QUANTUM CHEMICAL CALCULATIONS AND FT-IR, UV LIGHT INTERACTIONS ON BENZOFURAN-2-CARBONYL CHLORIDE

^{1a} D.Vijay, ^{2a} Asim Kumar Das, ^{2b} B N Rajasekhar and ^{1b} A.Veeraiah^{*}
 ¹Molecular Spectroscopy Laboratory, Department of Physics, D.N.R. College (A), Bhimavaram, India-534202
 ²Atomic & Molecular Physics Division, BARC, Mumbai, India.

Abstract: Molecular vibrational frequency analyses of benzofuran-2-carbonyl chloride (BCC) were carried out by infrared (IR) and ultraviolet (Uv-Vis) spectrums from Quantum chemical calculations simulated with experimental data. BCC structure is optimized by HF and DFT methods with standard and higher basis sets of 6-311++G**. Scaled quantum mechanical (SQM) force field frequencies and potential energy distributions (PED) were studied with the help of MOLVIB. The first order hyperpolarizability, polarizability and dipole moment were calculated for non-linear optical (NLO) properties. Frontier molecular orbital, natural bond orbital (NBO) and TD-SCF calculated major contributions are presented. Chemical reactivity, ionization potential, global hardness and softness values of the titled compound were reported. Present investigated organic chemical compound having good optical properties and biological importance were found and results are discussed in detailed.

Keywords: SQM, HF, DFT, FT-IR, UV-Visible spectra.

I. INTRODUCTION

Benzofuran is a popular compound as a natural product and its derivatives have extensive applications. Most of the derivatives have been reported with spectral data of Infrared, Uv-vis and fluorescence simulated with theoretical DFT calculations [1-5]. Benzofuran derivative are easily prepared by simple reactive methods and those are available in nature. Present investigations were obtained carbonyl group and halogen substituted compound. The carbonyl group is a combination of the organic functional group of carbon double band oxygen [R-C=O]. It consists of resonance structure and is based on different resonances around the atomic molecule [6]. Many of research and development organizations are looking for new heterocyclic compound. These organic compounds are plays a virtual role in medical, industrial and many more [7-9]. In this article presents one of the benzofuran derivatives organic compounds "benzofuran-2-carbonyl chloride". It is studied by using density functional theory and experimental Infrared, Uv-vis, Raman spectroscopy methods. Most of the literatures are available on either theoretical optimized or experimental synthesized compounds are reported. For the first time we provide complete structural geometric, vibrational, optical and Raman active studies on titled compound.

II. COMPUTATIONAL METHOD

Day-to-day research is updating with quantum computing methods. In computational chemical simulations can provide accurate results regarding vibrational, molecular structural, chemical and electronic properties of suspects without any experimental wastage and it saves time and expenditure of work. A present study of titled compound "benzofuran-2-carbonyl chloride" (BCC) is optimized at Hartree-Fock (HF) and Density Functional Theory (DFT) respective higher basis set 6-311++G(d,p) at Gaussian09W and visualization program Gauss-View 5.0 [10-11]. Molecular electrostatic potential surface distributions were plotted with the help of Argus Lab [12]. Scaled quantum mechanical force field frequencies and potential energy distributions (PED) of BCC were carried out by Prof. T. Sudius developed MolVib program [13-14]. Infrared spectral data were extracted from MolVib output file by using simirra theoretical program. Uv-Vis spectral analysis for absorption spectra were obtained from the method of time dependent self-consistent field (TD-SCF) simulated with experimental data. Ground and first state exited energy distribution counter surface were extracted from Gaussian molecular orbital check point file. NBO and NLO calculations, atomic mulliken charge distributions and potential electrostatic map were performed by using both HF and DFT calculations.

III. EXPERIMENTAL DETAILS

Benzofuran-2-carbonyl chloride is purchased from Sigma-Aldrich Company with the purity of 97% and it is used for experimental spectral analysis without any father purification.

3.1 UV-Vis Spectral Analysis

The UV-Vis spectrum of BCC was recorded by using 450 MeV synchrotron radiation source at Indus 1, RRCAT, India. The absorbance spectra were recorded at frequency 50 kHZ and 1msec exposure time by using ANDOR spectral instrument in the spectral region of 174 - 1020 nm [15]. From the observed spectra, it was strong absorption at 321 nm. From the theoretical TD-SCF method of UV-Vis spectrum also shown approximately same absorbance peak. Therefore both observed and theoretical spectrums were shown in figure 1. One more observation was carried out to the titled compound along with absorption spectra, which is optical energy band gap found at 3.85 eV. It was presented in figure 2.

