Phytosociological study of ethno medicinal leafy vegetable flora of district Kondagaon Chhattisgarh

Himani Sandey¹and Lata Sharma²

Assistant Professor

Department of Botany

Dr. C.V. Raman University Kargi Road Kota, Bilaspur.

ABSTRACT

This paper deals with the phytosociological study of ethnomedicinal leafy vegetables flora of district Kondagaon Chhattisgarh. In this study many ethnomedicinal plants has been extensively studied during winter season October to February occurred in the year 2018 to 2019 in 5 different villages and weekly village markets of Kondagaon district. Study was conducted in the leafy plants of Kondagaon, Farasgaon, Makadi, Bade-Rajpur and Keshkal. Phytosociological studies of the 5 different sites were conducted for leafy vegetable plants with their phytosociological aspects that is frequency, relative frequency, density, relative density, abundance, relative dominance as well as importance value index (IVI).

Keywords: Phytosociology, Leafy vegetables, Ethnomedicinal plants, importance value index.

Introduction

Plants have long been associated with human civilization. As the source of food, plants constitute more than 90% of our food requirements. Leafy vegetables occupy important place among food providing plants as these are the most important source of minerals and vitamins. A number of leafy vegetables are used world wide. Nutritionally, these are very much important because they not only provide us the nutrients but also function as roughage in our food (Ogle *et al.*,2001; Ogle, 2001). Leafy vegetables not only provide food quantity but also make significant contribution to the population nutrition throughout the year. Moreover, Since the beginning of human civilization man has been using many leafy plants and plant part extract as medicine. Leafy vegetables are known as excellent sources of natural antioxidant. The importance of antioxidant constituents of leafy vegetables has also been established in the maintenance of health. The tribal people of the area use maximum number of leafy plant species for medicinal purpose (Kala, 2009; Jain and Tiwari, 2012; Chauhan *et al.*, 2014; Haile and Tesfu, 2014).

Being largely associated with mankind food yielding plants have been studied world wide for their various aspects like economic value, growth behavior, biochemical composition, ethnobotanical value etc. phytosociology is an important aspects for the study of economically important plants. This is because phytosociology not only provide in data about the prevalence of species content of an area rather such studies

also throw light on the impact of environmental/climatic changes on distribution of indigenous plants. In this regard (Rao *et al.*, 2015) have mentioned that phytosociology is the study of of the characteristics classification, relationship and distribution of plant communities and it is useful to collect such as data to describe the population dynamics of each species studied and how they relate to the other species in the same community. Phytosociological information gathered for understanding the structure and function of the vegetation (Khare *et al.*, 1985; Negi and Nautiyal, 2005; Singh and Gupta, 2006; Ahmed *et al.*, 2009). Such studies also suggest the ways how to protect our biodiversity and also helps in understanding the changes that a particular flora has experienced in the past.

Phytosociological studies of different flora in our country have been made by various workers. Some of them needs to mention are (Sheela and Asha, 2007) in Kerala, (Rao *et al.*, 2015) in Khammam district of Telangana and (Shahid and Joshi, 2016) in Uttrakhand etc. However, such studies are few and far between in the state of Chhattisgarh. The only group working in the field of phytosociology and ethnobotany of food plants is being led by (Chauhan *et al.*, 2014) in Durg. Bastar of Chhattisgarh is an geographically and geologically important area of the globe but as far as botanical exploration of its flora is concerned, it has large been neglected for centuries. Therefore, the present study has been made about the phytosociology of leafy vegetables of the area.

In this piece of research work we have tried to study the frequency, relative frequency, density, relative density, abundance, relative dominance as well as importance value index (IVI) of the leafy vegetables of Kondagaon area of Bastar, Chhattisgarh.

