LUCKY EDGE AND L(2,1)-LABELING OF HUMAN CHAIN GRAPH

K.Anitha ${ }^{1}$, B.Selvam ${ }^{2}$ and K.Thirusangu ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Sai Ram Engineering College, Chennai-44, India
${ }^{2,3}$ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-73, India

Abstract- Motivation of the graph labeling, we determine lucky edge number and $\mathrm{L}(2,1)$ - number of the human chain graph in this paper.
Key words- Human chain graph, L(2,1)-labeling, Lucky edge labeling

I. Introduction

Human chain graph was studied by [1]. Lucky edge labeling was studied by [2]. L(2,1)-labeling was studied by [3]. We determine in this paper, $\mathrm{L}(2,1)$ - number and lucky edge number of human chain graph.

II. Basic Notions

Definition-1[1]

A human chain graph is constructed from a path $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{n} \in \mathrm{N}$ by attaching a cycle of length $\mathrm{m}\left(\mathrm{C}_{\mathrm{m}}\right)$ and Y -tree $\left(\mathrm{Y}_{\mathrm{m}+1}\right), \mathrm{m} \geq 3$ to each $u_{2 i}$ for $1 \leq i \leq n$. The vertices of the cycle $\left(C_{m}\right)$ and Y-tree $\left(Y_{m+1}\right)$ are $v_{1}, v_{2}, \ldots, v_{(m-1) n}$ and $w_{1}, w_{2}, \ldots, w_{m n}$ respectively and the vertices of path is $u_{1}, u_{2}, \ldots, u_{2 n+1}$. The human chain graph is denoted by $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}$.

Definition-2[2]

A graph G admits lucky edge labeling if the edge coloring of G is $l^{*}\left(\mathrm{e}_{\mathrm{i}}\right) \neq l^{*}\left(\mathrm{e}_{\mathrm{j}}\right)$, the edges e_{i} and e_{j} are adjacent. The lucky edge number $\eta_{e}(G)$ is the least integer of G has a lucky edge labeling from the set $\{1,2, \ldots, \mathrm{k}\}$.

Definition-3[3]

$\mathrm{L}(2,1)$-labeling of a graph G is a function $l: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{N}$ such that $|l(x)-l(y)| \geq 2$ if $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ and $|l(x)-l(y)| \geq 1$ if $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$. The $\mathrm{L}(2,1)$-labeling number $\lambda(G)$ is the smallest number k such that $l(\mathrm{v})=\mathrm{k}$.

III. Main Results

Algorithm-1

Procedure. (Lucky edge labeling of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}, \mathrm{n} \geq 1$ and $m \geq 3$)
Input. $\mathrm{V} \leftarrow\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right\}$
$E \leftarrow\left\{e_{1}, e_{2}, \ldots, e_{2 m n+2 n}\right\}$
if $\mathbf{n} \geq 1$
if $\mathbf{m} \geq \mathbf{3}$

$$
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+2}{2}\right\rfloor \text { do }
$$

$$
\mathrm{u}_{4 \mathrm{i}-3} \leftarrow 5
$$

end for

$$
\begin{aligned}
\text { for } \mathrm{i} & =1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do } \\
\mathrm{u}_{4 \mathrm{i}-2} & \leftarrow 1 \\
\mathrm{u}_{4 \mathrm{i}-1} & \leftarrow 4
\end{aligned}
$$

$$
\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+1} \leftarrow 1
$$

$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-2 \mathrm{~m}+4 \mathrm{j}-1} \leftarrow 2$
end for
for $\mathrm{i}=1$ to n do

$$
\mathrm{w}_{\mathrm{mi}} \leftarrow 3
$$

$\mathrm{v}_{(\mathrm{m}-1) \mathrm{i}} \leftarrow 3$
end for
end if
if $\mathbf{m}>\mathbf{3}$

$$
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do }
$$

for $\mathrm{j}=1$ to $\left\lfloor\frac{m}{4}\right\rfloor$ do
$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-2 \mathrm{~m}+4 \mathrm{j}} \leftarrow 2$
$\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+4 \mathrm{j}-1} \leftarrow 2$
end for
end for
end if