Fig. 1: Experimental and TD-SCF observed UV-Vis Spectrum.

Fig. 2: Optical energy band gap of BCC

3.2 Infrared Spectral Analysis

The FT-Raman spectrum of BCC was recorded at a 4 cm⁻¹ resolution with a thermofisher scientific equipped model Nicolet 6700 FT-IR with DTGS KBr detector in the 4000–400 cm⁻¹. The sample was prepared KBr pellet method and XT-KBr beam spliter was used for this arrangement [16]. Along with experimental spectra of BCC, we obtained theoretical spectrum by using DFT and HF method. That is shown in Figure 3 and more details of vibrational spectra are presented in results and discussion part.

Fig. 3: FT-IR experimental, HF/6-311++G** and DFT/6-311++G** Spectrum.

IV. RESULTS AND DISCURSIONS

4.1 Molecular Geometry

Molecular structure of BCC is belongs to C_1 point group symmetry and it was optimized by Gaussian09W and visualized by gauss-view 5.0. BCC molecule is contains Chlorine (Cl) and furan connected with benzene ring. Optimized structure of BCC where presented with chemical symbol along with label in Figure 4. Definitions of the internal coordinates of geometry were reported in supplementary table 1. Bond lengths, bond angles and dihedral angles were compared with both HF and DFT data and all comparative values are mostly closed to each other [17-18]. All optimized and experimental bond angles and bond lengths are reported in Table 1.

Potential energy surface scan were carried out to the present compound by both HF and DFT methods with respect to changing dihedral angle of O12-C10-C17-Cl16. We obtained approximately same shaped curves and energy remains constant. Observed PES curves of DFT and HF are shown in Figure 5 (a) and Figure 5 (b) respectively.

Fig. 4: Optimized Molecular structure of Benzofuran-2-carbonyl chloride along with numbering of atom.

No.(i)	Symbol	Туре	Definition ^a
Stretching			
1-5	Ri	С-Н	C1-H5, C4-H8, C3-H7, C2-H6, C9-H11
6-11	Ri	C-C (Ring1)	C1-C4, C4-C3, C3-C2, C2-C13, C13-C14, C14-C1
12-13	R _i	C-C (Ring2)	C13-C9, C9-C10,
14-15	R _i	C-O (Ring2)	C10-O12, O12-C14
16	R _i	C-C (R2sub)	C1 <mark>0-C17</mark>
17	R _i	C-O sub	C17-O15
18	R _i	C-Cl sub	C17-Cl16
In-Plane be	nding		
19-26	γi	C-C-H (Ring1)	C14-C1-H5, C4-C1-H5, C1-C4-H8, C3-C4-H8, C4-C3-H7, C2-C3-H7, C3-C2-H6, C13-C2-H6
27-28	γi	C-C-H (Ring2)	C13-C9-H11, C10-C9-H11
29-34	γi	RING 1	C1-C4-C3, C4-C3-C2, C3-C2-C13, C2-C13-C14, C13-C14-C1, C14-C1-C4
35-39	γi	RING 2	C14-C13-C9, C13-C9-C10, C9-C10-O12, C10-O12-C14, O12-C14-C13
40	γi	C-C-C (R2sub)	C9-C10-C17
41-42	γi	C-C-O R2	012-C10-C17, C10-C17-O15
43	γi	C-C-Cl	C10-C17-Cl16
44	γi	O-C-Cl	O15-C17-Cl16
Out-of-plar	ne bending		
45-49	ρi	С-Н	H5-C1-C14-C4, H8-C4-C1-C3,H7-C3-C4-C2, H6-C2-C3-C13, H11-C9-C13-C10
50	ρi	C-0	C17-C10-C9-O12
Torsion			
51-56	τί	RING 1	C1-C4-C3-C2, C4-C3-C2-C13, C3-C2-C13-C14, C2-C13-C14- C1 C13-C14-C1-C4 C14-C1-C4-C3
57-61	τί	RING 2	C14-C13-C9-C10, C13-C9-C10-O12, C9-C10-O12-C14, C10-O12-C14-C13, O12-C14-C13-C9
62-63		BUTTER	C2-C13-C14-O12, C1-C14-C13-C9
64	τί	C-C-O-Cl	C10-C17-O15-C116

