
© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 64

Research paper on Inheritance and its type in

Object Oriented Programming using C++

Dr. Pratik I Prajapati

I/c Principal (Assistant Professor)

St. Stephen Institute of Business Management & Technology, Anand.

Abstract:

Reusability is one of most important advantage of C++ programming language. C++ classes can be

reused in several ways. Once the parent (Base) class has been written it can be modified by another

programmer to suit their requirements. The main idea of inheritance is creating new classes, reusing

the properties of the existing base class. The mechanism of deriving a new class (Child/Derived

Class) from an Existing class (Base/Parent Class) is called inheritance.

The old class is referred to as the base (Parent) class and the new class is called the derived class

(Child) or subclass. A derived class includes all features of the generic base class and then adds

qualities specific to the derived class.

This paper reflects the study of the Inheritance concept and its types using C++ (oops).

Keywords:

Base (Parent) class, Reusability,– Sub (Derived/Child) Class, Visibility Modes and Types of

Inheritance.

Introduction

Inheritance is the process by which objects of one class acquires the properties of objects of another

class in the hierarchy.

The capability of a class to derive properties and characteristics from another class is called

Inheritance. Inheritance is one of the most important feature of Object Oriented Programming.

A. Sub Class:

The class that inherits properties from another class is called Sub class or Derived class.

B. Super Class:

The class whose properties are inherited by sub class is called Base Class or Super class.

Sub classes can be created from the existing classes. It means that we can add additional features to a

Base class without modifying it. The new class is referred as derived class or subclass and the original

class is known as base classes or super class.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 65

Review of Literature

Suvarnalata Hiremath & C M Tavade (May2016), According to Author "Review Paper on

Inheritance and issues in Object Oriented Languages", The objective of this research paper is to

review concept of inheritance in object oriented languages. The review paper begins upon the survey

of inheritance and reusability of object oriented language. Inheritance plays an important role for

code reusability. Since object oriented has been widely acclaimed as the technology that will support

creation of reusable software, particularly because of the inheritance feature. Then discuss a new

approach of inheritance mechanism, which overcomes the encapsulation issues and other issues

derived from inheritance, which compromises severely reusability in object oriented language and

also we explore the connection between inheritance and code reusability.

Shyamapriya Chowdhury & Sudip Chatterjee (February 2016). In this research paper "A

Thorough Study of Different Types of Inheritance using Object Oriented Programming with JAVA"

the authors demonstrate the concept of inheritance in our daily life. Creation of a new class from an

existing one is called inheritance. Without modifying the previous data new features can be added in

a class. The newly created class is called child class and from which it is created is known as parent

class. Just like human being, child class can automatically access all the properties of Parent class and

new methods can also be entered in child class. Concept of reusability is directly supported by JAVA

using this inheritance.

Bjarne Stroustrup, he wrote research paper titled Multiple Inheritance for C++, In this research

paper the author describe that Multiple Inheritance is the ability of a class to have more than one base

class (super class). In a language where multiple inheritance is supported a program can be structured

as a set of inheritance lattices instead of (just) as a set of inheritance trees. This is widely believed to

be an important structuring tool. It is also widely believed that multiple inheritance complicates a

programming language significantly, is hard to implement, and is expensive to run. I will demonstrate

that none of these last three conjectures are true.

Generalized Syntax for inheritance

class baseclass

{

 visibility mode:

 data member declaration;

 member function declaration;

 . . .

 . . .

 . . .

};

class derivedclass : visibility mode baseclass name

{

 visibility mode:

 data member declaration;

 member function declaration;

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 66

 . . .

 . . .

 . . .

};

Visibility mode is used in the inheritance of C++ to show or relate how base classes are viewed with

respect to derived class. When one class gets inherited from another, visibility mode is used to inherit

all the public and protected members of the base class. Private members never get inherited and hence

do not take part in visibility. By default, visibility mode remains "private".

Types of Inheritance

1. Single Level Inheritance

2. Multiple Inheritance

3. Hierarchical inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance.

1. Single Level Inheritance

If a derived class is created from only one base class then such a inheritance is called single level

inheritance.

