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Abstract : In this paper we study the definition of inverse Aboodh transform. We also study the inverse Aboodh transform of 

some standard functions .Further, we establish and prove some important properties related to inverse Aboodh transform. In 

addition, we establish application of inverse Aboodh transform to find particular solution of first and second order linear ordinary 
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1. INTRODUCTION 

Aboodh Transform was introduced by Khalid Suliman Aboodh in 2013 from classical Fourier integral. Aboodh transform 

is defined for function of exponential order by 

𝐴{𝑓(𝑡)} =  
1

𝑣
∫ 𝑓(𝑡)𝑒−𝑣𝑡𝑑𝑡,   𝑡 ≥ 0, 𝑘1 ≤ 𝑣 ≤ 𝑘2

∞

0
, 

where 𝑓(𝑡) is a function from the set of the form 𝐴 = {𝑓(𝑡) : ∋ 𝑀, 𝑘1, 𝑘2 > 0, |𝑓(𝑡)| < 𝑀𝑒−𝑣𝑡}.[1] 

One of the most importance of transforms is solving ordinary differential equations, partial differenatial equations, linear 

volterra integro-differential equations etc. Aboodh transform is useful in solving ordinary differential equations, partial 

differenatial equations equations [2] which gives rise to make use of inverse Aboodh transform. Aboodh transform is also 

useful for solving solving fourth order parabolic PDE with variable coefficients [3]. The higher versions of Aboodh 

Transform such as double aboodh transform, triple aboodh transform are already established [8,9]. In addition to it several 

theorems and properties related to them are also verified. Moreover applications of these higher versions of aboodh transforms 

to solve integral, partial and fractional differential equations are also discussed[2,4,7,8,9,10]. 

In this article we introduce An Inverse Aboodh Transform in a different and more simpler way. We also prove some 

important properties for Inverse Aboodh Transform using some basic properties of Aboodh transform. We also illustrate use 

of Inverse Aboodh Transform in solving first and second order linear differential equations. 

 

2. PRELIMINARIES 

In this section, we study the definition of inverse aboodh transform. 

 

Definition If 𝐹(𝑡) is piecewise continuous and of exponential order for t≥0 such that 𝐴{𝐹(𝑡)} = 𝑓(𝑣) then 𝐹(𝑡) is called 

inverse Aboodh transform of 𝑓(𝑣) and we write 

𝐴−1{𝑓(𝑣)} = 𝐹(𝑡)   

 

3. INVERSE ABOODH TRANSFORM OF SOME STANDARD FUNCTIONS 

In this section, we present the inverse Aboodh transform of some standard functions. 

a) 𝐴−1 {
1

𝑣2} = 1,                    

b) 𝐴−1 {
1

𝑣3} = 𝑡,            

           

In general, we can define 

𝐴−1 {
1

𝑣𝑛+2
} =  

𝑡𝑛

𝑛!
 , 𝑛 = 0, 1, 2, … 

Explanation:- 

As we know, [1] 𝐴 {
𝑡𝑛

𝑛!
} =  

1

𝑛!
 𝐴{𝑡𝑛} 

                    =  
1

𝑛!

𝑛!

𝑣𝑛+2 

                   =  
1

𝑣𝑛+2 

      Thus, 𝐴−1 {
1

𝑣𝑛+2} =  
𝑡𝑛

𝑛!
 , 𝑛 = 0, 1, 2, … 

Alternatively, we can also prove it in following manner 

   

             [1]𝐴 {
𝑡𝑛

𝑛!
} =  

1

𝑣
∫

𝑡𝑛

𝑛!

