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Abstract :  The Normal model is very common and the most widely used model in the field of Statistics. In this paper, an 

endeavour has been made to fit the Bayesian inference procedures for the Normal model. The implementation is made through R, 

Stan and INLA software packages. INLA is based on approximating the posterior marginal distributions of the model parameters 

by means of different Laplace approximations. Codes that have been created in R and Stan to implement the Bayesian approach 

using both optimization and simulation tools. Stan is a high-level language written in a C++ library for Bayesian modelling. Real 

data sets are used for illustrations. Moreover, parallel simulation tools are also implemented and furthermore actualized with a 

broad utilization of rstan. Its comparison has been made with the implementation using R-INLA software package. 
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I. INTRODUCTION 

Bayesian modelling is a part of statistical modelling in which the parameter itself considered as a random variable and data are 

constant, and in this modelling, we use prior information along with the observed data to inform our views about the parameter 

(Gelman et al., 2014). In a frequentist approach, the parameters   considered as constant terms, and the aim is to study the 

distribution of the data given  , through the likelihood of the sample. The three input constituents of Bayesian modelling are the 

likelihood function, prior distribution and posterior distribution. In this paper, an endeavour has been made to outline how the 
Bayesian approach proceeds to fit Normal model for econometric data using Stan. The equipment and methods used in this paper 

are in the Bayesian environment, which is implemented using rstan package. Bayesian inference is based on the Bayes rule which 

provides a sensitive technique for updating our beliefs in the light of new information.The Bayes rule states that posterior 

distribution is the combination of prior and data information. The prior distribution is significant in Bayesian inference since it 

influences the posterior. When no information is available, we need to specify a prior which will not influence the posterior 

distribution. Such priors are called weakly-informative, such as Normal, Gamma and half-Cauchy prior. The posterior distribution 

contains all the information required for Bayesian inference and the objective is to compute the numeric summaries of it via 

integration. Simulation can also be used as an alternative technique. Simulation-based on Markov chain Monte Carlo (MCMC) is 

used when it is not possible to sample   directly from posterior )|( yp  . For an extensive class of problems, this is the easiest 

way to get reliable results (Gelman et al, 2014). Gibbs sampling, Hamiltonian Monte Carlo (HMC) and Metropolis-Hastings 
algorithm are the MCMC techniques which provide difficult computational tasks quite feasible. HMC is a dominant sampling 

algorithm employed by several probabilistic programming languages. Probabilistic programming languages Stan and PyMC rely 

on HMC and its variants to carry out posterior inferences automatically and have made HMC a benchmark tool for applied 

Bayesian modelling (Stan Development Team, 2018). To make computation easier, software such as R, Stan (full Bayesian 

inference using the No-U-Turn sampler (NUTS), a modification of Hamiltonian Monte Carlo (HMC)) are used. Bayesian analysis 

of proposal appropriation has been made with the following objectives: 

1. To define a Bayesian model, that is, specification of likelihood and prior distribution. 

2. To write down the R code for approximating posterior densities with Stan. 

3. To illustrate numeric as well as graphic summaries of the posterior densities. 

 

A feasible alternative to MCMC methods able to reduce the computational costs of Bayesian inference is the Integrated Nested 

Laplace Approximation (INLA) algorithm. The INLA algorithm, proposed by Rue et al. (2009), is a deterministic algorithm for 

Bayesian  inference. INLA specially designed for latent Gaussian models, an extensive and flexible class of models ranging from 

(generalised) linear mixed to spatial and spatiotemporal models. Compared to MCMC, it provides accurate results in shorter 

computing time. 

 

1.1 The Gaussion or  Normal Model 

The Gaussian, also known as the Normal model, is a widely used model for the distribution of continuous variables and as a 

limiting case of the binomial distribution and applied it to problems arising in the game of chance. It is very common in the 

field of statistics. Whenever you measure things like people’s height, weight, salary, the graph of the results is very often  a 

Normal curve. Most of the distributions occurring in practice, e.g., Binomial, Poisson, Hypergeometric distributions, etc., can 

be approximated by the Normal distribution. It has two parameters, usually denoted by   and 
2 , which are its mean and 

variance. The Normal or Gaussian probability density function ( pdf ) may be expressed as 
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Where y  express the experimental measurements of the random variable y ,   is its mean, and 
2  is the scale parameter, 

or variance. The probability function, symbolize as (.)f , tells us that the data y  is generated on the basis of the parameters   

and  . 

