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Abstract :  Nowadays, accurate and intelligent resource management by Artificial Intelligence (AI) has become the center of 

attention particularly in industrial applications. With the organization of AI at the edge will outstandingly enhance the 

computational speed and range of Internet of Things (IoT) based devices in industries. However, there is main challenge is the 

short battery lifetime and power hungry. A Forward Central Dynamic and Available Approach (FCDAA) was proposed for power 

saving and battery lifetime saving of IoT based devices in industries by adopting the running time of sensing and transmission 

processes in IoT-based portable devices. Moreover, a system level battery model and data reliability model were proposed for 

edge based IoT devices. In this paper, the FCDAA is improved by proposing Machine Learning-based Self-adaptive Joint 

wireless Power Transfer, Modulation and Coding technique (MLSJPTMC). In a deep learning technique called Deep Neural 
Network (DNN) is introduced to learn the duty-cycle and energy consumption of IoT-based portable devices. DNN consists of 

single input layer, multiple hidden layers, and single output layer. Finally DNN returns duty-cycle and energy consumption of 

IoT-based portable devices with mining error. The learned duty-cycle and energy consumption of IoT-based portable devices are 

used in FCDAA which enhance the performance of power and battery lifetime-aware communication in AI-based IoT devices in 

industrial application. The experimental results prove that the proposed MLSJPTMC technique has better performance in terms of 

energy consumption and energy dissipation.  

 

IndexTerms – Artificial Intelligence, Edge Computing, Forward Central Dynamic and Available Approach, Internet of 

Things, Machine Learning-based Self-adaptive Joint wireless Power Transfer, Modulation and Coding technique. 

I. INTRODUCTION 

Due to the advance in networking technologies, a large number of smart devices can now connect to the Internet in the form of 
Internet of Things (IoT) (Singh & Singh, 2015). Based on the Cisco report, these devices will generate 507.9 ZB of data by 2019. 

Data generated by IoT-devices are more essential for industrial applications which are interested in improving their productivity 

and revenues. However, analysis and management of such large amounts of data are burdensome and challenging for industries that 

rely on conventional computing paradigms. Edge computing (Khan et al, 2019) is gaining popularity in this context because IoT is 

becoming common in processing data on the edge of the networks.  

Industrial applications attracted towards the IoT-enabled smart world which integrates edge Artificial Intelligence (AI) 

mechanism (Dwivedi et al, 2019) with mobile technologies while transmitting multimedia content. A combination of the wearable 

devices and heterogeneous networks on the one hand can make possible each and every concern of the world, while on the other-

hand various challenges are faced by users or customers. Nowadays the AI driven edge computing mechanism for industrial 

applications is very important for the entire world to solve most the relevant issues at global level. The most challenging issue in 

industrial revolution is the resource constrained (i.e., power and battery lifetime) nature of IoT-based portable devices. Predictive 

Transmission Power Control (PTPC) was a dynamic wireless channel which not be supported by the typical power saving and 

battery lifetime techniques. 

A Forward Central Dynamic and Available Approach (FCDAA) (Sodhro et al, 2019) was proposed for power and battery-

aware communication through portable IoT devices. A system-level battery model of IoT based portable devices was proposed by 

combining both Transmission Power Control (TPC) and duty-cycle for AI based industrial applications. In these networks, 

Received Signal Strength Indicator (RSSI) and Packet Loss Ratio (PLR) were the key performance indicator to examine the whole 
system. Moreover, a data reliability model was proposed for IoT devices in AI driven edge computing platform for industrial 

platform. FCDAA fulfilled the main requirement of RSSI and PLR by adopting AI drive edge computing platform for industrial 

applications.  

In FCDAA, the energy consumption is assigned based on the energy dissipation of former and later tasks while transmitting 

particular bits at a particular distance for sensor. Moreover, duty-cycle is assigned based on the active time of nodes, charge 

dissipation and energy. The computational complexity is high while setting the energy and duty-cycle for different AI-based IoT 

devices. So in this paper, MLSJPTMC is proposed to learn duty-cycle and energy consumption using DNN. The duty-cycle and 

energy consumption are processed in input, hidden and output layer for learning process. The learned duty-cycle and energy 

consumption is given as input to FCDAA to enhance the performance of power and battery lifetime-aware communication in AI-

based IoT devices in industrial application.  