∞

0
𝑒−𝑣𝑡𝑑𝑡 

              =  
1

𝑛!
 { 

1

𝑣
∫ 𝑡𝑛∞

0
𝑒−𝑣𝑡𝑑𝑡} 

                                       =
1

𝑛!
 𝐴{𝑡𝑛} =

1

𝑣𝑛+2. 
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       Thus, 𝐴−1 {
1

𝑣𝑛+2} =  
𝑡𝑛

𝑛!
 , 𝑛 = 0, 1, 2, … 

 

c) 𝐴−1 {
1

𝑣(𝑣−𝑎)
} =  𝐴−1 {

1

𝑣2−𝑎𝑣
} =  𝑒𝑎𝑡 

d) 𝐴−1 {
1

𝑣(𝑣2+𝑎2)
} =  

1

𝑎
 𝑠𝑖𝑛𝑎𝑡 

Explanation: 

Consider, 

               [1] 𝐴{
1

𝑎
 𝑠𝑖𝑛𝑎𝑡} =  

1

𝑎
 𝐴{𝑠𝑖𝑛𝑎𝑡} 

      =  
1

𝑎

𝑎

𝑣(𝑣2+𝑎2)
 

       =  
1

𝑣(𝑣2+𝑎2)
         

          ∴ 𝐴 {
1

𝑎
 𝑠𝑖𝑛𝑎𝑡} =

1

𝑣(𝑣2+𝑎2)
         

                 ⇒   𝐴−1 {
1

𝑣(𝑣2+𝑎2)
} =  

1

𝑎
 𝑠𝑖𝑛𝑎𝑡 

e) 𝐴−1 {
1

(𝑣2+𝑎2)
} =   𝑐𝑜𝑠𝑎𝑡 

f) 𝐴−1 {
1

𝑣(𝑣2−𝑎2)
} =  

1

𝑎
 𝑠𝑖𝑛ℎ𝑎𝑡 

Explanation: 

Consider, 

      [1]  𝐴{
1

𝑎
 𝑠𝑖𝑛ℎ𝑎𝑡} =  

1

𝑎
 𝐴{𝑠𝑖𝑛ℎ𝑎𝑡} 

         =  
1

𝑎

𝑎

𝑣(𝑣2−𝑎2)
 

         =  
1

𝑣(𝑣2−𝑎2)
            

              ∴ 𝐴 {
1

𝑎
 𝑠𝑖𝑛𝑎𝑡} =

1

𝑣(𝑣2−𝑎2)
        

       ⇒   𝐴−1 {
1

𝑣(𝑣2−𝑎2)
} =  

1

𝑎
 𝑠𝑖𝑛ℎ𝑎𝑡 

 

g) 𝐴−1 {
1

(𝑣2−𝑎2)
} =   𝑐𝑜𝑠ℎ𝑎𝑡 

 

Thus we can summarize this in tabular form as 

 

Function Inverse Aboodh Transform 
1

𝑣2
 

1 

1

𝑣𝑛+2
 

𝑡𝑛

𝑛!
 , 𝑛 = 0, 1, 2, … 

1

𝑣(𝑣 − 𝑎)
 

𝑒𝑎𝑡 

1

𝑣(𝑣2 + 𝑎2)
 

1

𝑎
 𝑠𝑖𝑛𝑎𝑡 

1

(𝑣2 + 𝑎2)
 

𝑐𝑜𝑠𝑎𝑡 

1

𝑣(𝑣2 − 𝑎2)
 

1

𝑎
 𝑠𝑖𝑛ℎ𝑎𝑡 

1

(𝑣2 − 𝑎2)
 

𝑐𝑜𝑠ℎ𝑎𝑡 

 

 

 

 

 

4. PROPERTIES OF INVERSE ABOODH TRANSFORM 

In this section we discuss some properties of inverse Aboodh transform. 