A statistical model, whether it is based on a classical or Bayesian tactic, is framed to determine the values of 
parameters based on the given data. This is just the overturn of how a probability density function (pdf) is understood. The 

function that reverses the affiliation of what is to be generated or understood in a pdf is called a likelihood function. The 

likelihood function determines which parameter values build the data being modelled most likely – hence the name likelihood. It 

is like to the pdf except that the left-hand side of the equation now appears as (Hilbe et al., 2017) 
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Signifying that the mean and variance parameters are to be determined on the basis of the data. The log-likelihood function L  

for the Normal model may be expressed as follows:    
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In the event of a Normal linear model with a single predictor, the response variable y  is normally distributed and the 

association between the response variable y  and the explanatory variable x  usually takes the form 

 

 )(0,    ,= 2

10  Nxy ii :
 

 

1.2 Bayesian Inference 

Gelman et al., (2014) crack applied Bayesian modelling into the following three steps: 

1. Set up a full probability model for all observable and unobservable quantities. This model should be consistent with existing 

knowledge of the data being modelled and how it was collected. 

2. Calculate the posterior probability of unknown quantities conditioned on observed quantities. The unknowns may include 

unobservable quantities such as parameters and potentially observable quantities such as predictions for future observations. 

3. Evaluate the model fit to the data. This includes evaluating the implications of the posterior. 

 

Usually, this cycle will be repeated until a sufficient fit is achieved in the third step. Stan computerizes the calculations involved 

in the second and third steps (Carpenter et al., 2017). We have to specify here the most vital in Bayesian inference which are as 

per the following : 

Prior Distribution: 

The parameters   related to the distribution of the data, are considered as random variables. Their distribution is called the prior 

distribution and is denoted by  p . 

Likelihood: 

Likelihood function for variables are related in full probability model and is denoted by )|( yp  

Posterior distribution: 

It is the joint posterior distribution that expresses uncertainty about parameter   after considering about the prior and the data, as in 

equation 

      pypyp |=|
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                                                      Figure 1: Prior distribution, likelihood, and posterior distribution of the mean  . 

 

1.3 The Prior Distributions 

In the Bayesian paradigm, it is critical to indicate prior information with the value of the specified parameter or information 

which are obtained before analyzing the experimental data by using a probability distribution function which is called the prior 
probability distribution (or the prior). In this paper, we use two types of priors which are half-Cauchy prior and Normal prior. The 

simplest of all priors is a conjugate prior which makes posterior calculations easy. Also, a conjugate prior distribution for an 

unknown parameter leads to a posterior distribution for which there is a simple formula for posterior means and variances. Akhtar 

and Khan (2014) use the half-Cauchy distribution with scale parameter 25=  is used as a non-informative prior distribution. 

 

First, the probability density function of half-Cauchy distribution with scale parameter   is given by 
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The mean and variance of the half-Cauchy distribution do not exist, but its mode is equal to 0 . The half-Cauchy distribution 

with scale 25=  is a recommended, default, weakly informative prior distribution for a scale parameter. At this scale, 

25= , the density of half-Cauchy is nearly at but not completely (see Figure 2), prior distributions that are not totally flat 

afford enough information for the numerical approximation algorithm to continue to explore the target density, the posterior 

distribution. The inverse-gamma is often used as a non-informative prior distribution for scale parameter, though, this model 

creates a problem for scale parameters near zero, Gelman and Hill (2007) recommend that, the uniform, or if more information is 

essential the half-Cauchy is a superior choice. 

 

 Next, the Normal (or Gaussian), each parameters is assigned a weak information Gaussian prior probability distribution. In this 

paper, we use the parameters j  independently in the Normal distribution with mean=0 and standard deviation=1000, that is, 

(0,1000)Nj : , for this, we obtain a flat prior. Figure 2, we see that the large variance indicates a lot of uncertainty about 

each parameter and hence, a weak informative distribution. 