Materials and Methods

Study Sites: The study was conducted in different villages of Kondagaon, Farasgaon, Makadi, Bade-Rajpur and Keshkal. Kondagaon is also the District Headquarter. Kondagaon District has an area of 7768.907 square kilometers. It has population of 5,78,326, Out of the total population, more than 70% are tribal and comprised by Gond, Maria, Muria, Dhruva, Bhatra, Halba etc. The five villages under study have been marked by specific site number for the purpose of study. These are on-

- Site-1: Kondagaon Site-2: Farasgaon
- Site-3: Makadi
- Site-4: Bade-Rajpur
- Site-5: Keshkal

Climatic condition: There are three main climatic seasons are summer, winter and rainy. The winter season starts of November and ends middle of February. The summer season starts from middle of February to May.

So, rainy season starts from June to October. In this area climate is tropical and sub humid with annual air temperature of 27.0^{oC} and annual rainfall of 1534 mm. The temperature regime is isohyperthermic whereas moisture regimes are udic and ustic. The soils of Kondagaon district are red sandy, red and brown sandy loam, red and black, skeletal and black. The annual soil temperature is 26.0°C and in summer soil temperature is 29.3°C.

Formula: The following formula were used to compute different phytosociological parameters was evaluated by analyzing the %Frequency, Density, Abundance, Relative Frequency, Relative Density, Relative Dominance and IVI according to Curtis and Mc Intosh (1950), Curtis and Mc Intosh (1951), Curtis and Cottom (1956), Curtis (1959), Mishra (1968) and as given below:-

⁹⁶ Frequency – Total no.of quadrats in which species occurred $\times 100$
Total no.of quadrats studies
Density = $\frac{\text{Total no.of individuals of a species in all the quadrats}}{\text{Total no.of quadrats studied}}$
Abundance = $\frac{\text{Total no.of individuals of the species in all the quadrats}}{\text{Total no.of quadrats in which the species occurred}}$
Relative Frequency = $\frac{\text{Total no.of occurrances of a species in all the quadrats}}{\text{Total no.of occurrances of all species in all quadrats}} \times 100$
Relative Density = $\frac{\text{Total no.of individuals of a species in all the quadrats}}{\text{Total no.of individuals of all species in all quadrats}} imes 100$
Relative Dominance = $\frac{\text{Total basal area of each species in all quadrats}}{\text{Total basal area of all species in all quadrats}} \times 100$

Importance Value Index (IVI) = Relative Frequency + Relative Density + Relative Dominance

Results and Discussions:- The informations given in the species list below has been analyzed in all sites. Species are classified on the basis of the habit. So, the investigations have recorded 52 leafy vegetable plants used by tribal communities and belonging to 31 families. Out of them 39 were herb species, 3 were shrub species, 4 were tree species, 6 were climber species. In my Phytosociological study, green colour of the table shows maximum value of plant while orange colour shows minimum value of plant. So, the Maximum IVI of plant *Commelina benghalensis* and Minimum IVI of plant *Cucurbita maxima* are present in site1. Maximum IVI of plant *Leucas cephalotes* and Minimum IVI of plant *Vigna radiata* are present in site2. Maximum IVI of plant *Cassia tora* and Minimum IVI of plant *Phaseolus vulgaris* are present in site3. Maximum IVI of plant *Amaranthus tricolor* and Minimum IVI of plant *Allium cepa* are present in site5. The investigations of wild edible leafy plants in all sites have been given below in table:1-