if $\mathbf{m}>4$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do } \\
& \text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{4}\right\rfloor \text { do }
\end{aligned}
$$

$$
\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+4 \mathrm{j}} \leftarrow 1
$$

end for
end for
end if
if $m>5$

$$
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do }
$$

for $\mathrm{j}=1$ to $\left\lfloor\frac{m-2}{4}\right\rfloor$ do

$$
\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-2 \mathrm{~m}+4 \mathrm{j}+1} \leftarrow 1
$$

$$
\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+4 \mathrm{j}+1} \leftarrow 1
$$

end for
end for
end if
if $\mathbf{m}>6$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do } \\
& \text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-3}{4}\right\rfloor \text { do }
\end{aligned}
$$

$$
\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-2 \mathrm{~m}+4 \mathrm{j}+2} \leftarrow 1
$$

end for
end for
end if
end if
if $\mathbf{n}>\mathbf{1}$
if $\mathbf{m} \geq \mathbf{3}$

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor \text { do } \\
\mathrm{u}_{4 \mathrm{i}} \leftarrow 2 \\
\mathrm{~W}_{2 \mathrm{mi}-\mathrm{m}+1} \leftarrow 2
\end{gathered}
$$

end for

$$
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor \text { do }
$$

$$
\text { for } \mathrm{j}=1 \text { to }\left[\frac{m+1}{4}\right\rfloor \text { do }
$$

$\mathrm{V}_{2(\mathrm{~m}-1) \mathrm{i}-\mathrm{m}+4 \mathrm{j}-2} \leftarrow 1$
$\mathrm{W}_{2 \mathrm{mi}-\mathrm{m}+4 \mathrm{j}-2} \leftarrow 1$
end for
end for
end if
if $\mathbf{m}>3$
for $\mathrm{i}=1$ to $\left\lfloor\frac{n}{2}\right\rfloor$ do
for $\mathrm{j}=1$ to $\left\lfloor\frac{m}{4}\right\rfloor$ do
$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-\mathrm{m}+4 \mathrm{j}-1} \leftarrow 1$
$\mathrm{W}_{2 \mathrm{mi}-\mathrm{m}+4 \mathrm{j}-1} \leftarrow 1$
end for
end for
end if

if $\mathbf{m}>4$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor \text { do } \\
& \text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{4}\right\rfloor \text { do }
\end{aligned}
$$

$$
\mathrm{w}_{2 \mathrm{mi}-\mathrm{m}+4 \mathrm{j}} \leftarrow 2
$$

end for
end for
end if
if $\mathbf{m}>\mathbf{5}$
for $\mathrm{i}=1$ to $\left\lfloor\frac{n}{2}\right\rfloor$ do

$$
\text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-2}{4}\right\rfloor \text { do }
$$

$\mathrm{V}_{2(\mathrm{~m}-1) \mathrm{m}+\mathrm{m}+\mathrm{j} 1} \leftarrow 2$
$\mathrm{w}_{2 \mathrm{mi}-\mathrm{m}+4 \mathrm{j}+1} \leftarrow 1$
end for
end for
end if
if $\mathbf{m}>\mathbf{6}$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor \text { do } \\
& \qquad \text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-3}{4}\right\rfloor \text { do }
\end{aligned}
$$

$\mathrm{V}_{2(\mathrm{~m}-1) \mathrm{i}-\mathrm{m}+4 \mathrm{j}+2 \leftarrow 2}$

> end for
end for
end if
end if
if $\mathbf{m} \equiv \mathbf{1 , 2} \mathbf{(\operatorname { m o d } 4)}$ do
for $\mathrm{i}=1$ to n do

$$
\mathrm{V}_{(\mathrm{m}-1) \mathrm{i}-1} \leftarrow 3
$$

end for

end if

end procedure

Theorem-1

For $m \geq 3, n \geq 1$, the lucky edge labeling number of the human chain graph $=\left\{\begin{array}{l}6 \text { if } n=1 \\ 7 \text { if } n>1\end{array}\right.$

Proof.

Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}$ be a finite, undirected, simple graph with $\mathrm{n} \geq 1$ and $\mathrm{m} \geq 3$.

Case(i) if $\mathbf{n}=\mathbf{1}$

In $\mathrm{HC}_{1, \mathrm{~m}}$, The neighbors of the vertex u_{2} is $\left\{\mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}-1}, \mathrm{w}_{1}\right\}$. Assign the label $\operatorname{col}\left(\mathrm{u}_{2}\right)=1$ and $\operatorname{col}\left(\mathrm{u}_{1}\right) \neq \operatorname{col}\left(\mathrm{u}_{3}\right) \neq \operatorname{col}\left(\mathrm{v}_{1}\right) \neq \operatorname{col}\left(\mathrm{v}_{\mathrm{m}-1}\right) \neq$ $\operatorname{col}\left(\mathrm{w}_{1}\right)$. Therefore $\operatorname{col}\left(\mathrm{w}_{1}\right)=1, \operatorname{col}\left(\mathrm{v}_{1}\right)=2, \operatorname{col}\left(\mathrm{v}_{\mathrm{m}-1}\right)=3, \operatorname{col}\left(\mathrm{u}_{1}\right)=4, \operatorname{col}\left(\mathrm{u}_{3}\right)=5$ and the remaining vertices are labeled by algorithm-1. The resulting lucky edge labels are $2,3,4,5,6$. Hence $\eta_{e}\left(H C_{1, m}\right)=6$.

Case(ii) if $\mathbf{n}>\mathbf{1}$

Using case(i), label the vertices $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}-1}, \mathrm{w}_{1}$. The neighbors of the vertex
u_{4} is $\left\{u_{5}, u_{3}, v_{m}, v_{2(m-1)}, w_{m+1}\right\}$. Suppose $\operatorname{col}\left(u_{4}\right)=1$, the edges $u_{3} u_{2}$ and $u_{3} u_{4}$ are same, which is contradiction to the lucky edge labeling. Therefore $\operatorname{col}\left(u_{4}\right)=2$ and $\operatorname{col}\left(w_{m+1}\right)=2$, $\operatorname{col}\left(\mathrm{v}_{\mathrm{m}}\right)=1, \operatorname{col}\left(\mathrm{v}_{2(\mathrm{~m}-1}\right)=3, \operatorname{col}\left(\mathrm{u}_{3}\right)=4, \operatorname{col}\left(\mathrm{u}_{5}\right)=5$, since $\operatorname{col}\left(\mathrm{u}_{3}\right) \neq \operatorname{col}\left(\mathrm{u}_{5}\right) \neq \operatorname{col}\left(\mathrm{v}_{\mathrm{m}}\right) \neq \operatorname{col}\left(\mathrm{v}_{2(\mathrm{~m}-1}\right) \neq \operatorname{col}\left(\mathrm{w}_{\mathrm{m}+1}\right)$. The resulting lucky edge labels are 2,3,4,5,6,7. Hence $\eta_{e}\left(H C_{n, m}\right)=7$.

Example-1 (Lucky edge labeling of $\mathrm{HC}_{4,3}$)

Algorithm-2

Procedure. (L(2,1) labeling of $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}, \mathrm{n} \geq 1$ and $m \geq 3$)
Input. $\mathrm{V} \leftarrow\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{mn}}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{2 \mathrm{n}+1}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{(\mathrm{m}-1) \mathrm{n}}\right\}$
$E \leftarrow\left\{e_{1}, e_{2}, \ldots, e_{2 m n+2 n}\right\}$

if $\mathbf{n} \geq 1$

if $\mathbf{m} \geq 3$

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+2}{2}\right\rfloor \text { do } \\
\mathrm{u}_{4 i-3} \leftarrow 3
\end{gathered}
$$