0 1 /	. 1.1	1	• • • • •	CD C	A 1 1 1 1 · 1
Supplementary mate	rial I:	definition of	internal coordina	ates of Benzofuran	-2-carbonyl chloride

^a For numbering of atom refer Fig.4

Table 1: Optimized geometrical parameters of Benzofuran-2-carbonyl chloride obtained by HF and DFT calculations

	Valu	ıe(Å)		Valu	ie(°)		Valu	e(°)
Bond length ^a	DFT	HF	Bond Angle ^a	DFT	HF	Dihedral Angle ^a	DFT	HF
C1-C4	1.389	1.377	C1-C4-C3	121.74	121.86	C1-C4-C3-C2	-0.011	-0.006
C4-C3	1.410	1.406	C4-C3-C2	121.29	121.01	C4-C3-C2-C13	0.015	0.012
C3-C2	1.385	1.374	C3-C2-C13	118.10	117.93	C3-C2-C13-C14	-0.006	-0.010
C2-C13	1.405	1.398	C2-C13-C14	119.20	119.80	C2-C13-C14-C1	-0.005	0.001
C13-C14	1.408	1.386	C13-C14-C1	123.45	123.22	C13-C14-C1-C4	0.010	0.004
C14-C1	1.389	1.386	C14-C1-C4	116.20	116.14	C14-C1-C4-C3	-0.001	-0.002
O12-C14	1.360	1.342	O12-C14-C13	110.55	110.62	O12-C14-C13-C9	-0.004	0.000
C13-C9	1.430	1.440	C14-C13-C9	105.44	105.18	C14-C13-C9-C10	0.006	0.001
C9-C10	1.366	1.341	C13-C9-C10	106.23	105.46	C13-C9-C10-O12	-0.006	-0.002
C10-O12	1.376	1.356	C9-C10-O12	111.62	112.28	C9-C10-O12-C14	0.003	0.002
C10-C17	1.455	1.461	C10-O12-C14	106.15	106.42	C10-O12-C14-C13	0.001	-0.001
C17-O15	1.186	1.169	O12-C10-C17	115.34	115.33	C17-C10-O12-C9	179.995	179.995
C17-C16	1.825	1.768	C9-C10-C17	133.03	132.37	012-C10-C17-O15	0.003	0.020
C1-H5	1.082	1.073	C10-C17-O15	127.27	125.87	O12-C10-C17-Cl16	-179.994	-179.980
C4-H8	1.083	1.075	C10-C17-Cl16	112.40	114.17	C9-C10-C17-O15	179.998	-179.98
C3-H7	1.083	1.074	O15-C17-Cl16	120.31	119.95	C9-C10-C17-Cl16	0.000	0.014
C2-H6	1.083	1.074	C14-C1-H5	121.45	121.64	H5-C1-C4-C14	179.997	179.995
C9-H11	1.077	1.068	C4-C1-H5	122.34	122.20	H8-C4-C3-C1	179.985	179.987
			C1-C4-H8	119.15	119.16	H7-C3-C2-C4	179.995	179.997
			C3-C4-H8	119.09	118.96	H6-C2-C3-C13	179.982	179.988
			C4-C3-H7	119.02	119.09	H11-C9-C13-C10	179.996	179.998
			С2-С3-Н7	119.68	119.89			
			C3-C2-H6	121.04	121.16			
			С13-С2-Н6	120.85	120.90			
			C13-C9-H11	128.11	127.80			
			C10-C9-H11	125.65	126.72			

Fig. 5 (a): Potential energy surface scan for dihedral angle O12-C10-C17-Cl16 of BCC by DFT Method.

4.2 Vibrational Analysis

The organic compound of BCC belongs to C1 point group symmetry with 17 atoms (N=17). Local symmetry and asymmetry coordinates of BCC were defined along with scaled factors and quantum force field calculations in table 3. Non-linear molecule has 45 fundamental modes of vibrations with the reference of three dimensional degrees of freedom 3N-6 (where N is number of atoms in molecule) [19-20]. From the structural geometry of molecule BCC, it has 31 in-plane (2N-3) and 14 Out-of-Plane vibrations (N-3). Total number of fundamental modes of vibration, 45 (Γ_{vib}) = 31 A'(in-plane) + 14 A" (out-of-plane).