 

4.1 Linearity Property 

 If 𝑓1(𝑣) and 𝑓2(𝑣) are two functions such that 𝐴−1{𝑓1(𝑣)} and 𝐴−1{𝑓2(𝑣)} exists and 𝑐1, 𝑐2 are arbitrary constants then 

   𝐴−1{𝑐1𝑓1(𝑣) + 𝑐2𝑓2(𝑣)} =  𝑐1𝐴−1{𝑓1(𝑣)} + 𝑐2𝐴−1{𝑓2(𝑣)} 
 

 Proof: Suppose,   𝐴−1{𝑓1(𝑣)} =  𝐹1(𝑡) 

   𝐴−1{𝑓2(𝑣)} =  𝐹2(𝑡) 
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  Then, 𝐴{𝐹1(𝑡)} =  𝑓1(𝑣) and 𝐴{𝐹2(𝑡)} =  𝑓2(𝑣) 

  For constants 𝑐1 𝑎𝑛𝑑 𝑐2,  

  [1]By linearity property of Aboodh transform, we have 

   𝐴{𝑐1𝐹1(𝑡) + 𝑐2𝐹2(𝑡)} =  𝑐1𝐴{𝐹1(𝑡)} + 𝑐2𝐴{𝐹2(𝑡)} 

            = 𝑐1𝑓1(𝑣) + 𝑐2𝑓2(𝑣) 

  Thus, 𝐴−1{𝑐1𝑓1(𝑣) + 𝑐2𝑓2(𝑣)} =  𝑐1𝐹1(𝑡) + 𝑐2𝐹2(𝑡) 

            =  𝑐1𝐴−1{𝑓1(𝑣)} + 𝑐2𝐴−1{𝑓2(𝑣)}. 

 

Generalization: 

 The Linearity property can be generalized for n-functions 𝑓𝑖(𝑣), 𝑖 = 1, 2, … , 𝑛 whose inverse Aboodh transform exists as 

follows 

    𝐴−1{∑ 𝑐𝑖𝑓𝑖(𝑣)𝑛
𝑖=1 } =  ∑ 𝑐𝑖𝐴−1{𝑓𝑖(𝑣)}𝑛

𝑖=1  

 

  Remark:  

 If we substitute 𝑐2 = 0 in Linearity property, 

𝐴−1{𝑐1𝑓1(𝑣) + 𝑐2𝑓2(𝑣)} =  𝑐1𝐴−1{𝑓1(𝑣)} + 𝑐2𝐴−1{𝑓2(𝑣)} 
 We get, 

    𝐴−1{𝑐1𝑓1(𝑣)} =  𝑐1𝐴−1{𝑓1(𝑣)}  

 Thus, we can conclude that “Any constant multiplier can be taken out while finding an inverse Aboodh transform”. 

4.2 Change of scale property 

 If 𝐴−1{𝑓(𝑣)} = 𝐹(𝑡) then 𝐴−1{𝑓(𝑎𝑣)} =  
1

𝑎2 𝐹(
𝑡

𝑎
) 

 

 Proof: As  𝐴−1{𝑓(𝑣)} = 𝐹(𝑡), 

           ⇒ 𝑓(𝑣) = 𝐴{𝐹(𝑡)} 

           ∴ 𝑓(𝑣) =  
1

𝑣
∫ 𝐹(𝑡)𝑒−𝑣𝑡𝑑𝑡

∞

0
 

 Thus, 

 𝑓(𝑎𝑣) =  
1

𝑎𝑣
∫ 𝐹(𝑡)𝑒−𝑎𝑣𝑡𝑑𝑡

∞

0
 

            =
1

𝑎𝑣
∫ 𝐹(𝑡)𝑒−(𝑎𝑡)𝑣𝑑𝑡

∞

0
 

 Put, 𝑎𝑡 = 𝑢 ⇒ 𝑎 𝑑𝑡 = 𝑑𝑢 

        ⇒ 𝑑𝑡 =  
𝑑𝑢

𝑎
 

 ∴ 𝑓(𝑎𝑣) =  
1

𝑎𝑣
∫ 𝐹(𝑡)𝑒−𝑎𝑣𝑡𝑑𝑡

∞

0
=

1

𝑎𝑣
∫ 𝑒−𝑢𝑣𝐹 (

𝑢

𝑎
)