Table 1: Ethnomedicinal importance of wild edible leafy plants in all sites:-

S.	Botanical Name	Local	Family	Habit	Medicinal Uses
No.		Name			
1	Achyranthes aspera	Chirchida Bhaji	Amaranthaceae	Herb	Snakebite, stomach pain, fever and cough
2	Allium cepa	Pyaj Bhaji	Liliaceae	Herb	Sunstroke, vomiting
3	Amaranrthus dubius	Khedha Bhaji	Amaranthaceae	Herb	Lactating mothers, haemorrhage, anaemia, kidney problems, fever
4	Amaranthus hybridus	Ropa Bhaji	Amaranthaceae	Herb	Intestinal bleeding, diarrhea, excess menstruation.
5	Amaranthus spinosus	Kanta Bhaji	Amaranthaceae	Herb	scorpion bite and snake bite
6	Amaranthus tricolor	Lal Bhaji	Amaranthaceae	Herb	Astringent and diuretic, intestinal bleeding, diarrhea, excess menstruation.
7	Amaranthus viridis	Chaulai Bhaji	Amaranthaceae	Herb	Diuretic,heart troubles, gonorrhea, eye infections
8	Asteracantha longifolia	Mokhla <mark>Bhaji</mark>	Acanthaceae	Herb	Diabetes,liver problems,blood diseases, tonic
9	Basella rubra	Red Poi Bhaji	Basellaceae	Climber	Dysentery, leprosy, swelling
10	Bauhinia purpurea	Koliaari Bhaji	Caesalpiniaceae	Tree	Piles, diabetes, skin diseases, asthma,dysentery, diarrhea
11	Boerhavia diffusa	Punarnava Bhaji	Nyctaginaceae	Herb	Asthma, jaundice, anaemia, snake venom, liver diuretic,dysentery
12	Borreria hispida	Gundru/Nuni ya/ Patur Bhaji	Rubiaceae	Herb	Headache, wounds, haemorrhoids and sores, toothache, diarrhea and dysentery
13	Brassica compestris	Sarso Bhaji	Brassicaceae	Herb	Fever, weakness, menstrual disorder, internal pains
14	Brassica oleracea	Gobhi Bhaji	Brassicaceae	Herb	Cleansing qualities, glaucoma and pneumonia

15	Cantella asiatica	Bramhi Bhaji	Apiaceae	Herb	Decoction of whole plant is used as tonic
16	Carthamus tinctorius	Kera/Burre Bhaji	Asteraceae	Herb	Heart diseases, lower cholesterol level, menstrual pains, measles, fevers and skin problems, rheumatism, tumours
17	Cassia tora	Charota Bhaji	Caesalpiniaceae	Herb	Skin diseases, leprosy, arthritis, ringworm,itching, snakebites
18	Celastrus paniculatus	Peng/Malkan gini Bhaji	Celastraceae	Climber	Leprosy, skin diseases,paralysis, asthma,fever, sharpening the memory
19	Celosia argentea	Siliyari Bhaji	Amaranthaceae	Herb	Snakebites, uterine bleeding, dysentery, diarrhea, hypertensions, bloodshot eyes, skin irritation, eczema
20	Chorchorus olitorius	Safed Chech Bhaji	Tiliaceae	Herb	Hairfall and also to kill louses
21	Cleome viscosa	Balakut/Hurh ur Bhaji	Cleomaceae	Herb	Dysentery, wounds,ulcers, herpes, earaches, diarrhea, dysentery, stomach pain, piles
22	Colocasia antiquarum	Kochai Bhaji	Araceae	Herb	Promote menstruation, stomach problems, cysts, knee pain
23	Colocasia esculenta	Doba/Jangal Kochai	Araceae	Herb	Stomatitis, hemorrhoids, cancer, weakness
24	Commelina benghalensis	Kenna Bhaji	Commelinaceae	Herb	Infertility in womens, eye ailments, sore throat and burns, diarrhea, stomach pain
25	Corchorus capsularis	Budkari Bhaji	Malvaceae	Herb	Stomachache, dysentery, fevers, dyspepsia and liver disorders
26	Corchorus trilocularis	Gudhkal/Lal Chech Bhaji	Tiliaceae	Herb	The leaves are used as a plaster to reduce swellings