© 2019 JETIR June 2019, Volume 6, Issue 6

www.jetir.org (ISSN-2349-5162)

Table 2: Definition of local-symmetry coordinates and the values of corresponding scale factors used to correctThe 6-31G++ (d, p) force field calculations of Benzofuran-2-carbonyl chloride

	-					
No.(i)	Symbol ^a	Definition ^b	Scale factors			
Stretching						
1-5	v(C-H)	R1, R2, R3, R4, R5				
6-11	v(C-C)(Ring1)	R6, R7, R8, R9, R10, R11				
12-13	v(C-C)(Ring2)	R12, R13				
14-15	v(C-O)(Ring2)	R14, R15				
16	v(C-C)(R2sub)	R16				
17	v(C-O)sub	R17				
18	v (C-Cl) sub	R18				
In-Plane bending						
19-22	β(C-C-H) R1	$(\gamma 19 - \gamma 20)/\sqrt{2}, (\gamma 21 - \gamma 22)/\sqrt{2}, (\gamma 23 - \gamma 24)/\sqrt{2}, (\gamma 25 - \gamma 26)/\sqrt{2}$				
23	β(C-C-H) R2	$(\gamma 27 - \gamma 28)/\sqrt{2}$				
24	βR1 tri	$(\gamma 29 - \gamma 30 + \gamma 31 - \gamma 32 + \gamma 33 - \gamma 34)/\sqrt{6},$				
25	βR1 asy	(2γ 29-γ 30- γ31+2γ32- γ33-γ34)/√12,				
26	β R1 sym	$(\gamma \ 30-\gamma 31+\gamma 33-\gamma 34)/2,$				
27	β R2 asy	$(a-b) (\gamma 36-\gamma 39) + (a+b) (\gamma 37-\gamma 38)$				
28	β R2 sym	$\gamma 35 + a(\gamma 36 + \gamma 39) - b(\gamma 37 + \gamma 38)$				
29	β CCOsub	$(\gamma 40 - \gamma 41)\sqrt{2}$				
30	βCOCl sc	(2γ44 - γ42 - γ43) √6				
31	βCOCl wa	τ 64				
32	βCOCl ro	$(\gamma 42 - \gamma 43)\sqrt{2}$				
Out of plane bend	ling					
33-37	ω (C-H)	ρ 45, ρ 46, ρ 47, ρ 48, ρ 49				
38	ω (C-O)	ρ 50				
Torsion						
39	τ R1tri	$(\tau 51 - \tau 52 + \tau 53 - \tau 54 + \tau 55 - \tau 56)/\sqrt{6}$				
40	τ R1asy	(τ 5 <mark>1-τ53+τ</mark> 54-τ56)/2				
41	τ R1sym	(-τ51-2τ52-τ53+τ54+2τ55-τ56)/√12				
42	τ R2asy	$-b(\tau 57+\tau 61)+a(\tau 58+\tau 60)+\tau 59$				
43	τR2sym	$(a-b)(\tau 60-\tau 58)+(1-a)(\tau 61-\tau 57)$				
44	τ Butter	$(\tau 62 - \tau 63)/2$				
45	τCOCl	$(\tau 65 - \tau 66)$				

C-C Ring Vibrations:

Aromatic C-C ring stretching vibrations occurs at about the range of frequencies 1450-1600 cm-1 and out of plane bending were found at 675-900 cm⁻¹ [21-22]. The computed C-C ring vibrational frequencies were found at 766 - 880 cm⁻¹ corresponding observed frequencies at 751 - 889 cm⁻¹. C-C stretching vibrations are observed at 1441 cm⁻¹ corresponding computing HF and DFT scaled assignments were found 1480 cm⁻¹ and 1466 cm⁻¹ respectively.

C-H Vibrations:

According to vibrational frequencies theory, C-H vibrations were found in-plane stretching at 2700-3600 cm-1 and C-H bending may also observed at about 1375 and 1450 cm⁻¹. In aromatic compounds C-H out of plane bending vibrations were found at about 1000-650 cm-1 [23]. Hartree-Fock (HF) and Density Functional Theory (DFT) computational methods were given accurate C-H assignments at about 3100-3400 cm⁻¹. We found banding C-H frequencies at about 3060 cm⁻¹ and 3126 cm⁻¹.