II. LITERATURE SURVEY 

A Multiple Algorithm Service Model (MASM) (Zhang et al, 2019) was proposed for energy-delay optimization in edge AI. In 

MASM, the computing Virtual Machines (VMs) were equipped with heterogeneous algorithm with different computation 

complexities and uploaded various data sizes. An optimization model was proposed based on MASM which jointly assigning the 
proper workload assignment weights and the computing capacities of the VMs to reduce delay and energy costs. A Tide Ebb 

Algorithm (TEA) was developed to determine robust solutions to the energy delay optimization problem. However, this model is 

more complex.  
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An Energy-Efficient Algorithm (EEA) with power control principle (Sodhro et al, 2018a) was proposed for media transmission 
in remote healthcare systems. EEA adjusted transmission power with respect to dynamic and time-varying channel characteristics. 

However, this model has high energy drain problem during media transmission.  

Flexible deep learning model in edge computing (Sureddy et al, 2018) was proposed for IoT. This model combined deep 
learning into edge computing and it used flexible edge computing architecture with multiple agents. A novel offloading strategy 

was designed to optimize the performance of IoT deep learning applications with edge computing. However, this model face high 

computational complexity problem.  

 A joint transmission power control and duty-cycle approach (Sodhro et al, 2018b) was proposed for smart healthcare system. 

An Adaptive Energy-Efficient TPC (AETPC) and duty-cycle adaption based framework was developed by changing the temporal 

variation in the on-body wireless channel amid static and dynamic body postures. A feedback control-based duty-cycle algorithm 

was proposed to adjust the execution period of tasks. However, this approach is less battery efficient.  

Dynamic algorithm (Dong et al, 2015) was proposed for joint power control and time switching in Simultaneous Wireless 

Information and Power Transfer (SWIPT). The dynamic algorithm used the stochastic optimization theory which trade average 

power consumption by jointly allocating the transmission power and time switching factor. A control parameter was described in 

the dynamic algorithm to facilitate the tradeoff. However, the dynamic algorithm is complex and less reliable without duty-cycle.  

Second-order continuous-time algorithm (Wang et al, 2018) was proposed for optimal resource allocation in power systems. 

This algorithm converged exponentially to the optimal solution of the resource allocation problem starting from any initial states 

over an undirected and connected graph. In addition to this, obtained results were further extended to the optimal resource 

allocation problem in case of switching communication topologies. However, the second-order continuous-time algorithm has high 

energy drain problem.  

III. PROPOSED METHODOLOGY  

In this section, the MLSJPTMC is described in detail for power and battery lifetime-aware communication in AI-based IoT 

devices in industrial application. In MLSJPTMC, the duty-cycle and energy consumption are learn using DNN. The duty-cycle and 

energy consumption are given to train the DNN classifier. DNN has three layers namely input, hidden and output layer. The 

probabilities are denoted as 𝑓(𝑥) = 𝑥 are given to the input layer of neurons. The hidden layer of DNN is defined as tan-sigmoid 

transfer function. 

                                                                            𝑓(𝑥) =
2

1+𝑒−2𝑥 − 1                                       (1) 

Each input has its own weight values as 𝑤1, 𝑤2 , … , 𝑤𝑛 and the weighted sum of the inputs is done by the adder function as 

follows, 

                                                                               𝑢 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                            (2) 

 The output layer of DNN is described by the following equation. 

                                                                      𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1 )                                      (3) 

In Eq. (3), 𝑦 is the output neuron value; 𝑓(𝑥) is the transfer function, 𝑤𝑖 refers the weight values, 𝑥𝑖 denotes input data values 

and 𝑏𝑖 refers to the bias value. Based on the output neuron values, the duty-cycle and energy consumption is assigned in FCDAA. 

DNN consists of multiple hidden layers between input and output layers. Here also, the input layer assigns weights to the input 

parameters and transfers those to the next layer. Each subsequent layer also assigns weights to their input and generates their 

output. At the output layer, the final output value is obtained and error function is calculated to determine how correctly learned 

those duty-cycle and energy consumption parameters. This training cycle is repeated until a termination criterion is satisfied. The 

learned duty-cycle and energy consumption value is used in FCDAA.  

Deep Learning Algorithm  

Input: Training dataset 𝐷 and Learning Rate 𝑙 
Output: Trained neural network 

Initialize all weights and biases in network; 

𝑤ℎ𝑖𝑙𝑒(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑) 

{ 

 𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑋 𝑖𝑛 𝐷) //X is the duty-cycle and energy consumption  

 { 

         𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑖𝑛𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒 𝑗) 

            { 

                   𝑂𝑗 = 𝐼𝑗  //Output of an input layer 

 𝑓𝑜𝑟(𝑒𝑎𝑐ℎ ℎ𝑖𝑑𝑑𝑒𝑛 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒 𝑗) 

  𝐻𝑗 =
2

1+𝑒−2𝑗 − 1; 