27	Cordia myxa	Bohar Bhaji	Boraginaceae	Shrub tree	Stomach aches, coughs and chest pain. sleeping- sickness, headaches, ulcers, fever, skin diseases, broken bones, to improve healing
28	Cordia subcordata	Bodi Bhaji	Boraginaceae	Climber	The leaves can be used as fodder for livestock, to control blood pressure
29	Costus speciosus	Basey/Kew bhaji	Costaceae	Herb	Head-ache, eye and ear infections, fever, dysentery, cough, snake bite, jaundice, arthritis, burning sensation, leprosy, skin diseases, asthma, bronchitis, nose pain, vomiting
30	Cucurbita maxima	Kumhda Bhaji	Cucurbitaceae	Climber	Anti-diabetic, anti- oxidant, anti- inflammatory, digestive problems
31	Dolicus lablab	Sem Bhaji	Papilionaceae	Herb	Anti-helminthic, cough, skin diseases
32	Ficus religiosa	Pikadi/Pipal	Urticaceae	Tree	To treat throat infection
33	Hibiscus cannabinus	Patawa Bhaji	Malvaceae	Shrub	Acidity, coughs, dysentery, blood and throat disorders, stomach pain, anaemia
34	Hibiscus sabdariffa	Jhirra/ Khatta Bhaji	Malvaceae	Shrub	Dysentery, diarrhea, liver diseases, hypertention, skin diseases, stomach pain, digestions, high blood pressure
35	Ipomoea aquatic	Kalmi/Karmo ta Bhaji	Convolvulaceae	Herb	Coughs, fever, tonic, antidiabetic, jaundice, liver
36	Ipomoea batatas	Kanda Bhaji	Convolvulaceae	Herb	Asthma, burns, fever, stomach, distress and tumours, antidiabetic, antioxidant
37	Lathyrus sativus	Tiwara Bhaji	Fabaceae	Herb	Prolonged periods, paralysis
38	Leucas cephalotes	Gumee Bhaji	Lamiaceae	Herb	Fever, malarial fever, headache, urinary complaints, snake bites, wounds and sores, skin diseases, cold and cough asthama

39	Marsilia vestita	Chunchunia Bhaji	Marsileaceae	Herb	Cold, malaria, swelling, relieving pain, stop bleeding, skin problem, diabetes
40	Medicago denticulate	Chanauri Bhaji	Fabaceae	Herb	Helpful in lowering cholesterol levels, arthritis, kidney problems, cardiotonic, fever, anti- cancer
41	Momordica charantia	Karela Bhaji	Cucurbitaceae	Climber	To reduce blood sugar level, diabetes
42	Moringa pterygosperma	Munga Bhaji	Moringaceae	Tree	Heart disease, liver, spleen, dental disorders
43	Phaceolus radiatus	Urad Bhaji	Papilionaceae	Climber	Paralysis, rheumatism, coughs, fever, liver ailments
44	Phaseolus vulgaris	Barbatti Bhaji	Papilionaceae	Herb	Diuretic especially kidney and heart ailments, diarrhea.
45	Polygonum plebeium	Chanti Bhaji	Polygonaceae	Herb	To control blood pressure
46	Portulaca oleracea	Non/Dal/Gho l Bhaji	Portulacaceae	Herb	Diuretic, cough and sores, stomach pain, headaches, skin burn, skin diseases, earaches
47	Raphanus sativus	Mooli Bhaji	Brassicaceae	Herb	Asthma, and chest pain, stomach pain, indigestion, diarrhea, bronchitis
48	Semecarpus anacardium	Bhelva Bhaji	Anacardiaceae	Tree	Fruits, leaves are used for anti-cancer purpose
49	Solanum tuberosum	Aloo Bhaji	Solanaceae	Herb	Burns, corns, cough, cystitis, scurvy, tumors, diuretic
50	Spinacea oleracea	Palak Bhaji	Chenopodiaceae	Herb	Diabetes, arthritis, migraine, headaches, asthma, cancer, eye and kidney diseases
51	Trigonella foenum	Methi Bhaji	Fabaceae	Herb	Rheumatism and diabetes
52	Vigna radiata	Jhudga Bhaji	Fabaceae	Herb	Paralysis, rheumatism, coughs, fever and liver ailments

© 2019 JETIR June 2019, Volume 6, Issue 6

The data of such phytosociological studies made in the above said five sites have been represented in table-2 to table-6, Similar data have also been represented through pie diagram (fig. 1-10).

