g  -space but not a  Tb-space.  

Proposition 1.5.5 

Every  T g  -space is a   Td-space but not conversely. 
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Proof 

Let (X, )  be an  T g  -space and let A be an  g-closed set of (X, ). Then A is a   g  -closed subset of 

(X, )  and by Remark 1.2.5 (iii), A is g-closed. Therefore (X, )  is an  Td-space. 

The converse of Proposition 1.5.5 need not be true as seen from the following example. 

Example 1.5.6 

Let X and  be as in the Example 1.3.3, is a   Td-space  but not a  T g  -space.  

Theorem 1.5.7 

If (X, ) is  a   T g  -space,  then every singleton subset of (X, ) is either  g-closed or g  -open. 

Proof 

Similar to Theorem 1.4.7. 

The converse of  Theorem 1.5.7 need not be true as seen from the following example. 

Example 1.5.8 

Let X and  be as  in the Example 1.3.2. The sets {a} and {c} are  g-closed in (X, ) and the set {b} is 

g  -open. But the space (X, ) is not a  T g  -space. 
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