Consider a simple example of single inheritance.

(Chart No: 1 - Single Level Inheritance)

The above diagram shows single inheritance. Class A is Base class and class B is consider as a

Derived class. Class B has all the properties of its own as well as Base Class (i.e. A)

A

(Base Class)

B

(Derived Class)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 67

Example of single level inheritance

#include <iostream.h>

class A

{

 public:

 int y;

 void read()

 {

 cout<<"Enter Y : ";

 cin>>y;

 }

 void print()

 {

 cout<<"\n Y = "<<y;

 }

};

class B: public A

{

 int p;

 public:

 void read1()

 {

 read();

 cout<<"Enter P : ";

 cin>>p;

 }

 void print1()

 {

 print();

 cout<<"\n P = "<<p;

 }

};

void main()

{

 B b;

 clrscr();

 b.read1();

 b.print1();

 getch();

}

Output :

Enter Y : 12

Enter P : 15

Y = 12

P = 15

2. Multiple Inheritance

If a derived class is created from more than one base class then such a inheritance is called multiple

inheritance.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 68

Consider a simple example of Multiple Inheritance.

(Char No : 2 - Multiple Inheritance)

The above diagram shows multiple inheritance. Class A is Base class and class B is also a base class

and class C is created from two base class A & B. So class C is called Derived class. Class C has all

the properties of its own as well as class A and class B.

Multiple inheritances allow us to merge the features of several base classes as a starting point for

defining new classes. It is just like a child inherits the some properties of father and mother both.

Example of Multiple Inheritance

#include <iostream.h>

class A

{

 public:

 int x;

 void read()

 {

 cout<<"Enter X : ";

 cin>>x;

 }

 void print()

 {

 cout<<"\n X = "<<x;

 }

};

class B

{

 public:

 int y;

 void read1()

 {

 cout<<"Enter Y : ";

 cin>>y;

 }

 void print1()

 {

A

(Base Class)

C

(Derived Class)

B

(Base Class)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 69

 cout<<"\n Y = "<<y;

 }

};

class C: public A, public B

{

 int z;

 public:

 void read2()

 {

 read();

 read1();

 cout<<"Enter Z : ";

 cin>>z;

 }

 void print2()

 {

 print();

 print1();

 cout<<"\n Z = "<<z;

 }

};

void main()

{

 C c;

 clrscr();

 c.read2();

 c.print2();

 getch();

}

Output :

Enter X : 12

Enter Y : 15

Enter Z : 18

X = 12

Y = 15

Z = 18

3. Hierarchical Inheritance

If more than one derived classes are created from same base class then such a inheritance is called

Hierarchical inheritance.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 70

Consider a simple example of Hierarchical Inheritance.

(Chart No: 3 - Hierarchical Inheritance)

The above diagram shows hierarchical inheritance. Class A is Base class and class B and class C are

derived class. Class B has properties of its own and class A. Class C has all the properties of its own

as well as class A.

Example of Hierarchical Inheritance

#include <iostream.h>

class A

{

 public:

 int x;

 void read()

 {

 cout<<"Enter X : ";

 cin>>x;

 }

 void print()

 {

 cout<<"\n X = "<<x;

 }

};

class B:public A

{

 public:

 int y;

 void read1()

 {

 read();

 cout<<"Enter Y : ";

 cin>>y;

 }

 void print1()

 {

 print();

 cout<<"\n Y = "<<y;

 }

};

A

(Base Class)

B

(Derived Class)

C

(Base Class)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 71

class C: public A

{

 int z;

 public:

 void read2()

 {

 read();

 cout<<"Enter Z : ";

 cin>>z;

 }

 void print2()

 {

 print();

 cout<<"\n Z = "<<z;

 }

};

void main()

{

 B b;

 C c;

 clrscr();

 b.read1();

 c.read2();

 b.print1();

 c.print2();

 getch();

}

Output :

Enter X : 5

Enter Y : 11

Enter X : 20

Enter Z : 25

X = 5

Y = 11

X = 20

Z = 25

4. Multi Level Inheritance

If a derived class is created from another derived class (intermediate base class) then such a

inheritance is called Multilevel inheritance.