Carbonyl group:

The vibrational frequency range of C=O carbonyl derivatives were found at 1630-1820 cm⁻¹. The present investigated compound having C=O carbonyl group vibrations with acid chloride, it was found at 1760-1820 cm⁻¹ [24]. From observed FT-IR spectrum specific group of C=O stretching vibrations were found at 1765 cm-1 and theoretical HF spectra shown at 1793 cm⁻¹.

According to theoretical chemist Prof. Peter Pulay recommendations the normal modes of vibrations of BCC were well defined and detailed assignments of fundamental vibrations were presented in table 3 [25-26].

Table 3: Detailed assignments of fundamental vibrations of BCC by normal mode analysis based on
SQM force field calculations using HF and DFT method

	FT-IR	Theoret	ical IR				
Mode	Experimental	frequencie	es (cm-1)	IK Activity		Δ seignments (DED) a, b	
no.	frequencies (cm-1)	HF	DFT	HF	DFT	Assignments (PED)	
7	-	3426	3266	3.249	1.700	ω CH (45)	
8	-	3366	3207	8.620	2.622	β CHR1 (99)	
9	3126	3358	3195	24.283	12.184	β CHR1 (90)	
10	-	3345	3184	12.835	5.537	β CHR2 (88)	
11	3060	3333	3174	2.558	0.860	β CHR1 (94)	
12	1752	1957	1843	1411.823	541.467	β CHR1 (97)	
13	1610	1793	1651	137.99	33.796	ω CH (77), τ R1asy (16)	
14	-	1735	1621	45.082	4.533	ω CH (90)	
15	1548	1623	1583	201.717	135.759	ω CH (87)	
16	-	1593	1509	4.795	4.795	υ CHR1 (91)	
17	1441	1480	1466	9.485	8.810	υ CHR1 (95)	
18	1348	1412	1385	61.596	5.920	v CHR2 (97)	
10	1321	1356	1344	164 206	8 315	$\mathbf{p} \mathbf{CHR1}(98)$	
20	1278	1306	1291	11 439	102 206	v CHR1(99)	
20	1270	1208	1291	28.005	1 406	\circ CH((00)	
21	-	1298	1201	36.993	1.490	$\omega CH(99)$	
22	-	1288	1213	7.494	2.319	ω CH (55), t Kluri (26), t Klasy (11)	
23	-	1259	1178	151.844	16.757	B CCOsub (37), B COCLR (34)	
24	1133	1213	1151	27.177	144.977	β COCLwa (57), ω CO (31)	
25	1112	1192	1132	141.177	7.848	β R1tri (33), β R1asy (22), υ CCR2 (14)	
26	-	1110	1026	0.009	6.989	β R1tri (41), β R1asy (35), υ CCR1 (13)	
27	-	1092	989	69.607	0.002	β COCLsub (41), υ R2sub (29)	
28	975	1081	984	4.937	126.328	β R1sym (49), υ CCR1 (25)	
29	943	968	958	303.803	2.650	f Klasy (51), ω CH (31)	
30	889	910	901	22.882	28.850	$f COCL (37), \omega CO (34), \beta COCL Wa (14)$	
22	-	875	860	5766	178 025	p CCP1(51), 0 CCR2(19)	
32	<u> </u>	07J 961	850	240 604	0.529	p CCP1 (46) p CCP2 (19)	
33	043	705	770	102 592	9.330	0 CCR1 (40), 0 CCR2 (18)	
34	115	760	766	102.383 02.168	98.701	v CCR2 (40), v CCR1 (37)	
35	-	709	760	9 <mark>3.10</mark> 8	24.120	0 CCR1(33), 0 CCR2(22)	
20	/51	700	759	38.910	40.000	r = 0.0000000000000000000000000000000000	
3/	080	629	624	33.770	0.430	0 CCR2 (48), $0 CCR1$ (39)	
20		610	601	7.075	2.301 41.812	τ but (41) τ COCL (24)	
39	592	578	575	0.008	41.012	(41), (2002)(24)	
40	=	570	569	0.098	0.049	v CCR1 (30)	
41	455	534	532	5 974	2.644	v CCR1 (31) v COsub (25)	
42	435	158	113	21.883	2.044	$v CCP2 (32) v CCP1 (22) \beta P2agy (22)$	
43	420	438	443	16 784	7 906	v CCL sub(24) v CCR1 (19) v R2sub (18)	
/15	-	378	369	5.503	0.075	v CCL sub(44), v CCR2 (18), v CCR (10)	
45	_	294	270	4 665	1 669	τR^{2} sym (73)	
40		2/7	270	5 167	1.007	$\beta \operatorname{COCLR}(28) \cong \operatorname{CCR1}(17)$	
47		209	256	7 231	3 528	βR^{2} (24) αR^{2} (24) αR^{2} (24) $\beta R^$	
49	_	138	128	3.161	1.672	$\tau R1sym (67), \tau R2asv (16)$	
50	_	96	90	0.190	0.131	ν CCR2 (54), β CCOsub (17)	
51	-	61	58	0.136	0.228	τ R2asy (69), τ R1sym (14)	