S.No.	Name of Plants	%Freq-	Density	Abun-	Relative	Relative	Relative	Import-
		uency		dance	freq-	Density	Abun-	ance
					uency		dance	Value
								Index
1	Amaranthus spinosus	80	4.6	4.6	6.2	7.3	5.4	18.9
2	Amaranthus tricolour	90	5.6	6.2	6.9	8.9	7.2	23
3	Basella rubra	40	3.8	7.6	3.1	6	8.9	18
4	Bauhinia purpurea	30	0.3	0.5	2.3	0.4	0.5	3.2
5	Borreria hispida	90	3.5	3.8	6.9	5.5	4.4	16.8
6	Cantella asiatica	40	1.6	2	3.1	2.5	2.3	7.9
7	Carthamus tinctorius	20	0.8	1.1	1.5	1.2	1.2	3.9
8	Cassia tora	100	4.2	4.6	7.7	6.6	5.4	19.7
9	Celosia argentea	80	4	5.7	6.2	6.3	6.6	19.1
10	Cleome viscosa	30	4.2	4.2	2.3	6.6	4.9	13.8
11	Colocasia antiquarum	20	1.3	3.2	1.5	2	3.7	7.2
12	Colocasia esculenta	20	1.1	2.7	1.5	1.7	3.1	6.3
13	Commelina benghalensis	100	5.5	6.8	7.7	8.7	7.9	24.3
14	Corchorus capsularis	40	1.8	2.2	3.1	2.8	2.5	8.4
15	Corchorus trilocularis	70	0.8	1.3	5.4	1.2	1.5	8.1
16	Cucurbita maxima	10	0.4	0.5	0.7	0.6	0.5	1.8
17	Hibiscus sabdariffa	90	2.1	2.1	6.9	3.3	2.4	12.6
18	Ipomoea aquatic	60	4.1	10.2	4.6	6.5	11.9	23
19	Moringa pterygosperma	50	1.2	2	3.8	1.9	2.3	8
20	Phaceolus radiatus	80	5.6	6.2	6.2	8.9	7.2	22.3
21	Portulaca oleracea	70	1.4	2.8	5.4	2.2	3.2	10.8
22	Vigna radiate	80	4.8	4.8	6.2	7.6	5.6	19.4

Table 2: Phytosociological	characteristics of lea	fy vegetables of site-1	of Kondagaon district
----------------------------	------------------------	-------------------------	-----------------------

Table 3: Phytosociological characteristics of leafy vegetables of site-2 of Kondagaon district

S.No.	Name of Plants	%Freq-	Density	Abun-	Relative	Relative	Relative	Import-
		uency		dance	freq-	Density	Abun-	ance
					uency		dance	Value
								Index
1	Achyranthes aspera	100	3.4	3.4	5.4	3.4	1.8	10.6
2	Allium cepa	40	5	12.5	2.1	5.1	6.8	14
3	Amaranrthus dubius	100	4.8	4.8	5.4	4.9	2.6	12.9
4	Amaranthus tricolour	70	5.9	8.4	3.7	6	4.5	14.2
5	Amaranthus viridis	100	2.5	2.5	5.4	2.5	1.3	9.2
6	Asteracantha longifolia	50	3.7	7.4	2.7	3.7	4	10.4
7	Boerhavia diffusa	10	0.8	8	0.5	0.8	4.3	5.6
8	Borreria hispida	80	2.3	2.8	4.3	2.3	1.5	8.1
9	Cantella asiatica	40	1.8	4.5	2.1	1.8	2.4	6.3

