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Abstract 

The technique of Principal Component Analysis (PCA) is generally applied to condense information 

contained in a large number of variables into a smaller set of new composite dimensions with minimum loss of 

information. Ecologists have long been using the technique of PCA to effectively reduce the dimensionality of 

large ecological datasets. The application of PCA to analyse the abundance of earthworm species in a mixed 

reserve forest area of Manipur has been carried out in this paper. Data on 12 species of earthworm collected 

during the 12 different months of the year from six replicates are used in the analysis. Necessary steps for the 

analysis are systematically highlighted and performed to reach to a valid conclusion. The result of the 

eigenanalysis using covariance matrix shows that the first and second components accounted for nearly 95% of 

the total variability in the original data so that the first two components will be enough to retain for further study. 

Graphical interpretations are also presented accordingly. 
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1. Introduction 

Ecologists have long been using the technique of PCA to analyze large ecological dataset with the purpose 

of effectively reducing the dimensionality of the dataset. PCA as a statistical multivariate technique uses 

orthogonal transformation to convert a set of correlated observations into a set of orthogonal uncorrelated axes 

called principal components (James & McCulloch[1] 1990; Robertson, et al[2]., 2001). PCA tries to condense large 

ecological datasets without compromising much of the information contained in the original data set. It reduces 

P-original variables (dimensions) of the data set into fewer number of dimensions as principal components where 

each dimension is defined by a normalized linear combination of the p-original variables. 

Ecologists are generally interested in understanding patterns in the distribution and abundance of 

organisms and the factors (environmental) that control the pattern. In the most common use of PCA in ecology 

the investigator collects a set of abundance or importance values for many species over many samples and then 

organizes the data into a matrix. The elements of the data matrix may be converted, rescaled or transformed as 

appropriate; either a variance- covariance or correlation matrix is then computed. The eigenvalues and 

eigenvectors of this matrix is then computed by solving the matrix equation   

Aṵ = λ ṵ             ….. (1) 

 Where ṵ is the eigenvector and λ is a scalar and A is the sample covariance or correlation matrix. There are as 

many λ’s and ṵ’s as there are rows (species) in A. 

Geometrically, PCA will return scatter plots on a new set of axes established by a rigid rotation of the 

original species axes. The eigenvectors are the direction cosines relating the species axes to the component axes. 
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Each sample point has a score on each axis, calculated as the sum (over all species) of the products of 

each species importance value for that sample times that species’ eigenvector. As such the principal component 

scores are linear combination of species importance scores and will behave much like species importance scores. 

The main attempt in principal component analysis is the examination of the eigenvector coefficient s which 

defines the extracted axes. The eigen vector components are called the loadings with respect to each principal 

component. The ith component of the rth coefficient is the loading of the rth principal component on the ith response 

variate. That is, if vr = α(r)/X is the rth Principal Component, then ith component of α(r) gives the loading of vr
 on 

the ith response variate Xi of X/ = (X1, X2,…..,Xp). 

2. Source of Data  

Earthworms are widely distributed in most ecosystems in natural and plantation forest, grasslands and 

agro-ecosystem. Earthworms represent a major portion of (>80%) the soil invertebrate biomass and involve in 

the process of soil formation and maintenance of soil fertility. Distribution and abundance of earthworms are 

governed by several ecological factors viz temperature, moisture, pH, available organic matter etc. The number 

of species in a given earthworm community, which is the simplest measure of species diversity range from 1 to 

15 species (Edwards and Bohlen[3], 1996). 

The diversity of the earthworm community at a given locality is influenced by the characteristics of the 

soil, climate and organic resources of the locality as well as its history of land use and soil disturbance. 

Earthworms perform several beneficial functions which include decomposition of organic matter that helps in 

increasing soil nutrients, increase air water infiltration, soil aggregation, increase the availability of plant 

nutrients, worm cast as biofertlilizer etc. 

In this paper data on 12 species of earthworm collected from mix reserve sub-tropical forest ecosystem 

located at Koirengei about 12 km from Imphal city is used for analysis. The collection site lies at 140 54/ 49.74// 

longitude and it is protected from various biotic interference. It has a moderate to steep slopes at certain sites. 

Numbers of species of earthworms are collected from six different replicates at the study site.  Each replicate has 

a depth of 10 cm inside the soil from the surface. In the present study the maximum number of counts from six 

replicates is considered for analysis thinking that the abundance of species will be largely depend on the maximum 

total count of that species.  Data on the number of counts of species are thus obtained for the 12 months of the 

year during 2012 and 2013(Sharon Haokip[4], 2015). 

The following types of earthworm species are found from the study site-   Drawida sp (Type-1), Drawida 

Japouica (Type-2), Drawida nepalensis(type-3), Eutyphoeus sp.(type-4), Pontoscolex corethrurus (Type-5), 

Kanchuria sumerianus (Type-6), Dichogaster bolani (Type-7), Amynthasa corticis (Type-8), Metaplure anomala 

(Type-9), M. Houlleti (Type-10), Periyonyx Shillongensis (Type-11) and Enchytracidae (Type-12). 