^a Only PED contributions $\geq 15\%$ are listed by DFT method.

^b Abbreviations : v, stretching; β , in plane bending; ω , out of plane bending; τ , torsion, ss, symmetrical stretching, as, asymmetrical stretching, sc, scissoring, wa, wagging, twi, twistivg, ro, rocking, ipb, in-plane bending, opb, out-of -plane bending; tri, trigonal deformation, sym, symmetrical deformation, asy, asymmetric deformation, butter, butterfly, ar, aromatic, sub, substitution, vs, very strong; s, strong; ms, medium strong; w, weak; vw, very weak.

4.3 Molecular Orbital Analysis:

BCC aromatic organic compound were optimized and studied molecular orbital electronic charge distributions. According to Fukui recommendations electronic distributions were justified by frontier orbitals (HOMO-LUMO). We capture different orbital structures along with charged surfaces [27-29]. Highest occupied and lowest unoccupied molecular orbitals of the investigated

© 2019 JETIR June 2019, Volume 6, Issue 6

www.jetir.org (ISSN-2349-5162)

compound were found 46 and 47 respectively. From TD-SCF of DFT and HF methods were used. Some of charged orbital surfaces of BCC were presented in figure 6 (a) and 6 (b).

42

43

45

47

48

49

Fig. 6(a): Visualization of molecular orbitals (HOMO: 46 – LUMO: 47) by DFT/TD-SCF method.

42

46

60

44

50

45

Fig. 6(b): Visualization of molecular orbitals (HOMO: 46 - LUMO: 47) by HF/TD-SCF method.

55

Different molecular orbitals were shown positive and negative charge distributions. In addition to that, we calculated energy gap and chemical properties of BCC. It was useful to determine the chemical stability of organic compounds and electronic charge distributions [30]. Some of equations were used for these calculations and results were presented in Table 4.

Ionization potential (I) = - E_{HOMO} Electron Affinity (A) = - E_{LUMO} Chemical potential (μ) (eV) = $-\frac{1}{2}$ (E_{HOMO} + E_{LUMO}) Electronegativity $\chi = I + \frac{A}{2}$ Chemical hardness $\eta = I - \frac{A}{2}$ Electrophilicity index $\omega = \frac{\mu^2}{2\eta}$ Global Softness $\sigma = \frac{1}{\eta}$

Property	DFT/6-311++G**	HF/6-311++G**
Total energy (eV)	-26035.0291	-25934.5562
E _{HOMO} (eV)	-7.1299	-8.9895
E _{LUMO} (eV)	-2.7456	1.0982
Energy gap (ΔE) (eV)	-4.3843	-10.0878
Ionization potential (I) eV	7.1299	8.9895
Electron Affinity (A) eV	2.7456	-1.0982
Electro-negativity $(\chi)eV$	8.5027	8.4404
Chemical Potential (µ)	4.9377	3.9456
Chemical hardness(η)eV	5.7571	9.5386
Electrofilicity index (ω)eV	2.1175	0.8160
Global Softness (σ)eV	0.1736	0.1048
Dipole moment(D)	5.0025	6.0763

Table 4: The calculated quantum chemical parameters on Benzofuran-2-carbonyl chloride

4.4 Non Linear Optical Properties:

Non-linear optical materials have wide range of applications in material science. We obtained electric dipole moment μ (D), second order polarizability ($\Delta \alpha$) and first hyperpolarizability (β) from quantum computing methods HF and DFT with the help of finite field approach [31]. Coming to present work of BCC organic material, we extract dipole, polar and hyper Polar values from Gaussian output file. Compared both HF and DFT calculated values and reported in Table 5.

