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Abstract 

   A (p,q) connected graph is padavon graceful graph if there exists an injective map f: E(G) → { 

1,1,1,2,2,3,4,5,7,…,2q-1} so that induced map f+ :  V(G) → { 0, 1, …,p+1} defined by f+(x) = |f(u)-f(v)| 

where the vertex x is incident with other vertex y and makes all the edges distinct. In this article, the 

padavon gracefulness of some path related graphs graphs are obtained.   
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1. Introduction 

In this paper we consider only finite, undirected non-trivial graphs G = (V(G),E(G)) with the vertex set 

V(G) and the edge set E(G).We refer to Gallian for all detailed survey of graph labeling. For standard 

terminology and notations we follow Harary. Graph labeling is a strong communication between number 

theory and structure of graphs. The study of graceful graphs and graceful labeling methods was 

introduced by Rosa .Rosa defined a β-valuation of a graph G with q edges an injection from the vertices 

of G to the set {0,1, …,q} such that when each edge uv is assigned the label |f(u)-f(v)|, the resulting edges 

are distinct.  β – valuation is a function that produces graceful labeling. However the term graceful 

labeling was not used until Golomb studied such labeling several years later. The Graph labeling is an 

assignment of numbers to the vertices or edges or both subject to certain conditions. If the domain of the 

mapping is the set of vertices(edges) then the labeling is called a vertex labeling(edge labeling). 

 

2. DEFINITIONS. 

Definition 2.1 
A walk W in a graph G is an alternating sequence of vertices and edges v0, e1, v1, e2, v2, e3,…, vn-1, en, 

vn such that ei = vi-1vi is an edge of G, 1 ≤ i  ≤ n. The number of edges in v0 – vn walk is the length of the walk. 

It is also denoted by v0 v1 v2 …vn-1 vn. If v0 = vn, then W is called a closed walk. If v0 ≠ vn, then W is called a 

open walk. If all the edges of W are distinct, then it is called a trail. 

Definition 2.2 
If all the vertices in a walk are distinct, then it is called a path. A path of length n is denoted by Pn 

and it contains n+1 vertices. A path in a graph is a sequence of vertices such that from each of its vertices 

there is an edge to the next vertex in the sequence. The first vertex is called the start vertex and the last vertex 

is called the end or terminal vertices of the path and the other vertices in the path are internal vertices. 

Definition 2.3The graph obtained by joining a pendent edge at each vertex of a path Pn is called a comb 

and is denoted by Pn ʘ k1  or Pn
+  

Definition 2.4 
A generalized star is a tree obtained from a star by extending each edge to a path. 

Definition 2.5 
           The join G1 + G2 of G1 and G2 consists of G1 U G2 and all the vertices of G1 are joined with each 

vertex of G2. The graph Pn + K1 is called a fan fn. 

Definition 2.6 
Sm, n denotes a star with m spokes in which each spoke is a path of length n. 

Definition 2.7 
           A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex 

set of G to the set {0,1,…,m} such that when each edge uv is assigned the label |f(u)-f(v)| and the resulting 

labels are distinct. Then the graph G is graceful. 
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Definition 2.8 
             The padavon sequence is the sequence of integers P(n) defined by  

The initial values P(0) = P(1) = P(2) = 1,  

and the recurrence relation  P(n) = P(n-2) + P(n-3). 

          The  first few values of P(n) are 

                   1, 1, 1, 2, 2, 3, 4, 5, 7, 9,12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616,… 

Definition 2.9 

Let G be a (p, q) graph. An injective function f: 𝑉(𝐺) → {1,2,3, … , 𝑁 ≥ 𝑞} is said to be a padavon 

graceful labeling if an induced edge labeling f * defined by   𝑓∗(𝑢𝑣) = |𝑓(𝑢) − 𝑓(𝑣)| is a bijection from 

𝐸(𝐺) onto the set {𝑝1,𝑝2,𝑝3 , … , 𝑝𝑞} where pi is the ith   padavon number. Then G is called a padavon graceful 

graph if it admits a padavon graceful labeling. 

 

3. Padavon graceful labeling for some path related graphs 

In this section, the gracefulness of padavon sequence for some path related graphs Pn, Pn
+ - v, (n ≥ 1), 

𝑆𝑚 ,𝑛  are discussed in detail. 

Theorem 3.1  

For any positive integer n, Pn
+ - v is a padavon graceful graph where v is a pendent vertex of Pn

+ attached 

with either a pendent vertex of Pn or the neighbor of a pendent vertex of   Pn 

Proof:  

Let  {𝑢0,𝑢1,𝑢2,𝑢3 , … , 𝑢𝑛 } be the vertices of the path Pn of Pn
+.  

Let G = Pn
+ - v, where v is either v0 or v1. 

Let 𝑉(𝐺) = {𝑢𝑖 : 0 ≤ 𝑖 ≤ 𝑛} ∪ {𝑣𝑖 ∶ 0 ≤ 𝑖 ≤ 𝑛}\{ 𝑣 =  𝑣0 𝑜𝑟 𝑣1} 

𝐸(𝐺) = {𝑢𝑖𝑢𝑖+1: 0 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢𝑖𝑣 ∶ 0 ≤ 𝑖 ≤ 𝑛}\{ 𝑢1 𝑣1} (or) { 𝑢0 𝑣0} 

Then |V (G)| = 2n+1 and |E (G)| = 2n. 