3. Objectives of the study: 

1) To explain the variability in the abundance of species of earthworms with respect to different months of 

the year.  

2) To employ the technique of PCA to achieve the above and thereby reducing the dimensionality of the 

data set by interpreting only the first few components. 

 

4. Analysis and results 

PCA requires a number of essential steps to reach to valid conclusions. First the row data has to be set 

up in a matrix form (e.g. species by months) in order to make it suitable for input to an existing program 

(Software). 

4.1 Multivariate Normality 

PCA assumes that the underlying data structure is multivariate normal. Geometrically a multivariate 

normal distribution exists when the data cloud is hyperellipsoid with normally varying density around the centroid 
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(Beals[5], 1973). Such a distribution exists when each variable has a univariate normal distribution about fixed 

values on all others (Blalock[6], 1979). If the dataset has a multivariate normal, then the linear axes (i.e. P.C’s) 

will adequately display the data. Further, second and subsequent component axes maintain strict independence 

(orthogonality) only when the underlying structure of the data is multivariate normal. When the datasets are not 

multivariate normal there is usually some redundancy in the principal components. 

In this paper normality assumption is checked and verified for all the variables (months) by using 

graphical methods. Four different plots viz. Histogram, boxplots, density plot and quantile-quantile plot (qq plot) 

are drawn and verified that we can without much difficulty assume that the variables are coming from a nearly 

normal distribution. The graphs are shown in Fig.1 and 2 for two months (May and December). 

 

4.2 Outliers 

In Fig.1 and 2, we use the qq plot to detect any outlier. It is quite apparent from the two month’s graph 

of the qq plot that no significant outlier is present in the data. 
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Fig. 1: Test for normality (Month = May)   
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Fig. 2: Test for normality (Month = December)   
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4.3 Extracting the principal components 

Principal Components are not directly extracted from the original raw data matrix. In general the 

covariance matrix or the correlation matrix is used to extract the principal components. A component analysis 

using the covariance matrix gives more weight to the variables with larger variance whereas analysis based on 

the correlation matrix gives equal weight to all the variables. PCA using the two different matrices are different. 

Use of correlation matrix is always more appropriate if the scale or unit of measurement differ among the 

variables (Noy-Mier et al[7]; 1975). However if the variables share a common measurement scale, the covariance 

matrix could be more appropriate or desirable. The present analysis which consists of dataset with month by 

species abundance, the use of covariance matrix will be more appropriate as more abundant species will have 

greater absolute variances.  

4.4 The Eigenvalues 

 Computationally, PCA is essentially solving the characteristics equation  

  | ∑ − 𝜆𝐼| = 0   …. (2) 

 Where ∑ is the covariance or correlation matrix, 𝜆 is a scalar (eigenvalue) and I is the identity matrix. For 

a pxp matrix ∑ we get p eigenvalue solutions of (2). 

 As for the present analysis having 12 months (Jan. – Dec.) and 12 different species we obtain a 12x12 

covariance matrix from which we extracted 12 eigenvalues. The variances (Std. deviations), the proportion of 

variance, and cumulative proportion for each of the first six components are presented in Table 1. 

 

 

Table 1: Standard deviations, proportion of variance and  

Cumulative proportion for the first six principal components 

    Comp. 1     Comp. 2     Comp. 3         Comp. 4     Comp. 5     Comp. 6     

 Standard 

deviation  

 

3.373583 0.549664 0.412373 0.295789 0.168436 0.148585 

Proportion of 

Variance  

 

0.948422 0.025178 0.014171 0.007291 0.002364 0.00184 

 Cumulative 

Proportion  

 

0.948422 0.973599 0.98777 0.995061 0.997425 0.999265 

       

All the 12 eigenvalues are all non-negative, the larger the value is, the greater the sample variability on 

that principal component. Thus the component corresponding to the largest variance (λ) captures the maximum 

variation on the sample variance-covariance. A principal component with lesser and lesser eigenvalues reduces 

the explanatory power of variability among sample points. 

The first eigenvalue is always the largest. Therefore the first principal component defines the dimension 

or gradient with the single highest variance. The second eigenvalue and its corresponding principal component 

represent the largest variance in a dimension orthogonal to the first principal component. Thus the second 

component provides the greatest explanation of the sample variability after the first component has done its best. 

And so on so forth the remaining principle components. 
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4.5 Principal component loadings 

As a byproduct of the principal component analysis (PCA) we obtained eigenvectors associated with each 

eigenvalues by solving the matrix equation in (2). The number of components of each eigenvector equals number 

of the variables in the data matrix A. Each component of the eigenvector defines the loading of the corresponding 

principal component on the particular response variate. The strength of the monthly species contribution to a 

component axis is indicated by the magnitude of the eigenvector components. 