 

 
 

 

                                                                                    Figure 2: Prior distributions. 
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II. DATA SET: CPS1985 

The application considered here is the estimation of a wage equation in the semilogarithmic form based on data taken from 

Berndt (1991). They represent a random subsample of cross-section data originating from the May 1985 Current Population 

Survey (CPS) by the US Census Bureau. This data is available in AER package in R software. It is in the form of a data frame 
containing 534 observations on 11 variables. After loading the data set CPS1985 from the package AER, we first rename it for 

convenience: 
data("CPS1985", package = "AER")  

cps <- CPS1985 

For cps, a wage equation is estimated with log(wage) as the dependent variable and education and experience (both in number 

of years) as regressors. For experience, a quadratic term is included as well (Kleiber and Zeileis, 2008). 
Our model of interest is 

 

 
  educationexperienceexperiencewagelog 4

2

321=)(
 

 

This model can be fitted in R using the function lm 

 
M1<- lm(log(wage) ~ experience + I(experience^2) + education, data = cps) 

 

 

 
 

Figure 3: Coefficients of quantile regression for varying quantiles, with confidence bands (gray) and least-squares estimate (red). 

 

2.1 Bayesian Fitting with Stan 

Stan is a high-level language written in a C++ library for Bayesian modelling and (Carpenter et al., 2017) is a new Bayesian 

software program for the inference that primarily uses the No-U-Turn sampler (NUTS), which is a type of Hamiltonian Monte 

Carlo simulation (Hoffman and Gelman, 2014) and optimization-based point estimation. Stan works particularly well for 

hierarchical models (Betancourt and Girolami, 2015). In more difficult settings, though, HMC to be faster and more reliable than 

basic Markov chain simulation, Gibbs sampler and the Metropolis algorithm since they explore the posterior parameter space 

more efficiently. Accordingly, Stan is significantly more efficient than the traditional Bayesian software programs. Though, the 

main function in the rstan package is the stan, which calls the Stan software program to estimate a specified statistical model. Stan 

can be used via the R interface rstan. Stan is automatically installed when the R package rstan is installed. Stan requires that a 

C++ compiler is installed on the computer. Therefore, before downloading rstan we have to install a C++ compiler (e.g., Rtools). 
A comprehensive manual introduces the Stan language (Stan Development Team, 2018). 

A Stan program defines a statistical model through a conditional probability function ),|( xyp  , where   is a sequence of 

modelled unknown values (e.g., model parameters, latent variables, missing data, future predictions), y  is a sequence of 

modelled known values, and x  is a sequence of unmodeled predictors and constants (e.g., sizes, hyperparameters). 

Stan programs consist of variable type declarations and statements. Variable types include constrained and unconstrained 

integer, scalar, vector, and matrix types, as well as (multidimensional) arrays of other types. Variables are declared in blocks 

corresponding to the variable’s use: data, transformed data, parameters, transformed parameters, model, and generated quantities. 

The transformed data, transformed parameters, and generated quantities blocks contain statements defining the variables declared 

in their blocks. 
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Creation of data 

X=model.matrix(M1) 

M=ncol(X)  

N=nrow(X)  

y=log(CPS1985$wage) 

In this case X  is a model matrix which can be extracted by the function model.matrix() from an lm() fitted object. The 

response variable y  is a vector of length N  and M  denotes the number of columns of the model matrix. 

Model Specification 

Now we will examine the posterior estimates of the parameters when the Normal model is fitted to the above mentioned 

information (data). 

 
library(rstan)  

stan_code="  

data{  

int<lower=0> N; // number of observations  

vector[N] y; // observed times  

int<lower=0> M; // number of covariate 

matrix[N,M] X; // matrix of covariates with N rows and M columns 

}  

parameters{  

vector[M] beta; // coefficients in the linear predictor (including intercept) 

 real<lower=0> sigma; 

} 

 model {  

vector[N] mu;  

mu=X*beta;  

//priors  
beta~normal(0,5);  

sigma~cauchy(0,5); 

//likelihood  

y~normal(mu,sigma); // likelihood function 

}"  

dat=list(N=N,M=M,X=X,y=y) 

//regression coefficient with log(y) as a guess to initialize 

beta1=solve(crossprod(X),crossprod(X,y))  

//convert matrix to a vector  

beta1=c(beta1) 

 

The model block contains the model specification. Unlike BUGS, Stan functions can handle vectors. Therefore, we do not 

have to loop through all observations. Here, we use a Cauchy distribution as a prior distribution for sigma. This distribution can 

have negative values, but because we defined the lower limit of sigma to be 0  in the parameters block, the prior distribution 

actually used in the model is a truncated Cauchy distribution (truncated at zero). 