Define f: V (G) → {0, 1,2,3, … , 𝑁 } 

Let 𝐸1 =


1

0





n

i {|𝑓(𝑢𝑖𝑢𝑖+1)|} 

            = 


1

0





n

i {|𝑓(𝑢𝑖) − 𝑓(𝑢𝑖+1)|}  

      𝐸2 =


n

i 0 {𝑓(𝑢𝑖𝑣𝑖)} - {𝑓(𝑢0𝑣0)} (or) 

            =


n

i 0 {𝑓(𝑢𝑖𝑣𝑖)} -  {𝑓(𝑢1𝑣1)}   

                Accordingly as 𝑣 = 𝑣0  (or) 𝑣 = 𝑣1 

        𝑓∗(𝐸(𝐺)) =  𝐸1 ∪ 𝐸2 

                         = {𝑝1, 𝑝2, 𝑝3, … , 𝑝2𝑛} 

 So the edges of G receives the distinct labels and f is a padavon graceful labeling of Pn
+ - v 

Hence Pn
+ - v, (n ≥ 1 and v is either 𝑣𝑣 (or)𝑣1) is a padavon graceful graph. 

Example 3.2 
The following are some of the examples of padavon graceful labeling for some path    

related graphs. 

                                            
                                                                                       P5

+ - v1 
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                                                                                      P5

+ - v0 

                 
                                                                        P6

+ - v1  

            

                        
                                                                       P6

+ - v0 

Theorem 3.3  

 𝑆𝑚 ,𝑛 is a padavon graceful graph  

Proof:   

Let G = 𝑆𝑚 ,𝑛  

Let 𝑉(𝐺) = {𝑢0} ∪ {𝑢𝑗
𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛} and 

      𝐸(𝐺) = {𝑢𝑗  
𝑖 𝑢𝑗+1

𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛 − 1}  

      Then |V (G)| = mn+1 and |E (G)| = mn 

Define f: V (G) → {0, 1,2,3, … , 𝑁} by 𝑓(𝑢0) =  𝑝1 

      The following example reveals that it is possible to assign suitable numbers for the values so as the 

edges receive distinct padavon numbers as it is shown in the following examples.  

Therefore f is a padavon graceful labeling of G. 

Hence  𝑆𝑚 ,𝑛 is a padavon graceful graph. 

Example 3.4. 

                               
                                                                                      S5,5 
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                                                                                  S5,4 

                          
                                                                              S4, 4 

                                                       

                             
                                                                              S4, 5 

 

4.  Padavon graceful labeling for some special graphs 

In this section it is shown that 𝑓𝑚 @ Pn is padavon graceful graph. 

Definition 4.1  

The graph G = 𝑓𝑚 @ Pn consists of a fan 𝑓𝑚 and a path Pn of length n which is attached with the maximum 

degree of the vertex of 𝑓𝑚. 

Theorem 4.2  

𝑓𝑚 @ Pn is a padavon graceful graph for any positive integer m and n. 

Proof: 

 Let G =  𝑓𝑚 @ Pn 

Let 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑚, 𝑣𝑚+1  and 𝑢0 be the vertices of a fan  𝑓𝑚 and  𝑢0, 𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛 be  

the vertices of a path Pn 

Here 𝐸(𝐺) = {𝑣𝑖𝑣𝑖+1 ∶ 1 ≤ 𝑖 ≤ 𝑚} ∪ {𝑢0𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑚 + 1}  ∪ {𝑢𝑖𝑢𝑖+1: 0 ≤ 𝑖 ≤ 𝑛 − 1} 

Then |V (G)| = m+ n+2 and |E (G)| = 2m + n+1 

Define f: V (G) → { 𝑝1, 𝑝2 , 𝑝3, … 𝑝2𝑚+𝑛+1}  such that  

f *(ei)  is the ith padavon number for all i=1, 2, 3, …, 2m+n+1 

Let 𝐸(𝐺) = {𝑓∗(𝑣𝑖𝑣𝑖+1 ): 1 ≤ 𝑖 ≤ 𝑚} 
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                = {|𝑓(𝑣𝑖) − 𝑓(𝑣𝑖+1)| : 1 ≤ 𝑖 ≤ 𝑚} 

Here the edges of  𝑓𝑚 @ Pn are labeled in such a manner that they receive the distinct labels.  

          Hence 𝑓𝑚 @ Pn is a padavon graceful graph when for any positive integer m. 

Example 4.3 

       The following graphs shows 𝑓𝑚 @ Pn, when m = n, m ˃ n and m ˂ n are padavon graceful labeling      

                                       
                                                              𝐹3 @ P2 

                                                                                                                               

                                   
                                                                    

                                                                          𝐹4 @ P3 

                                   
                                                                    𝐹5@ P4 

                                       
                                                                    𝐹6 @ P5 
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