𝑑𝑢

𝑎

∞

0
 

            =
1

𝑎2

1

𝑣
∫ 𝑒−𝑢𝑣𝐹 (

𝑢

𝑎
) 𝑑𝑢

∞

0
 

 Replacing 𝑢 by 𝑡, we have 

            =
1

𝑎2

1

𝑣
∫ 𝑒−𝑣𝑡𝐹 (

𝑡

𝑎
) 𝑑𝑡

∞

0
 

 Thus, [1]            𝑓(𝑎𝑣) =
1

𝑎2 𝐴{𝐹(
𝑡

𝑎
)} 

 Applying inverse Aboodh transform on both sides, 

   𝐴−1{𝑓(𝑎𝑣)} =  𝐴−1 {
1

𝑎2 𝐴 {𝐹 (
𝑡

𝑎
)}} 

            =
1

𝑎2 𝐴−1[𝐴{𝐹(
𝑡

𝑎
)}] 

   𝐴−1{𝑓(𝑎𝑣)} =  
1

𝑎2 𝐹(
𝑡

𝑎
) 

 

4.3 Effect of multiplication by 𝒆−𝒂𝒗 

 If 𝐴−1{𝑓(𝑣)} = 𝐹(𝑡) then, 𝐴−1{𝑒−𝑎𝑣𝑓(𝑣)} =  {
𝐹(𝑡 − 𝑎),   𝑡 > 𝑎
               0,    𝑡 < 𝑎

 

 Proof: Consider, 𝐴−1{𝑓(𝑣)} = 𝐹(𝑡) 

           [1]   ⇒ 𝑓(𝑣) = 𝐴{𝐹(𝑡)} 

                   =  
1

𝑣
∫ 𝑒−𝑣𝑡𝐹(𝑡)𝑑𝑡

∞

0
 

      ∴ 𝑓(𝑣) =  
1

𝑣
∫ 𝑒−𝑣𝑡𝐹(𝑡)𝑑𝑡

∞

0
 

   ⇒ 𝑒−𝑎𝑣𝑓(𝑣) = 𝑒−𝑎𝑣 1

𝑣
∫ 𝑒−𝑣𝑡𝐹(𝑡)𝑑𝑡

∞

0
 

   ⇒ 𝑒−𝑎𝑣𝑓(𝑣) =  
1

𝑣
∫ 𝑒−(𝑎+𝑡)𝑣𝐹(𝑡)𝑑𝑡

∞

0
 

  Substitute, 𝑡 + 𝑎 = 𝑢 ⇒ 𝑑𝑡 = 𝑑𝑢 

  Thus, 

   𝑒−𝑎𝑣𝑓(𝑣) =  
1

𝑣
∫ 𝑒−𝑢𝑣𝐹(𝑢 − 𝑎)𝑑𝑢

∞

𝑎
 

      =  
1

𝑣
∫ 𝑒−𝑢𝑣0𝑑𝑢

𝑎

0
+  

1

𝑣
∫ 𝑒−𝑢𝑣𝐹(𝑢 − 𝑎)𝑑𝑢

∞

𝑎
 

  Replace 𝑢 by 𝑡, gives 

   𝑒−𝑎𝑣𝑓(𝑣) =  
1

𝑣
∫ 𝑒−𝑣𝑡0𝑑𝑡

𝑎

0
+ 

1

𝑣
∫ 𝑒−𝑣𝑡𝐹(𝑡 − 𝑎)𝑑𝑡

∞

𝑎
 

       =  
1

𝑣
∫ 𝐺(𝑡)𝑒−𝑣𝑡∞

0
𝑑𝑡 

  Where, 𝐺(𝑡) =  {
𝐹(𝑡 − 𝑎),   𝑡 > 𝑎
               0,    𝑡 < 𝑎

 

  Thus,     𝑒−𝑎𝑣𝑓(𝑣) = 𝐴{𝐺(𝑡)} 
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  ⇒ 𝐴−1{𝑒−𝑎𝑣𝑓(𝑣)} = 𝐺(𝑡) =  {
𝐹(𝑡 − 𝑎),   𝑡 > 𝑎
               0,    𝑡 < 𝑎

 

 

4.4 Effect of multiplication by v 

 If 𝐴−1{𝑓(𝑣)} = 𝐹(𝑡) 𝑎𝑛𝑑 𝐹(0) = 0 then 𝐴−1{𝑣𝑓(𝑣)} = 𝐹′(𝑡). 