© 2019 JETIR June 2019, Volume 6, Issue 6

10	Carthamus tinctorius	90	2.5	2.7	4.8	2.5	1.4	8.7
11	Cassia tora	100	5.4	5.4	5.4	5.5	2.9	13.8
12	Celastrus paniculatus	90	5.3	5.8	4.8	5.4	3.1	13.3
13	Celosia argentea	70	3.5	5	3.7	3.5	2.7	9.9
14	Commelina benghalensis	50	3.3	6.6	2.7	3.3	3.5	9.5
15	Corchorus trilocularis	70	4	5.7	3.7	4	3.1	10.8
16	Cordia myxa	70	2.8	4	3.7	2.8	2.1	8.6
17	Costus speciosus	30	4.2	14	1.6	4.2	7.6	13.4
18	Ficus religiosa	30	2.1	7	1.6	2.1	3.8	7.5
19	Hibiscus cannabinus	100	1.7	1.7	5.4	1.7	0.9	8
20	Ipomoea batatas	60	4.4	7.3	3.2	4.5	3.9	11.6
21	Leucas cephalotes	20	3.6	18	1	3.6	9.8	14.4
22	Momordica charantia	70	3.7	5.2	3.7	3.7	2.8	10.2
23	Phaceolus radiatus	100	5.4	5.4	5.4	5.5	2.9	13.8
24	Polygonum plebeium	80	4.6	5.7	4.3	4.7	3.1	12.1
25	Portulaca oleracea	10	0.9	9	0.5	0.9	4.9	6.3
26	Semecarpus anacardium	80	1.5	1.8	4.3	1.5	0.9	6.7
27	Solanum tuberosum 🧹	40	3.2	8	2.1	3.2	4.3	9.6
28	Spinacea oleracea	80	4.3	5.3	4.3	4.4	2.8	11.5
29	Vigna radiate	20	1.1	5.5	1	1.1	2.9	5

 Table 4: Phytosociological characteristics of leafy vegetables of site-3 of Kondagaon district

S.No.	Name of Plants	%Freq-	Density	Abun-	Relative	Relative	Relative	Import-
		uency		dance	freq-	Density	Abun-	ance
					uency		dance	Value
								Index
1	Achyranthes aspera	30	2.4	8	4.2	6.6	12.5	23.3
2	Amaranthus spinosus	70	4.3	6.1	9.8	11.8	9.5	31.1
3	Amaranthus viridis	80	4.7	5.8	11.2	12.9	9.1	33.2
4	Asteracantha longifolia	40	3.4	8.5	5.6	9.3	13.3	28.2
5	Basella rubra	20	2.3	11.5	2.8	6.3	18	27.1
6	Cassia tora	100	5.8	5.8	14	16	9.1	39.1
7	Cordia myxa	80	1.6	2	11.2	4.4	3.1	18.7
8	Costus speciosus	50	2.2	4.4	7	6	6.9	19.9
9	Marsilia vestita	90	2	2.2	12.6	5.5	3.4	21.5
10	Phaseolus vulgaris	60	1.8	3	8.4	4.9	4.7	18
11	Trigonella foenum	90	5.7	6.3	12.6	15.7	9.9	38.2

Table 5: Phytosociological characteristics of leafy vegetables of site-4 of Kondagaon district

S.No.	Name of Plants	%Freq-	Density	Abun-	Relative	Relative	Relative	Import-
		uency		dance	freq-	Density	Abun-	ance
					uency		dance	Value
								Index
1	Amaranthus hybridus	60	2.5	4.1	4.9	4.6	4.1	13.6
2	Amaranthus spinosus	70	4	5.7	5.7	7.4	5.8	18.9
3	Basella rubra	20	0.3	1.5	1.6	0.5	1.5	3.6
4	Bauhinia purpurea	10	0.1	1	0.8	0.1	1	1.9