$$\mu = \mu_x^2 + \mu_y^2 + \mu_z^2$$

$$\alpha_o = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}$$

$$\Delta \alpha = 2^{-1/2} [(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{xx})^2 + 6\alpha_{xx}^2]^{1/2}$$

$$\beta = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$

$$\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$$

$$\beta_y = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$$

$$\beta_z = \beta_{zzz} + \beta_{xxz} + \beta_{yyz}$$

Table 5: The electric dipole moment (D), average polarizability, first hyperpolarizability, etc., of BCC by B3LYP/6-311++G**

Components	HF/6-311++G**	DFT/6-311++G**
μ(D)	3.87361011	5.71508058
α_0 (esu)	19.4426×10 ⁻²⁴	23.0763×10 ⁻²⁴
$\Delta \alpha$ (esu)	53.6181×10 ⁻²⁴	57.5952×10 ⁻²⁴
βtotal (esu)	9.5857×10 ⁻³⁰	15.2862×10 ⁻³⁰

4.5 Molecular electrostatic potential surface map (MESP):

Three dimensional electrostatic potential surface were recorded by using Argus lab and presented in Figure 7 (a) & 7 (b). MESP shows clear picture of electrophilic and nucleophilic attacks of BCC [32]. Charge distributions were observed in carbonyl group. From MESP, oxygen atoms (O15 and O12) were get negative charge shows red colour and chlorine atom (Cl16) positive charge shows blue colour.

Fig. 7 (b): HF/6-311++G (d,p) calculated 3D molecular electrostatic potential maps of BCC.

4.6 Atomic mulliken charges:

Mulliken population analyses were used to understand partial atomic charge and liner combinations of atomic orbitals from quantum computational methods. It was developed by Robert. S. Mulliken in 1955 [33]. Atomic charges of optimized BCC were computed via DFT and HF method and presented in Table 6.

S No	Atom	Mulliken		
5.INO.	Atom	DFT	HF	
1	C1	-0.357908	-0.211708	
2	C2	-0.062717	0.038663	
3	C3	-0.168932	-0.311217	
4	C4	-0.244782	-0.323662	
5	H5	0.196817	0.256354	
6	H6	0.160322	0.232454	
7	H7	0.171519	0.232398	
8	H8	<mark>0</mark> .177270	0.244955	
9	C9	-0.198185	-0.386970	
10	C10	1.086517	1.009972	
11	H11	0.176266	0.262180	
12	012	-0.043177	-0.182382	
13	C13	0.943242	0.971227	
14	C14	-0.719252	-0.611540	
15	015	-0.098571	-0.229414	
16	Cl16	0.331362	0.297316	
17	C17	-1.349793	-1.288625	

Table 6: Atomic charges for optimized geometry Benzofuran-2-carbonyl chloride by HF and DFT

V. CONCLUSION

The investigated BCC compound structure were optimized and analyzed theoretical vibrational frequency data via DFT and HF method with standard basis set 6-311++G (d,p). FT-IR experimental vibrational frequencies were compared with theoretical scaled frequencies and reported in detailed. Assignments of fundamental vibrations of BCC normal modes analysis based on SQM force field calculations using DFT and HF method. UV-Vis absorbance at 321 nm and optical band gap at 3.85 eV were observed. According to FMO analysis, we found energy gap between molecular orbital from both theoretical methods and reported. From quantum chemical calculations carried out for ionization potential, chemical potential, global chemical softness and dipole moment. Different molecular orbitals were presented for clear picture of electric charge distributions. 3-D MESP were presented for visualization of electrophilic and nucleophilic attack.

ACKNOWLEDGMENT:

The corresponding author, A.Veeraiah is highly grateful to UGC-DAE, IUC-Indore, Government of India (Project code-CSR-IC-BL-56/CRS-173/2016-17/837) and Management of D.N.R.College Association for their financial support and cooperation respectively. Further, the authors are highly grateful to Prof. T. Sundius for Molvib program.