  𝑂𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗
𝑛
𝑖=1 ) 

       𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) 

  𝐸𝑗 = 𝑂𝑗(1 − 𝑂𝑗)(𝐻𝑗 − 𝑂𝑗)  

//Error of an output layer 

       𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑤𝑗  𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) 

  𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗 //weight update 

       𝑓𝑜𝑟(𝑒𝑎𝑐ℎ 𝑏𝑖𝑎𝑠 𝑏𝑗  𝑖𝑛 𝑛𝑒𝑡𝑤𝑜𝑟𝑘) 
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   𝑏𝑗 = 𝑏𝑗 + ∆𝑏𝑗 //bias update  

             } 

 } 

} 

After learning the duty-cycle and energy consumption, FCDAA and data reliability models are processed for AI-based 

industrial application over hybrid TPC and duty-cycle network to save energy.  Consider that, 𝜒𝑡𝑥(𝑇𝑃) is the battery charge 

depletion at adopted power levels and 𝜒𝐹𝐶  is the CPU’s extra energy drain by forward central. In duty-cycle analysis harvesting 

energy from access point to nodes is playing remarkable role in examining the overall network performance. When harvesting 

energy rate is greater than the threshold amount (𝑘 ≥ 𝑘𝑡ℎ) than next active period can be predicted by,  

                                                   𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐷𝐶𝑆 = ∑ [𝛶(𝐸 + 𝐶𝑙𝑒𝑎𝑘)] × 𝑇𝑂𝑁
𝑆
𝑖=1                  (4) 

                                                               𝐸 = ∑ (𝐸𝑠𝑒𝑛𝑖
(𝑏) + 𝐸𝑡𝑥𝑖

(𝑏, 𝑑𝑖𝑗))𝑆
𝑖=1                                   (5) 

Or else, negative energy state will be obtained by FCDAA when sufficient energy is not harvested. As well, FCDAA optimize 

the sleeping time, transmission power level at zero-energy interval time duration. In order to achieve the targeted threshold, a 

deviation factor 𝜎 is used where the problem is rectified during battery lifetime maximization. A transmission time is then 

calculated and be suitable for full-cycle. The running time of the forward central control 𝑇𝐹𝐶  is adopted according to the next 

transmission task and 𝑛 accordingly. The tradeoff between forward central control, CPU’s overhead bits and sensitivity will be 

established by tuning associated parameters. In the last node will be in sleep mode before the FCDAA’s new assignment with 

active duration 𝑇𝑂𝑁 appears.  

Energy drain can be rectified with the use of duty-cycle and dynamic transmission power. With efficient and accurate energy 

scavenging mechanism less transmission power is used with acceptable PLR. It is analyzed that 𝑇𝑂𝑁 is non-linearly related to 

battery lifetime. The proposed system level battery model comprises two periodic functions such as, sensing and transmission in 

industrial applications. In each task IoT device’s active time is represented by 𝑇𝑂𝑁. Various tasks lies in the active duration such as, 

processing, sensing and transmission, while more energy is saved and hence less battery charge consumed during inactive i.e., sleep 

mode. Battery charge dissipation 𝜒 and 𝑇𝑂𝑁 of the nodes provides current 𝜒𝑖 value as presented  

                                                                                              𝛶𝑖 =
𝜒𝑖

𝑇𝑂𝑁
                                             (6) 

Average current value is obtained either by monitoring task load 𝜒𝑖 or execution time 𝑇𝑂𝑁 . Hence duty-cycle of IoT based 

sensor devices 𝑆 is calculated as,  

                                                                                     𝐷𝐶𝑆 =
𝑇𝑂𝑁

𝑇𝑂𝑁+𝑇𝑂𝐹𝐹
                                         (7) 

In Eq. (7), 𝑇𝑂𝑁 is the active time of nodes and 𝑇𝑂𝐹𝐹  is the sleep time of nodes. The energy deletion of sensing and transmission 

tasks of IoT devices in industrial applications is analysed by operation of transmitter and base station. Industrial data is measured, 

recorded and communicated to the intended destination with the help of the sensor enabled devices, but the key problem is their 

power hungry and resource-constrained nature.  