JETIR1907H66 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

© 2019 JETIR June 2019, Volume 6, Issue 6

5	Borreria hispida	40	1.3	3.2	3.3	2.4	3.2	8.9
6	Brassica compestris	40	2.4	6	3.3	4.4	6.1	13.8
7	Brassica oleracea	20	0.2	1.5	1.6	0.3	1.5	3.4
8	Cassia tora	100	3.3	3.3	8.2	6.1	3.3	17.6
9	Celosia argentea	40	1.2	3	3.3	2.2	3	8.5
10	Chorchorus olitorius	30	1.1	3.6	2.4	2	3.6	8
11	Colocasia antiquarum	10	0.3	1.5	0.8	0.5	1.5	2.8
12	Colocasia esculenta	40	2.2	5.5	3.3	4.1	5.6	13
13	Commelina benghalensis	50	3.3	6.6	4.1	6.1	6.7	16.9
14	Cucurbita maxima	10	0.5	5	0.8	0.9	5.1	6.8
15	Dolicus lablab	90	4.7	5.2	7.4	8.7	5.3	21.4
16	Hibiscus cannabinus	70	4.3	6.1	5.7	8	6.2	19.9
17	Hibiscus sabdariffa	100	5.3	5.3	8.2	9.9	5.4	23.5
18	Ipomoea aquatic	60	1.6	2.6	4.9	2.9	2.6	10.4
19	Ipomoea batatas	20	1.4	7	1.6	2.6	7.1	11.3
20	Lathyrus sativus	100	4.2	4.2	8.2	7.8	4.2	20.2
21	Moringa pterygosperma	30	0.8	2.6	2.4	1.4	2.6	6.4
22	Phaceolus radiatus	90	3.5	3.8	7.4	6.5	3.8	17.7
23	Portulaca oleracea	30	1.6	5.3	2.4	2.9	5.4	10.7
24	Vigna radiate	80	3.4	4.2	6.6	6.3	4.2	17.1

Table 6: Phytosociological characteristics of leafy vegetables of site-5 of Kondagaon district

S.No.	Name of Plants	%Freq- uency	Density	Abun- dance	Relative freq- uency	Relative Density	Relative Abun- dance	Import- ance Value Index
1	Allium cepa	10	0.1	1	1.2	0.2	1.6	3
2	Amaranrthus dubius	80	4.3	5.3	10.2	12.1	8.7	31
3	Amaranthus hybridus	50	2.1	4.2	6.4	5.9	6.9	19.2
4	Amaranthus tricolour	100	5.4	5.4	12.8	15.2	8.8	36.8
5	Asteracantha longifolia	30	1.3	4.3	3.8	3.6	7	14.4
6	Carthamus tinctorius	20	0.2	1	2.5	0.5	1.6	4.6
7	Celastrus paniculatus	90	2.6	2.8	11.5	7.3	4.6	23.4
8	Cleome viscosa	60	3.1	5.1	7.6	8.7	8.3	24.6
9	Corchorus capsularis	50	2.3	4.6	6.4	6.4	7.5	20.3
10	Cordia subcordata	10	0.6	6	1.2	1.6	9.8	12.6
11	Leucas cephalotes	40	1.2	3	5.1	3.3	4.9	13.3
12	Marsilia vestita	70	4.1	5.8	8.9	11.5	9.5	29.9
13	Medicago denticulata	90	5.3	5.8	11.5	14.9	9.5	35.9
14	Polygonum plebeium	60	2.4	4	7.6	6.7	6.5	20.8
15	Raphanus sativus	20	0.5	2.5	2.5	1.4	4.1	8

100

Fig5-Site3: Maximum IVI of Cassia tora

Rel. Den.

Rel. Dom.

IVI

16

5.8 / 5.8

14

Fig1-Site1: Maximum IVI of Commelina benghalensis Fig2-Site1: Minimum IVI of Cucurbita maxima

432

8.4

1.8

3

60

Fig6- Site3: Minimum IVI of Phaseolus vulgaris

Rel. Den.

Rel. Dom.

IVI

Fig7-Site4: Maximum IVI of Hibiscus sabdariffa

Fig8-Site4: Minimum IVI of Bauhinia purpurea

Fig9-Site5: Maximum IVI of Amaranthus tricolor

Conclusion

The output of the present piece of research reflects the phytosociological and ethnobotanical importance of the leafy vegetables grown wild and cultivated in the area of Kondagaon district of Chhattisgarh. The data thus obtained reveal that different sites studied showed different plants having maximum and minimum IVI. Difference in the values of other sociobiological attributes was also observed.

Ethnobotanical importance of the leafy vegetables have also been study with the help of local people as well as literature collected. It was concluded that even in this modern age, people of this area of Bastar depend on plants for the treatment of various diseases. The phytochemical study made in future will also through light and put evidence for their ethnobotanical importance.