REFERENCES:

[1] Ghassan Shattat, Tariq Al-Qirim, Kamal Sweidan, Moyad Shahwan, Waseem El-Huneidi, and Yusuf Al-Hiari, 2010, Journal of Enzyme Inhibition and Medicinal Chemistry, 25(6) 751–755

[2]Kalman Magyar, Joseph Lengyel, Andrea Bolehovszky, Bertha Knoll, Iidiko Miklya and Joseph Knoll, 2002, european journal of drug metabolism and pharmacokinetics 27(3) 157-161

[3] Janice M. Rubin-Preminger, Leonid Kozlov and Israel Goldberg, 2008, Acta Cryst. C64, m83-m86

[4]A. Veeraiah, K. Anand Solomon, G. Gopi Krishna, J. Satayanarayana Reddy, V. Veeraiah, K. Chaitanya, 2012, Journal of Molecular Structure, 1026, 36-43.

© 2019 JETIR June 2019, Volume 6, Issue 6

[5] Majid M. Heravi, Vahideh Zadsirjan, 2015, Advances in Heterocyclic Chemistry Volume 117, 261-376.

[6]S.JacksonPhD, 2008, Principles and Applications, Food Science and Technology, (3) 273-274.

[7]Pragi Arora, Varun Arora, H.S. Lamba and Deepak Wadhwa, 2012, International Journal of Pharmaceutical Sciences and Research, 8, 2947-2954.

[8]Julio Alv, arez-Builla and Jose Barluenga, 2011, Modern Heterocyclic Chemistry, (1) 1-9.

[9] Abbas Al-Mulla et. al- 2017, Der Pharma Chemica, 9(13)141-147.

[10]C. Lee, W. Yang, R.G. Parr, 1988, Development of the Colle-Salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37, 785.

[11]M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N.Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J.Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT, 2009

[12] Prasan Tanguenyongwatana and Nathjanan Jongkon, 2016, Thai Journal of Pharmaceutical Sciences (TJPS) 40(1) 1-53

[13] T.Sundius, 2002, Scaling of Ab Initio Force Fields by MOLVIB. Vibrational Spectroscopy, 29, 89-95.

[14] T.Sundius, 1990, Molvib - A flexible program for force field calculations, J. Mol. Struct. 218 [15] Asim Kumar Das, Sunanda Krishnakumar and B. N. Raja Sekhar, 2018, Journal of Quantitative Spectroscopy and Radiative Transfer 217, 116-125.

[16] D.Peak et.al- 2005, Encyclopedia of Soils in the Environment, 80-85

[17] J.E. CARPENTER and F. WEINHOLD, 1988, Journal of Molecular Structure (Theochem), 169, 41-62

[18] Tadeusz M. Krygowski, Romana Anulewicz, and Philippe C. Hiberty, 1988, Journal of Molecular Structure (Theochem), 169, 41-62

[19] Fiona Sim, Alain St. Amant, Imre Papai, and Dennis R. Salahub, 1992, J. Am. Chem. Soc., 114 (11), 4391–4400

[20] Shamoon Ahmad Siddiqui, Tabish Rasheed, Mohd Faisal, Anoop Kumar Pandey, and Sher Bahadar Khan, 2012, Hindawi Publishing Corporation Spectroscopy: An International Journal 27 (3) 185–206

[21] S.Gunasekaran, R. Thilak Kumar and S.Ponnusamy, 2007, Indian Jouenal of Pure and Applied Physics, 45

[22] D. Sajan, H. J. Ravindra, N. Misra, and I. H. Joe, 2010, Vibrational Spectroscopy, vol. 52, no. 2, pp. 163-172

[24] Gerald Lappin and Leland Clark, Anal. Chem., 1951, 23 (3) 541–542

[25] P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, 1983, Journal of the American Chemical Society, (105) 24

[26] T. Vijayakumar, I.H. Joe, V.S. Jayakumar, 2008, Chem. Phys. (343)83

[27] G. Gece, 2008, Corros. Sci. 50, 2981

[28] K. Fukui, 1975, Theory of Orientation and Stereo Selection, Springer-Verlag, Berlin

[29] K. Fukui, 1987, Science 218

[30] A Veeraiah et.al. 2015, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 147, 212–224

[31] G. Maroulis, 2000, Journal of Chemical Physics, 113 (5) 1813–1820

- [32] I. Alkorta and J. J. Perez, 1996, International Journal of Quantum Chemistry, vol. 57, no. 1, pp. 123–135,
- [33] Mulliken, R. S., 1995, Journal of Chemical Physics. 23 (10): 1833–1840