To remedy these issues the duty-cycle of the transceiver must be properly managed and monitored. For example, the time-

period of sensor 𝑖 where 𝑖 = 1,2 … 𝑆 is calculated just during the sensing and transmission tasks. Energy dissipation former and 

later tasks while transmitting 𝑏 bits at distance 𝑑𝑖𝑗  for sensor 𝑗 is 𝐸𝑠𝑒𝑛𝑖
(𝑏) and 𝐸𝑡𝑥𝑖

(𝑏, 𝑑𝑖𝑗) respectively. So batter charge level or 

state of charge (SoC) of these miniaturized sensor nodes is measured according to the energy (sensing and transmission) depletion 

level. Besides, SoC heavily depends upon the current consumption during sensing 𝜒𝑠𝑒𝑛𝑠𝑒  and transmission 𝜒𝑡𝑥 respectively and the 

energy saving entities. Battery SoC for the next active slot 𝑇𝑂𝑁 can be predicted according to equation 4.  

A novel data reliability model for the AI-based industrial applications over hybird TPC and duty-cycle network is proposed. In 

these networks, received signal strength indicator (RSSI) and packet loss ratio (PLR) are the key performance indicators for 

examining the entire system. 

                                                     𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = {
𝑅𝑆𝑆𝐼𝑡ℎ − 1,             𝑇𝑃𝐶 = ±1
𝑅𝑆𝑆𝐼𝑖−1 ≤ 𝑅𝑆𝑆𝐼𝑡ℎ , 𝑇𝑃𝐶 = 1

𝑅𝑆𝑆𝐼𝑖−1 ≥ 𝑅𝑆𝑆𝐼𝑡ℎ , 𝑇𝑃𝐶 = −1
                       (8)                    

                                                     𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ (𝑅𝑆𝑆𝐼𝑖−𝑇𝑃)+∑ (𝑅𝑆𝑆𝐼𝑖+𝑇𝑃)𝑛

𝑖=1
𝑛
𝑖=1

𝑛×𝜎
× 𝐷𝐶                       (9) 

The framework of the reliability optimization in AI based edge computing platform for industrial application is introduced 

which adopts case 1 (static: product processing) and case 2 (dynamic: vibration and fault diagnosis) self-adaptive mechanisms. In 

addition, TPC and RSSI level are taken at the physical layer while duty-cycle is considered at the MAC layer. TPC is adapted 
according to the variation in the wireless channel which impacts a lot on the RSSI level, PLR, and hence the reliability. The case 1 

and case 2 are given as the inputs to the wireless channel, which feeds to the adaptive TPC techniques from where signal’s level is 

examined and then transmission is started to monitor and manage the power by adopting the IEEE 802.15.4. 

IV. RESULT AND DISCUSSION  

In this section, the performance of PTPC, FCDAA and MLSJPTMC are tested in terms of energy consumption and energy 

dissipation. The simulation is conducted in MATLAB 2017b based on the experimental parameters which are listed in Table1. An 

extensive experimental test-bed for AI based industrial application is established with the support of IoT devices. The adopted 
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industrial datasets show the impact power and battery lifetime of the IoT-driven portable devices product monitoring and process 

with high reliability. 

Table 1 Experimental Parameters 

Parameter Value 

RSSIth -85 dBm 

Standard deviation (𝜎) 5 dBm 

Harvesting Rate (𝛽) 1000 Hz 

Carrier frequency 5GHz 

Bandwidth 5MHz 

TP levels {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 

Maximum Transmission Power 0 dBm 

Minimum Transmit power -20 dBm 

Operation Time (T) 5 mins 

Delay 300 sec 

Data packet length 200 bytes 

Data packet interval 100 sec 

Data Rate 250 Kbps 

Noise figure 7 dB 

Noise PSD -174 Dbm/Hz 

Wireless channel IEEE 802.15.4 (PHY and MAC) 

Processing Delay 2 min 

 

4.1 Energy Consumption  

Energy consumption is the amount of energy consumed by the IoT devices in industries. Table 2 show the energy 

consumption of PTPC, FCDAA and MLSJPTMC under different duty-cycle. 

Table 2 Energy Consumption vs. Duty-cycle 

Energy Consumption (× 𝟏𝟎−𝟑) 

Duty-cycle PTPC FCDAA  MLSJPTMC 

0 0 0 0 

50 0.0013 0.0008 0.0006 

100 0.0014 0.0011 0.0008 

150 0.0018 0.0013 0.0011 

200 0.0021 0.0015 0.0013 

250 0.0023 0.0018 0.0016 

300 0.0024 0.0020 0.0018 

350 0.0026 0.0022 0.0021 

400 0.0029 0.0025 0.0024 

450 0.0032 0.0028 0.0026 

500 0.0034 0.0031 0.0028 

 
Figure 1 Energy Consumption vs. Duty cycle  

Figure 1 shows the comparison between PTPC, FCDAA and MLSJPTMC in terms of energy consumption for different duty-

cycle. X axis denotes the duty-cycle and Y-axis denotes the energy consumption in terms of mJ. From Figure 1, it is proved that 

the proposed MLSJPTMC has low energy consumption than PTPC and FCDAA.  
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Table 3 reveals the relationship between sensor nodes and the energy consumption for PTPC, FCDAA and MLSJPTMC.  