Acknowledgement

One of the author (Himani Sandey) is very thankful to my Supervisor. I would like to express my deep and sincere gratitude to my Supervisor Dr. Lata Sharma, Assistant Professor Department of Botany Dr. C. V. Raman University, Kota, Bilaspur, Chhattisgarh for her patient constant and encouraging guidance during the progress of my work. She guided me with precise and incisive observations. Author is also thankful to Dr. N. K. Singh, Assistant Professor Department of Botany Govt. College Sargaon for timely help during the progress of my work.

References

- Ahmed S. A., Kadam J. A., Patil S. S. and Baig M. M. V. (2009), Biological efficiency and nutritional contents of Pleurotus florida Singer cultivated on different agro-wastes. Nature and Science (1):44-48.
- Chauhan Deepti, Shrivastava A.K., and Patra Suneeta (2014), Diversity of leafy vegetables used by tribal peoples of Chhattisgarh, India. Int. J.Curr. Microbiol. App. Sci 3(4):611-622.
- Curtis, J.J. & McIntosh R.P. (1951), An upland forest continuum in the prairie forest border region of Wisconsin Ecology 32:476-496.
- Curtis, J.T. & Cottom, G. (1956), Plant Ecology Work Book. Laboratory field Reference Manual : Burgess publishing, Minnesota Co.
- Curtis, J.T. & McIntosh, R.P. (1950), The interrelations of certain analytic and synthetic phytosociological characters. Ecology 31:434-455.
- Curtis, J.T. (1959), The vegetation of Wisconsin, An ordination of plant Communities. University Wisconsin Press, Madison. Wisconsin.
- Haile G and Tesfu M (2014), Adoption of modern agricultural technologies in urban agriculture: A case study in mekelle city-vegetable growers. Thesis, Mekelle, MU.
- Jain A.K. and Tiwari P. (2012), Nutritional value of some traditional edible plants used by tribal communities during emergency with reference to Central India. Ind. J. Trad. Knowl., 111, 51-57.
- Kala Prakash Chandra (2009), Aboriginal uses and management of ethnobotanical species in deciduous forests of Chhattisgarh state in India. Journal of Ethnobiology and Ethnomedicine. 5:20.
- Khare P. K., Yadav V. K. and Mishra G. P. (1985), Phytosociological structure of some forest communities in Central India J. Trop. For.1(4):321-326.
- Mishra, R. (1968), Ecology Work Book, Oxford & IBH, New Delhi.
- Negi C. S. and Nautiyal S. (2005), Phytosociological studies of A Traditional Reserve Forest Thal Ke Dhar, Pithoragarh, Central Himalaya, India, Indian Forestry: 519-534.
- Ogle Britta M : Wild vegetables and Micronutrient Nutrition- studies on the Significance of Wild vegetables in Women s Diets in Vietnam, Comprehensive summaries of Uppsala, Dissertations from the Faculty of Medicine. 2001.
- Ogle, B.M., H.T.A. Dao, G. Mulokozi and L. Hambraeus (2001), micronutrient composition and nutritional importance of gathered vegetables in Vietnam. Int. J. Food Sci. Nutr. 52:485-499.

- Rao, D.S., Murthy, P.P. and Kumar, O.A. (2015), Plant Biodiversity and Phytosociological Studies on Tree Species diversity of Khammam District, Telangana State, India. Journal of Pharmaceutical Sciences and Research. Vol. 7(8), pp 518-522.
- Shahid, M. and Joshi, S. P. (2016), Phytosociological assessment & distribution patterns of tree species in the forest of Doon Valley, Shivalik hills of lower Himalaya. Tropical Plant Research Vol. 3(2): 263-271.
- Sheela, D. and Asha, G. (2007), Ecological studies on three medicinally important plants of the family compositae. Nature Environment and Pollution Technology Vol. 6 No. 3 pp 515-520.
- Singh J. S., Singh S. P. and Gupta S. R. (2006), Ecology, Environmental and Resource Conservation, Anamaya Publishers, NewDelhi, 668.

