COMMON FIXED POINT THEOREMS AND NON-EXPANSIVE MAPPING IN BANACH SPACE

*Dr. Bijay Kumar Singh and **Pradeep Kumar Pathak
* Associate Professor and Head, P.G. Department of Mathematics, H.D. Jain College, Arrah (Bihar), India
** Research Scholar, Department of Mathematics, VKS University, Arrah (Biahr), India.

Abstract

In this paper we explain some common fixed point theorems and non-expansive mapping in Banach space. Our aim is to generalize the theorems and non-expansive mapping in Banach space.

Key words: Fixed point theorems, Non expansive mapping, Banach space.

INTRODUCTION

We establish a common fixed point theorem for self mappings, not necessarily commuting of a closed and convex subset of a Banach space, generalizing a well known result of Gregus (1980).

Let X be a Banach space and T be a mapping of X into itself satisfying the inequality $\|\mathrm{Tx}-\mathrm{Ty}\| \leq \|$ $\mathrm{x}-\mathrm{y} \|$ for all x, y in X . T is said to be non-expensive and it is well known that the class of contraction mapping and it is properly contained in the class of all continuous mapping. Kirk (1965) has independently proved a fixed point theorem for non-expansive mappings defined on a closed, bounded and convex subset of a uniformly convex Banach space and in spaces with richer structure. A number of generalizations of non-expensive mappings have been discussed by many authors. The works of Dotson (1972a and b); Emmanuele (1981); Goebel (1969); Goebel and Zlotkiewicz (1971); Goebel, Kirk and Shimi (1973); Massa and Roux (1978), Rhoades (1982) are of special significance. A comprehensive survey concerning fixed point theorems for non-expansive and related mappings can be found in Kirk (1965, 1981, 1983).

On the other hand, there are mappings which satisfy conditions similar to non-expansive and which possess a unique fixed point.

But such mapping cannot be viewed as generalizations of non-expansive mappings. Two such examples occur recently in Gregus (1980) and Rhoades (1978).

Motivated by a contractive condition of Hardy and Rogers (1973) in this chapter we extend the result of Gregus (1980) to the case of two mappings.

Let C be a closed convex subset of X . By summary, assuming $\mathrm{b}=\mathrm{c}$ in the contractive condition of Gregus (1980), this author proved the following result.
Theorem 1:
Let T be a mapping of C into itself satisfying the inequality
(1) $\quad\|T x-T y\| \leq a .\|x-y\|+b .\{\|T x-x\|+\|T y-y\|\}$
for all x, y in C, where $0<a<1, b>0$ and $a+2 b=1$. Then T has a unique fixed point.
We now prove the following theorem.

Theorem 2:

Let S and T be mappings of C into itself satisfying the inequality
(2) $\|S x-T y\| \leq a .\|x-y\|+b$. $\{\|S x-x\|+\|T y-y\|\}+c$.

$$
\{\|S x-y\|+\|T y-x\|\}
$$

for all x, y in C, where $0<a<1, b>0$ and $a+2 b+2 c=1$ and $(1-b) . c<a b$. If
(3) $\quad\|T x-x\| \leq\|S x-x\|$
for all x in C, then S and T have a unique common fixed point w in C. Further, w is the unique fixed point of S and T.

Proof:

Let x be an arbitrary point in C. From (2), we deduce that
$\|S T x-\operatorname{Tx}\| \leq a$. $\|\operatorname{Tx}-\mathrm{x}\|+\mathrm{b}$. $\{\|\operatorname{STx}-\mathrm{Tx}\|+\|\operatorname{Tx}-\mathrm{x}\|\}+\mathrm{c}$.

$$
\{\|S T x-T x\|+\|T x-x\|\}
$$

which implies that
(4) $\|S T \mathrm{x}-\mathrm{Tx}\| \leq \frac{a+b+c}{1-b-c}$. $\|\mathrm{Tx}-\mathrm{x}\|=\|\mathrm{Tx}-\mathrm{x}\|$.

Similarly, we have
(5) $\quad\|T S x-S x\| \leq\|S x-x\|$.

Since (4) holds for all x in C, we deduce that
$\|$ STSx - STx \| $\leq \| \operatorname{TSx}-$ Sx \|I,
Which implies, by (3) and (5), that
(6) $\quad\|T T S x-\operatorname{TSx}\| \leq\|S T S x-\operatorname{TSx}\| \leq\|S x-x\|$.