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 72

Consider a simple example of Multi level Inheritance.

(Chart No: 4 - Multilevel Inheritance)

The above diagram shows multilevel inheritance. Class A is Base class and class B is created from

class A. Class B has properties of its own and class A. Class C is created from class B(intermediate

base class) so class C has the properties of its own as well as class A and class B.

Example of Multilevel Inheritance

#include <iostream.h>

class A

{

 public:

 int x;

 void read()

 {

 cout<<"Enter X : ";

 cin>>x;

 }

 void print()

 {

 cout<<"\n X = "<<x;

 }

};

class B:public A

{

 public:

 int y;

 void read1()

 {

 read();

 cout<<"Enter Y : ";

 cin>>y;

 }

 void print1()

A

(Base Class)

B

(Intermediate Base

Class)

C

(Derived Class)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 73

 {

 print();

 cout<<"\n Y = "<<y;

 }

};

class C: public B

{

 int z;

 public:

 void read2()

 {

 read1();

 cout<<"Enter Z : ";

 cin>>z;

 }

 void print2()

 {

 print1();

 cout<<"\n Z = "<<z;

 }

};

void main()

{

 C c;

 clrscr();

 c.read2();

 c.print2();

 getch();

}

Output :

Enter X : 10

Enter Y : 20

Enter Z : 30

X = 10

Y = 20

Z = 30

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 74

5. Hybrid Inheritance

Combination of one or more inheritance is known as Hybrid Inheritance.

Consider a simple example of hybrid inheritance.

(Chart No: 5 - Hybrid Inheritance)

Accessibility in Public Inheritance

Accessibility private variables protected variables public variables

Accessible from own class? yes yes yes

Accessible from derived class? no yes yes

Accessible from 2nd derived class? no yes yes

Accessibility in Protected Inheritance

Accessibility
private

variables

protected

variables
public variables

Accessible from own class? yes yes yes

Accessible from derived class? no yes

yes

(inherited as protected

variables)

Accessible from 2nd derived

class?
no yes yes

A

(Base Class)

B

(Intermediate

Base Class)

D

(Derived Class)

C

(Base Class)

http://www.jetir.org/

© 2019 JETIR June 2019, Volume 6, Issue 6 www.jetir.org (ISSN-2349-5162)

JETIR1907B74 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 75

Accessibility in Private Inheritance

Accessibility
private

variables
protected variables public variables

Accessible from own class? yes yes yes

Accessible from derived

class?
no

yes

(inherited as private

variables)

yes

(inherited as private

variables)

Accessible from 2nd derived

class?
no no no

Conclusion

The mechanism (process) of deriving a new class from existing (old) class is called inheritance, by

using inheritance we can reuse the features of existing class and that is the most important concept in

C++. All the inheritance has its own features and its use to provide users to reusability concepts

strongly, to save time and reduce the complexity.

In this paper we have to study the above five types of inheritance. We have to find that inheritance is

central concepts in C++ that allows deriving a class from multiple classes at a time.

References:

1. b3e6ba44.pdf

2. Bjarne Stroustrup, The C++ Programming Language, 4th edition, Pearson Education Inc.

3. E Balagurusamy, Object oriented Programming with C++, 6th Edition, New Delhi: Tata McGraw-

Hill Publishing Company Limited.

4. http://www.ijarcsms.com/docs/paper/volume1/issue2/V1I2-0005.pdf

5. https://pdfs.semanticscholar.org/a61d/a617de6cc75ae1bbbc0b02bea7ba

6. https://www.geeksforgeeks.org/inheritance-in-c/

7. https://www.programiz.com/cpp-programming/public-protected-private-inheritance

8. https://www.researchgate.net/profile/Bjarne_Stroustrup/publication/2396782

9. Multiple_Inheritance_for_C/links/00b7d514319dc8875a000000/Multiple-Inheritance-for-C.pdf

http://www.jetir.org/