Table 3 Energy Consumption vs. Sensor Nodes  

Energy Consumption (× 𝟏𝟎−𝟑) 

No. of 

Sensor 

nodes  

PTPC FCDAA  MLSJPTMC 

0 0.0049 0.0048 0.00478 

50 0.0042 0.0040 0.0034 

100 0.0039 0.0034 0.0029 

150 0.0031 0.0030 0.0024 

200 0.0030 0.0025 0.0021 

250 0.0026 0.0021 0.0013 

300 0.0021 0.0016 0.0009 

350 0.0017 0.0012 0.0003 

400 0.0012 0.0007 0.0002 

450 0.0006 0.00091 0.00008 

500 0.0002 0.00002 0.00007 

 
Figure 2 Energy Consumption vs. Sensor Nodes  

Figure 2 shows the comparison between PTPC, FCDAA and MLSJPTMC in terms of energy consumption for different 

number of sensor nodes. X axis denotes the number of sensor nodes and Y-axis denotes the energy consumption in terms of mJ. 

From figure 2, it is proved that the proposed MLSJPTMC has low energy consumption than PTPC and FCDAA.  

4.2 Energy Dissipation  

Energy dissipation is the amount of energy dissipated by the IoT devices in industries. Modulation level varies with respect to 

the requirement of sensors and static, dynamic industrial scenarios then there will be change in the energy dissipation level. Table 

4 shows energy dissipation for different modulation level.  

Table 4 Energy Dissipation vs. Modulation Level  

 
Energy Dissipation (× 𝟏𝟎−𝟑) 

Modulation 

Level 

PTPC FCDAA  MLSJPTMC 

0 0.0021 0.0019 0.0015 

50 0.0020 0.0018 0.0013 

100 0.0018 0.0016 0.0012 

150 0.0015 0.0013 0.0009 

200 0.0013 0.0010 0.0007 

250 0.0010 0.00073 0.0005 

300 0.00076 0.00043 0.0002 

350 0.0054 0.00018 0 

400 0.00294 0 0 

450 0 0 0 

500 0 0 0 
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Figure 3 Energy Dissipation vs. Modulation Level  
Figure 3 shows the comparison between PTPC, FCDAA and MLSJPTMC in terms of energy dissipation for different 

modulation level. X axis denotes the modulation level and Y-axis denotes the energy dissipation in terms of J. From figure 3, it is 

proved that the proposed MLSJPTMC has low energy dissipation than PTPC and FCDAA.  

Table 5 shows the energy dissipation for different time intervals.  

Table 5 Energy Dissipation vs. Time Interval  

 

 

 
Figure 4 Energy Dissipation vs. Modulation Level  

Energy Dissipation (× 𝟏𝟎−𝟑) 

Time (sec) PTPC FCDAA  MLSJPTMC 

0 0 0 0 

50 0.0779 0.0522 0.0324 

100 0.0878 0.0644 0.0416 

150 0.0991 0.0678 0.0517 

200 0.1090 0.0761 0.0635 

250 0.1191 0.0950 0.0735 

300 0.1273 0.1091 0.0824 

350 0.1347 0.1205 0.0947 

400 0.1430 0.1301 0.1005 

450 0.1500 0.1340 0.1102 

500 0.1900 0.1796 0.1326 
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Figure 4 shows the comparison between PTPC, FCDAA and MLSJPTMC in terms of energy dissipation for different time 
interval. X axis denotes the time and Y-axis denotes the energy dissipation in terms of J. From figure 4, it is proved that the 

proposed MLSJPTMC has low energy dissipation than PTPC and FCDAA.  

V. CONCLUSION  

In this paper, MLSJPTMC is proposed to enhance the power and battery-aware communication through portable IoT devices 

for industrial applications. Initially, MLSJPTMC used DNN to learn duty-cycle and energy consumption for AI-based IoT 

devices. The DNN consists of three layers are input layer, hidden layer and output layer. Each layer process the duty-cycle and 

energy consumption with their weight values. Finally the output layer returns the duty-cycle and energy consumption value with 

minimal error. The learned duty-cycle and energy consumption is used in FCDAA which extends the battery lifetime and save the 

power in AI based edge computing platforms for industrial applications. By learning, duty-cycle and energy consumption of IoT 

devices the performance of power and battery-aware communication through portable IoT devices for industrial applications is 

enhanced.  
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