We now define the point z by

$$
\mathrm{z}=\frac{1}{2} \mathrm{TS} \mathrm{x}+\frac{1}{2} \mathrm{TTS} \mathrm{x} .
$$

Then, it follows, from (6), that
(7) $\quad 2\|\mathrm{TSx}-\mathrm{z}\|=2\|\mathrm{TTS} \mathrm{x}-\mathrm{z}\|=\|\mathrm{TTS} \mathrm{x}-\mathrm{TS} \mathrm{x}\| \leq\|S \mathrm{x}-\mathrm{x}\|$.

Since C is convex, z belongs to C and using (2), (5), (6) and (7), we have that
(8)

$$
\begin{aligned}
& 2 \| S z- z\|=\| 2 S z-(T S x+T T S x)\|=\| S z-T S x\|+\| S z-T T S x \| \\
& \leq\|S z-T S x\|+\|S z-T T S x\| \\
& \quad \leq a \cdot\|z-S x\|+b \cdot\{\|S z-z\|+\|S x-x\|\} \\
& \quad+c \cdot\{\|S z-z\|+\|S x-z\|+\|T S x-z\|\} \\
&+a \cdot\|z-T S x\|+\mathrm{b} \cdot\{\|S z-z\|+\|S x-x\|\} \\
&+c \cdot\{\|S z-z\|+\|T S x-z\|+\|T T S x-z\|\} \\
& \leq a \cdot\left\{\|S x-z\|+\frac{1}{2} \cdot\|S x-x\|\right\}+2 b \cdot\{\|S z-z\|+\|S x-x\|\} \\
&+c \cdot\left\{2\|S z-z\|+\|S x-z\|+\frac{3}{2} \cdot\|S x-x\|\right\} .
\end{aligned}
$$

On the other hand, using (2), (5) and (6), we obtain that

$$
\begin{align*}
2 \| S x & -z\|=\| 2 S x-(T S x+\operatorname{TTS} x)\|=\| S x-T S x\|+\| S x-T T S x \| \tag{9}\\
& \leq\|S x-T S x\|+\|S x-T T S x\| \\
& \leq\|S x-x\|+a \cdot\|x-T S x\|+b \cdot\{\|S x-x\|+\|S x-x\|\} \\
& +c \cdot\{\|S x-x\|+\|T T S x-T S x\|+\|T S x-S x\|+\|S x-x\|\} \\
& \leq\|S x-x\|+a \cdot\{\|S x-x\|+\|T S x-S x\|\} \\
& +(2 b+4 c) \cdot\|S x-x\| \\
& \leq(1+2 a+2 b+4 c) \cdot\|S x-x\| \\
& =(3-2 b) \cdot\|S x-x\| .
\end{align*}
$$

It is easily seen that (8) and (9) imply that
$2||S z-z\|\leq a \cdot(2-b) .| | S x-x\|+2 b .\{\|S x-x\|+\|S z-z\|\}$

$$
+c \cdot\{2\|S z-z\|+(3-b) .\|S x-x\|\} .
$$

Consequently we have that
(10) $\|S z-z\| \leq \lambda$. $\|S x-x\|$,

Where
$\lambda=\frac{1}{2}\left(\frac{2 a-a b+2 b+3 c-b c}{1-b-c}\right)$
from the assumptions on the constants a, b and c , it follows that $0<\underline{\lambda}<1$. We claim that $\mathrm{h}=\inf \{\|$ $S x-x \|: x \in C\}=0$, otherwise, for $0<\underline{\varepsilon}<(1-\underline{\lambda}) \cdot h / \underline{\lambda}$, there exists a point \bar{x} in C such that $\|S \bar{x}-\bar{x}\| \leq h+\underline{\in}$ and hence (10) implies that $\mathrm{h} \leq\|\mathrm{Sz}-\mathrm{z}\| \leq \underline{\lambda}$. $\|\mathrm{S} \bar{x}-\bar{x}\| \leq \underline{\lambda}$. (h+ \underline{E}) $<\mathrm{h}$, a contradiction.