Now we run Stan with 3 chains for 5000 iterations and display the results numerically and graphically. The defaults are 5000 

for iter and warmup is set to iter/2, which gives you 2500 warmup samples and 2500 real samples to use for inference. We use the 
defaults to make sure that the chain is get started good. 

 
M2=stan(model_code=stan_code,data=dat,iter=5000, chains=3) 

print(M2,digits=3) 

 

Summarizing Output: 

The function stan approximates the posterior density of the fitted model, and posterior summaries can be seen in Table 1, contains 

summaries for all chains merged and individual chains, respectively. According to 95% credible intervals, beta1, beta2, beta4 and 

sigma are found to be statistically significant. Hence they are appropriate variables for modelling cps data. Also table 1 provides 

the summaries of quantiles, means, standard deviations (sd), n_eff, and Rhat. For each parameter, n_eff is a crude measure of 

effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1). For the summary 

of all chains merged, Monte Carlo standard errors(se_mean) are also reported. 
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Table 1: Summary of the simulated results using stan function with mean stands for posterior mean, se_mean, sd for posterior 

standard deviation, LB, Median, UB are 2.5%, 50%, 97.5% quantiles, n_eff for number effective sample size and Rhat, 

respectively 

 

    Parameter      Mean      Se_mean        SD         2.5%      50%      97.5%       n_eff    Rhat 

     beta[1]      0.520       0.002      0.124        0.281       0.519      0.767        2805       1 

     beta[2]      0.035       0.000      0.006        0.024       0.035       0.046        4036       1 

     beta[3]     -0.001       0.000      0.000       -0.001      -0.001       0.000        4513       1 

     beta[4]      0.090       0.000      0.008        0.073       0.090       0.106        3017       1 

     sigma      0.463       0.000      0.014        0.437       0.463       0.492        4378       1 

       lp     144.126       0.030      1.569        140.245     144.446     146.204        2664       1 

 
The assortment of appropriate regressor variables can also be done by using a caterpillar plot. Caterpillar plots are well-liked plots 

in Bayesian inference for summarizing the quantiles of posterior samples. Figure 4, we see that the caterpillar plot is a horizontal 

plot of 3 quantiles of selected distribution. in this plot, credible intervals (by default 80%) for all the parameters, and the median 

of each chain are displayed. In addition, under the lines representing intervals, small coloured areas are used to specify which 

range the value of the split Rhat statistic is in. This may be used to create a caterpillar plot of posterior samples. In MCMC 

estimation, it is essential to thoroughly assess convergence as it in “Fig. 5” the rstan contains a specialized function to visualise 

the model output and assess convergence. Generally, Bayesian specialist like to verify whether a model estimation converges well 

or not, we want to plot a distribution (histogram) of each estimated parameter. The smooth way is using library coda. 

 
stan_plot(M2,pars = c("beta"))+ggtitle("Quantile summary plot of posterior samples")  

stan_ac(M2,"beta")   

traceplot(M2,"beta") 

 

 
 

                       Figure 4: Caterpillar plot for Normal model. 
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               Figure 5: Checking model convergence using rstan, through inspection of the traceplots or the autocorrelation plot. 
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Figure  6: Checking model convergence using coda, through inspection of the simulated posterior density plots with trace plots of 

regressor variables obtained by HMC. 
 

2.1 Bayesian Fitting with Inla 

The Integrated Nested Laplace Approximation (INLA) is based on approximating the posterior marginal distributions of the 

model parameters by means of different Laplace approximations. The INLA methodology was first introduced by Rue et al. 

(2009), following by developments in Martins et al. (2013), and is most lately reviewed in Rue et al. (2017). It is a determinist 

methodology to approximate Bayesian inference for Latent Gaussian models (LGMs). The R-INLA package can be used for 

quick and reliable Bayesian inference in practical applications. The INLA method is an approximation that could be made more 

accurate at the expense of longer computation. The approximate posterior marginals obtained from the INLA method can then be 

used to compute summary statistics of interest, such as posterior means, variances and quantiles. As a by-product of the main 

computations,INLA also computes other quantities of interest like deviance information criterion (DIC), marginal likelihoods,  

etc., which are beneficial to compare and validate models. 
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In this section, cps data is used to fit the model. The model which is defined in Section II by using the function lm() is 

reproduced in R-INLA through the command 

 
formula<-log(wage) ~ experience + I(experience^2) + education 

 

Finally, we run the INLA algorithm using the inla function as follows: 

 
M3<-inla(formula,family="gaussian",data=cps) 