Table 2: Loadings for the first three components 

Month Comp. 1  Comp. 2   Comp. 3 

January 0.000 0.103 0.000 

February 0.000 0.000 0.193 

March 0.148 -0.154 0.491 

April 0.177 0.216 0.142 

May 0.178 0.212 0.207 

June 0.251 0.265 0.322 

July 0.337 0.444 -0.287 

August 0.491 -0.307 0.000 

September 0.495 0.268 0.000 

October 0.407 -0.624 -0.146 

November 0.253 0.000 0.401 

December 0.000 0.205 -0.182 
 

 

5. Assessing the importance of the principal components 

An important decision in principal component analysis (PCA) is to determine on how many principal 

components to retain for interpretation and use for later analyses. There are in the literature some approaches to 

judge the number of components to retain but each of them have their own merits and demerits. 

The latent root criteria (Guttman[8]
, 1954; Cliff[9]

, 1988) are most reliable when the number of variables is 

20 to 50. Another criterion is the scree plot criterion in which eigenvalues are plotted against the component 

number in the order of extraction. The shape of the resulting curve (Fig.3) is used to evaluate the appropriate 

number of components to retain. The Broken stick criteria proposed by Frontier[10] (1976) assumes that if the total 

variance is distributed randomly among the components, then the scree plot will show a broken stick distribution     

(Fig. 3).  

Relative percent of the total variability explained by each component gives another important criteria in 

determining the number of components to retain for further analysis. The relative percent explained by the ith 

principal components is defined by 

Φi = 𝜆𝑖
∑𝜆𝑖⁄     …   (3) 
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Fig. 3: Scree plot 
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It measures how much of the total variance is accounted for by each of the principal components. The 

cumulative percent variance of all principal components is 100%. Generally, the cumulative percent variance of 

the first few components will be high indicating that the data structure could be effectively summarized by the 

first few components. Unfortunately there is no standard value on how much of the total variance should the first 

few components explain 90% is generally agreed upon. 

Referring to Table 1 the percentage of variance accounted for by the first principal component is 

approximately 94.8%. This shows that the total variability in the original variables (months) could be effectively 

explained by the first component alone. However, the scree plot criteria in Fig.3 suggests that we could retain the 

first and second principal components together accounting for nearly 97% of the total variability in the data. The 

remaining components contribute very little information and therefore we retain only the first two components 

without compromising much information of the original variables. 

6. Interpreting the principal components 

The extracted principal components can be interpreted by (i) examining the relationship between the 

individual variables and the principal components and (ii) examining the relative positions of the sampling entities 

in the ordination space. The principal component loadings in Table 2 play an important role in interpreting the 

significant components. As a rule of the thumb and without any mathematical proposition, principal component 

loadings greater than 0.3 (absolute value) is considered significant (Hair, Anderson, and Tatham[11], 1987). 

Loadings greater that 0.4 (absolute value) is considered more significant and thus more important. 

Several months are important in each of the first two components as evident from the loadings table in 

Table 2. We interpret the components on those months with loadings greater than 0.3 or less than -0.3. The first 

principal component gives maximum loadings to September, August, October and July showing that this 

component represents a gradient fro m these four months. All the values of these loadings are positive indicating 

that all these months have positive correlation. Variability in the abundance of earthworm species could be 

explained during these four months as explained by the first principal component. These four months include part 

of the rainy season and summer with hot and moist climate. The second component represents a gradient from 

October, July and August whereas the third component represents November and June. We notice the inverse 

relation between October, August and July indicating that large number of species during July is associated with 

low number of species during October and August. 
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Fig. 4 Bi-plot showing graphical representation of the principal component loadings 
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To have a comprehensive view of both the principal components and the original variables we use the 

biplot in fig. 4. The biplot (Gabriel,[12] 1971) allows us to represent the original variables and the transformed 

observations on the principal component axes. In the biplot, the x-axis represents the scores for the first principal 

components and the y-axis represents the scores for the second principal components. The original variables are 

represented by arrows which graphically indicate the proportion of the original variance explained by the first 

two principal components. The direction of the arrows indicates the relative loadings of the first and second 

components. The month September has the highest loading followed by August in the first principal component. 

This is indicated by longer arrows for September and August. The months of October and August have negative 

signs of their loadings on the second component which is indicated by slightly downward slopes in fig. 4. 

 

7. Conclusion 

 Because of the availability of efficient software packages that enable computation of PCA, it has become 

one of the most useful tools in ecological data analysis. However, one should understand the limitations of PCA 

before taking further applications of the technique. For example, PCA is only capable of detecting gradients that 

are intrinsic to the data set and thus more important gradients that are not measured using the selected variables 

may distort the relationships that are intrinsic to the data (Gauch,[13] 1982). Another limitation is that by looking 

at the first few components one may overlook a later axis that explains most of the variations in some variables. 

The present paper is primarily aimed at illustrating the necessary steps in taking up PCA applied to ecological 

data without considering much of the limitations of the method. Thus the results obtained above may be subject 

to further investigation for obtaining more accurate results of future use. 
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