Thus $\mathrm{h}=0$ and the sets
$H_{n}=\left\{x \in C:\left\{\|S x-x\| \leq \frac{1}{n}\right\}\right.$
are non-empty for any $\mathrm{n}=1,2, \ldots$; of course, we have
(11) $\mathrm{H}_{1} \supseteq \mathrm{H}_{2} \supseteq \ldots \ldots \supseteq \mathrm{H}_{\mathrm{n}} \supseteq \ldots \ldots$

Let \bar{H}_{n} be the closure of H_{n}. We now show that
(12) $\operatorname{diam} \bar{H}_{n} \leq(3-a) / 2 b n$
for any $n=1,2, \ldots . .$. Indeed, we obtain on using (2) for all x, y in H_{n},
$\|x-y\| \leq\|S x-x\|+\|S x-y\|$
$\leq\|S x-x\|+\|T y-y\|+\|S x-T y\|$
$\leq \frac{2}{n}+\mathrm{a} \cdot\|\mathrm{x}-\mathrm{y}\|+\mathrm{b} \cdot\{\|S \mathrm{x}-\mathrm{x}\|+\|\mathrm{Ty}-\mathrm{y}\|\}$
$+c$. $\{\|S x-x\|+\|x-y\|+\|T y-y\|+\|x-y\|\}$
$\leq \frac{2}{n}+(a+2 c) \cdot\|x-y\|+(2 b+2 c) / n$
$=(3-a) / n+(1-2 b) .\|x-y\|$
Since (3) implies that \| Ty - y \| $\leq\|S y-y\| \leq \frac{1}{n}$. The above inequality implies (12) since diam H_{n} = diam $\overline{\mathrm{H}}_{\mathrm{n}}$ and clearly it follows from (11) that
$\overline{\mathrm{H}}_{1} \supseteq \overline{\mathrm{H}}_{2} \supseteq$ \qquad $\supseteq \overline{\mathrm{H}}_{\mathrm{n}} \supseteq$ \qquad
Thus $\left\{\overline{\mathrm{H}}_{\mathrm{n}}\right\}$ is a decreasing sequence of non-empty subsets of C such that the sequence $\left\{\right.$ diam $\left.\overline{\mathrm{H}}_{\mathrm{n}}\right\}$ converges to zero as $n \rightarrow \infty$ by (12). Since X is complete, so is C and by Cantor's intersection theorem, there exists a point w in C such that
$\mathrm{w} \in \bigcap_{n=1}^{\infty} \overline{\mathrm{H}}_{\mathrm{n}}$.
This means that $\|S w-w\| \leq \frac{1}{n}$ for any $n=1,2, \ldots \ldots$ and so $S w=w$. Using (3), we have $T w=w$. Then w is a common fixed point of S and T. Let us suppose that w ' is another fixed point of S. On using (2) for $\mathrm{x}=\mathrm{w}$ and $\mathrm{y}=\mathrm{w}$, we have that
$\left\|w^{\prime}-w\right\|=\left\|S w^{\prime}-T w\right\|$

$$
\begin{aligned}
& \leq a \cdot\left\|w^{\prime}-w\right\|+c \cdot\left\{\left\|w^{\prime}-w\right\|+\left\|w-w^{\prime}\right\|\right\} \\
& =(a+2 c) \cdot\left\|w^{\prime}-w\right\| .
\end{aligned}
$$

This implies that $w^{\prime}=w$ since $a+2 c=1-2 b<1$. Therefore w is the unique fixed point of S and similarly it is shown that w is the unique fixed point of T. This completes the proof.

Remark:

By assuming $\mathrm{S}=\mathrm{T}$ and $\mathrm{c}=\mathrm{o}$, theorem 2 becomes theorem 1.
By enunciating theorem 2 for some iterates of S and T, we obtain the following result.

Theorem 3:

Let S and T be mapping of C into itself satisfying the inequality
$\left\|S_{p_{x}}-T_{q_{y}}\right\| \leq \mathrm{a} .\|\mathrm{x}-\mathrm{y}\|+\mathrm{b} .\left\{\left\|S_{p_{x}}-\mathrm{x}\right\|+\left\|T_{q_{y}}-\mathrm{y}\right\|\right\}$

$$
+\mathrm{c} .\left\{\left\|S_{p_{x}}-\mathrm{y}\right\|+\left\|T_{q_{y}}-\mathrm{x}\right\|\right\}
$$

for all x, y in C , where p and q are positive integers and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are as in theorem 2. If
$\left\|T_{q_{y}}-\mathrm{x}\right\| \leq\left\|S_{p_{x}}-\mathrm{x}\right\|$
for all x in C, then S and T have a unique common fixed point w in C. Further, w is the unique fixed point of S and T.