The inla function returns an object, here named M3, of class inla. This medium is a list containing many objects which can 

explore with names (M3). For a general summary of the results using 
 

round(M3$summary.fixed[,1:5],3) 

 

                       Table 2:Summary of the simulated results using inla function 

 

       Coefficients    Mean      SD   0.025quant    0.5quant   0.975quant 

       (Intercept)     0.520     0.124        0.278      0.520      0.763 

       experience    0.035     0.006        0.024      0.035      0.046 

     I(experience^2)    -0.001     0.000        -0.001     -0.001      0.000 

      education     0.090     0.008         0.073      0.090       0.106 

 

This summary includes some statistics about the computing times as well as the posterior mean, standard deviation, quartiles of 

the fixed effects ( 4321 ,,,  ) and of the hyperparameter (denoted by Precision for the Gaussian observations). The similar 

output can be obtained by means of these single commands to access the output (Blangiardo and Cameletti, 2015 ). 
 
M3$summary.fixed  

M3$summary.hyperpar 

 

If we compare this model with the following standard regression model obtained running the R function lm (see Section II). 

We obtain the same results by using the command 

 
summary(lm(formula,data=cps)) 

 

                        Table 3: Summary results using lm function 

 

   Estimate        Std. Error            t value     Pr( > | t | ) 

      0.520         0.124           4.209       0.000 

      0.035          0.006            6.185       0.000 

     -0.001          0.000           -4.307       0.000 

      0.090          0.008           10.787       0.000 

 

We essentially obtain the same results as we are assuming noninformative prior distributions on all the parameters and we are not 

specifying any hierarchical structure. 

III. CONCLUSION 

It is exceptional among the most critical issues in Bayesian statistics how to make accurate Markov Chain Monte Carlo 

(MCMC) process. Here there are some MCMC methods, for example, the Metropolis method, the Gibbs sampler method, and the 

Hamiltonian Monte Carlo method (HMC). In this article, the Bayesian approach is applied to wage equation in a semilogarithmic 

form based on cps data. The Normal mode is used as a Bayesian model to fit the data, and for the analysis. For this model, Stan 

and INLA give almost the same results. We also see that results for Stan and INLA are very similar both as point estimates and 

the distribution of posterior quantiles. It seems that Stan becomes useful only when your model cannot be coded in INLA. 

REFERENCES 

 [1]  Berndt, E. R. 1991. The practice of econometrics: classic and contemporary. Addison Wesley Publishing Company. 

 [2] Betancourt, M., and Girolami, M. 2015. Hamiltonian Monte Carlo for hierarchical models. Current trends in Bayesian  

methodology with applications, 79, 30. 

 [3]  Blangiardo, M., and Cameletti, M. 2015. Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley and Sons. 

 [4] Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., and Riddell, A. 2017. Stan: A    
probabilistic programming language. Journal of statistical software, 76(1). 

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1907H64 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 415 
 

 [5]  Gelman, A. and Hill, J. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University  

Press, New York 

 [6]  Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. 2014. Bayesian Data Analysis. Chapman and Hall/CRC. 

 [7]  Hoffman, M. D., and Gelman, A. 2014. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. 

Journal of Machine Learning Research, 15(1):1593-1623. 

 [8] Hilbe, J. M., De Souza, R. S., and Ishida, E. E. 2017. Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and 

Stan. Cambridge University Press. 

 [9]  Akhtar, M. T., and Khan, A. A. 2014. Bayesian analysis of generalized log-Burr family with R. SpringerPlus, 3(1):185. 
[10] Kleiber, C., and Zeileis, A. 2008. Applied econometrics with R. Springer Science and Business Media. 

[11] Martins, T. G., Simpson, D., Lindgren, F., and Rue, H. 2013. Bayesian computing with INLA: new features. Computational 

Statistics and Data Analysis, 67:68-83. 

[12] Rue, H., Martino, S., and Chopin, N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated 

nested Laplace approximations. Journal of the royal statistical society: Series b (statistical methodology), 71(2):319-392. 

[13] Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., and Lindgren, F. K. 2017. Bayesian computing with INLA: a 

review. Annual Review of Statistics and Its Application, 4, 395-421. 

[14] Stan Development Team  2018. RStan: the R interface to Stan. R package version 2.18.2, http://mc-stan.org/. 

 

 

 

 

. 

 

 

 

 

 

 

 

http://www.jetir.org/