end for

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right] \text { do } \\
\mathrm{u}_{4 i-2 \leftarrow 1} \\
\mathrm{u}_{4 i-1} \leftarrow 5
\end{gathered}
$$

end for
for $\mathrm{i}=1$ to n do

$$
\text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m}{3}\right\rfloor \text { do }
$$

$$
\mathrm{v}_{(\mathrm{m}-1)(\mathrm{i} 1)+3 \mathrm{j}-2 \leftarrow 4}
$$

end for
end if
end if
if $\mathbf{n}>\mathbf{1}$

if $\mathbf{m} \geq 3$

$$
\begin{gathered}
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor \text { do } \\
\mathrm{u}_{4 \mathrm{i}} \leftarrow 7
\end{gathered}
$$

end for
end if

if $\mathbf{m}>3$

if $\mathbf{m}=\mathbf{0 , 2}(\bmod 3)$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { do } \\
& \begin{array}{c}
\text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{3}\right\rfloor \text { do } \\
\mathrm{v}_{(\mathrm{m}-1)(\mathrm{i}-1)+3 \mathrm{j}} \leftarrow 6 \\
\mathrm{v}_{(\mathrm{m}-1)(\mathrm{i}-1)+3 \mathrm{j}-1} \leftarrow 2
\end{array}
\end{aligned}
$$

end for

$$
\text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do }
$$

$$
\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-\mathrm{m}+1} \leftarrow 7
$$

end for
for $\mathrm{i}=1$ to n do
for $\mathrm{j}=1$ to $\left\lfloor\frac{m-1}{3}\right\rfloor$ do
$\mathrm{w}_{\mathrm{mi}-\mathrm{m}+3 \mathrm{j}} \leftarrow 1$
$\mathrm{w}_{\mathrm{mi}-\mathrm{m}+3 \mathrm{j}-1} \leftarrow 4$
$\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j}-2} \leftarrow 6$
end for
end if
for $\mathrm{i}=1$ to $\left\lfloor\frac{n}{2}\right\rfloor$ do
$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}} \leftarrow 1$
end for
for $\mathrm{i}=1$ to n do

$$
\mathrm{w}_{2 \mathrm{mi}-\mathrm{m}+1} \leftarrow 2
$$

end for
for $\mathrm{i}=1$ to n do
for $\mathrm{j}=1$ to $\left\lfloor\frac{m-6}{3}\right\rfloor$ do
$\mathrm{w}_{2 \mathrm{mi}-\mathrm{m}+3 \mathrm{j}+1} \leftarrow 6$
end for
end if
if $\mathbf{m}=\mathbf{0}(\bmod 3)$
for $\mathrm{i}=1$ to n do
$\mathrm{w}_{\mathrm{mi}} \leftarrow 3$
$\mathrm{w}_{\mathrm{mi}-1} \leftarrow 2$
$\mathrm{w}_{\mathrm{mi}-2} \leftarrow 5$
end for
end if

if $\mathbf{m}=\mathbf{2}(\bmod 3)$

for $\mathrm{i}=1$ to n do
$\mathrm{w}_{\mathrm{mi}} \leftarrow 5$
$\mathrm{w}_{\mathrm{mi}-1} \leftarrow 3$
end for
end if

if $\mathbf{m}=\mathbf{1}(\bmod 3)$

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to }\left\lfloor\frac{n+1}{2}\right\rfloor \text { do } \\
& \text { for } \mathrm{j}=1 \text { to }\left\lfloor\frac{m-1}{3}\right\rfloor \text { do } \\
& \mathrm{v}_{2(m-1) \mathrm{i}-2(\mathrm{~m}-1)+3 \mathrm{j}-1} \leftarrow 2 \\
& \mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-2(\mathrm{~m}-1)+3 \mathrm{j} 5} \leftarrow 6 \\
& \mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j}-2} \leftarrow 7 \\
& \mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j} \leftarrow 1} \\
& \mathrm{~W}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j}-1} \leftarrow 4
\end{aligned}
$$