Proof:

By theorem 2, mapping Sp and Tq of C into itself have a unique common fixed point w in C. Since $S w=S S p w=S p S w$, we deduce that $S w$ is also a fixed point of $S p$, it follows that $S w=w$. Similarly, we can prove that $\mathrm{Tw}=\mathrm{w}$ and therefore w is common fixed point S and T . If w^{\prime} is another fixed point of S , then we have that $S p w^{\prime}=w^{\prime}$ but the uniqueness of w implies $w=w^{\prime}$. Thus w is also the fixed point of S as well as for the mapping of T.

The following example shows the stronger generality of theorem 3 over theorem 2 .

Example:

Let X be the Banach space of reals with Euclidean norm and $C=[0,2]$. We define S and T by putting $S x=0$ if $0 \leq x<1, S x=\frac{3}{5}$ if $1 \leq x \leq 2, T x=0$ if $0 \leq x<2$ and $T_{2}=\frac{9}{5}$. Then the condition (2) of theorem 1 does not hold, otherwise, we should have for $x=1$ and $y=2$.

$$
\begin{aligned}
\frac{6}{5}=\left\|S_{1}-\mathrm{T}_{2}\right\| & \leq \mathrm{a} \cdot\|2-1\|+\mathrm{b} .\left\{\left\|1-\frac{3}{5}\right\|+\left\|2-\frac{9}{5}\right\|\right\} \\
& +\mathrm{c} \cdot\left\{\left\|\frac{9}{5}-1\right\|+\left\|2-\frac{3}{5}\right\|\right\} \\
& =\mathrm{a}+\frac{3 b}{5}+\frac{11 c}{5}
\end{aligned}
$$

$$
=1-2 b-2 c+\frac{3 b}{5}+\frac{11 c}{5}
$$

Which implies $\frac{1}{5}+\frac{7 b}{5} \leq \frac{c}{5}$, i.e, $1+7 \mathrm{~b} \leq \mathrm{c}$, a contradiction. However, the conditions of theorem 3 are trivially satisfied for $p=q=2$ since $S^{2} x=T^{2} x=0$ for all x in C.

We explicitly observe that the results of this chapter, for $S=T$, are not comparable with the results, where, although the contradictive condition used in more general than (2), the additional assumptions on the coefficients and the uniform convexity of X neither imply nor are implied by the assumptions of theorem 2.

REFERENCES:

1. Kirk, W.A. : "A fixed point theorem for mappings which do not increase distances". Amer. Math. Monthly. 72(1965), 1004-1006.
2. Dotson, W.G. Jr. : "Fixed points of quasi-non-expansive mappings". J. Austral. Math. Soc. 13, (1972), 167-170.
3. Dotson, W.G. Jr. : "Fixed points theorems for non-expansive mappings on star shaped subsets of Banach spaces". J. London Math. Soc. (2) 4, (1972), 408-410.
4. Emmanuele, G. : "Fixed points theorems in complete metric space". Nonlinear Anal.5(1981), 287292.
5. Goebel, K. : "An elementary proof of the fixed points theorem of Browder and Kirk". Michigan Math. J., 16(1969), 381-383.
6. Goebel, K. and Zlotkiewicz, E. : "Some fixed points theorems in Banach spaces". Colloq. Math., 13 (1971), 103-106.
7. Goebel, K., Kirk, W.A. and Siumi, T.N.. : "A fixed point theorem in uniformly convex spaces". Boll. Un. Mat. Ital. (4) 7(1973), 67-75.
8. Massa, S. and Roux, D. : "A fixed point theorem for generalized non-expansive mappings". Boll. Un. Math. Ital (5), 15A (1978), 624-634.
9. Gregusv, M. Jr. : "A fixed point theorem in Banach space". Boll. Un. Mat. Ital. (5) 17A(1980), 193198.
10. Rhodes, B.E. : "Some fixed point theorems for generalized non-expansive mappings in Nonlinear Analysis and Application". Lecture Notes in Pure Appl. Math. Vol. 80 Marcel-Dekker, 1982, 223228.
11. Kirk, W.A. : "Fixed points theorems for non-expansive mappings II". Contemp. Math. 18(1983), 121-140.
12. Kirk, W.A. : "Fixed points theorems for non-expansive mappings, Lecture Notes in Math." Vol. 886, Springer-Verlag, Berlin and New York, (1981), 484-505.
13. Hardy, G.E. and Rogers, T.D. : "A generalization of a fixed point of Reich". Canad. Math. Bull. 16(1971), 201-206.