end for
end for
for $\mathrm{i}=1$ to $\left\lfloor\frac{n}{2}\right\rfloor$ do
for $\mathrm{j}=1$ to $\left\lfloor\frac{m-1}{3}\right\rfloor$ do
$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-(\mathrm{m}-1)+3 \mathrm{j}-1} \leftarrow 6$
$\mathrm{v}_{2(\mathrm{~m}-1) \mathrm{i}-(\mathrm{m}-1)+3 \mathrm{j}} \leftarrow 2$
$\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j}-2 \leftarrow 1}$
$\mathrm{w}_{2 \mathrm{~m}-2 \mathrm{~m}+3 \mathrm{j}} \leftarrow 7$
$\mathrm{w}_{2 \mathrm{mi}-2 \mathrm{~m}+3 \mathrm{j}-1} \leftarrow 4$
end for
end for
for $\mathrm{i}=1$ to n do

$$
\mathrm{w}_{\mathrm{mi} \leftarrow} \leftarrow 2
$$

end for
end if
end if
end procedure

Theorem-2

For $\mathrm{m} \geq 3, \mathrm{n} \geq 1$, the $\mathrm{L}(2,1)$ number of the human chain graph is 7 .

Proof.

Let $\mathrm{HC}_{\mathrm{n}, \mathrm{m}}$ be a finite, undirected, simple graph with $\mathrm{n} \geq 1$ and $\mathrm{m} \geq 3$. The neighbors of the vertex $\mathrm{u}_{2}=\left\{\mathrm{u}_{1}, \mathrm{u}_{3}, \mathrm{v}_{1}, \mathrm{v}_{\mathrm{m}-1}, \mathrm{w}_{1}\right\}$. Assign the color c_{1} to u_{2}. The possible colors of the neighbors of u_{2} is $\left\{\mathrm{c}_{3}, \mathrm{c}_{4}, \mathrm{c}_{5}, \mathrm{c}_{6}, \mathrm{c}_{7}\right\}$ and c_{2} as $\mathrm{d}\left(\mathrm{u}_{2}, \mathrm{~N}\left(\mathrm{u}_{2}\right)\right)=1$. We can assign $\mathrm{c}\left(\mathrm{u}_{1}\right)=\mathrm{c}_{3}, \mathrm{c}\left(\mathrm{u}_{3}\right)=\mathrm{c}_{5}$, $\mathrm{c}\left(\mathrm{v}_{1}\right)=\mathrm{c}_{4}, \mathrm{c}\left(\mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{c}_{6}, \mathrm{c}\left(\mathrm{w}_{1}\right)=\mathrm{c}_{7}$. Therefore $\lambda\left(H C_{n, m}\right) \geq 7$. Using algorithm 2, assign the colors from $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}, \mathrm{c}_{5}, \mathrm{c}_{6}, \mathrm{c}_{7}\right\}$ to all the vertices of $\mathrm{HC}_{n, \mathrm{~m}}$. Clearly $\mathrm{HC}_{n . \mathrm{m}}$ graph admits $\mathrm{L}(2,1)$ labeling. Hence $\mathrm{L}(2,1)$ number of $\mathrm{HC}_{n, \mathrm{~m}}$ is 7 .

Example-2 (L $(2,1)$ labeling of $\mathrm{HC}_{3,6}$)

IV. Conclusion

We have determined the lucky edge number and $\mathrm{L}(2,1)$ number of the human chain graph.

V. References

1. K.Anitha and B.Selvam, "Human chain graph", International Journal of Engineering, Science and Mathematics, Vol.7, (8), 2018, 41-49.
2. E.Esakkiammal, K.Thirusangu and S.Seethalakshmi, "Lucky Edge Labeling of Super Subdivision of Star and Wheel Graphs", International Journal of Pure and Applied Mathematics, Vol.13,(1), 2017, 226-228.
3. Priyam Vashishta, "The L(2,1)-Labeling of Dragon and Armed Crown Graphs", International Journal of Engineering Research and Technology, Vol.2, (2), 2013.