In other words, the effect of multiplication by 𝑣 to 𝑓(𝑣) is equivalent to differentiation of 𝐹(𝑡) provided 𝐹(0) = 0. 

 

Proof: Let,𝐴−1{𝑓(𝑣)} = 𝐹(𝑡), 𝐹(0) = 0 

         ⇒ 𝐴{𝐹(𝑡)} = 𝑓(𝑣). 

 We know,[1]  𝐴{𝐹′(𝑡)} = 𝑣𝐴{𝐹(𝑡)} −
𝐹(0)

𝑣
 

     = 𝑣𝐴{𝐹(𝑡)} − 0  {∵ 𝐹(0) = 0} 

             ∴ 𝐴{𝐹′(𝑡)} = 𝑣𝑓(𝑣) 

Hence, 

                   𝐴−1{𝑣𝑓(𝑣)} = 𝐹′(𝑡) 

 

4.5 Effect of multiplication by 𝒗𝒏 

 The repeated multiplication by 𝑣 to 𝑓(𝑣) together with the assumption that 𝐹(0) = 𝐹′(0) = ⋯ = 𝐹(𝑛−1)(0) = 0 leads to 

the result 

     𝐴−1{𝑣𝑛𝑓(𝑣)} = 𝐹(𝑛)(𝑡) 
 Proof: We know, 

          [1] 𝐴{𝐹(𝑛)(𝑡)} = 𝑣𝑛𝐴{𝐹(𝑡)} − ∑
𝐹(𝑘)(0)

𝑣2−𝑛+𝑘
𝑛−1
𝑘=0  

           ⇒ 𝐴{𝐹(𝑛)(𝑡)} =  𝑣𝑛𝐴{𝐹(𝑡)} with assumption that 𝐹(0) = 𝐹′(0) = ⋯ = 𝐹(𝑛−1)(0) = 0 

       =  𝑣𝑛𝑓(𝑣) 
  Thus, 

           𝐴−1{𝑣𝑛𝑓(𝑣)} = 𝐹(𝑛)(𝑡) provided 𝐹(0) = 𝐹′(0) = ⋯ = 𝐹(𝑛−1)(0) = 0 

5 Examples 

1. 𝐴−1{
𝑒−𝜋𝑣

𝑣2+9
} 

Solution: Let, 𝑓(𝑣) =  
1

𝑣2+9
 

  Then, 

             𝐴−1{𝑓(𝑣)} = 𝐴−1{
1

𝑣2+9
} 

     = 𝑐𝑜𝑠3𝑡 = 𝐹(𝑡) 

∴  𝐴−1 {𝑒−𝜋𝑣
1

𝑣2 + 9
} =  𝐴−1{𝑒−𝜋𝑣𝑓(𝑣)} 

                          = 𝐺(𝑡) 

        = {
𝐹(𝑡 − 𝜋),   𝑡 > 𝜋

                 0,    𝑡 < 𝜋  
 

 

          𝐴−1{
𝑒−𝜋𝑣

𝑣2+9
} = {

𝑐𝑜𝑠3(𝑡 − 𝜋),     𝑡 > 𝜋
                     0,      𝑡 < 𝜋  

 

2. 𝐴−1 {
1

(𝑎𝑣)𝑛+2} 

Solution: We know,   𝐴−1 {
1

𝑣𝑛+2} =  
𝑡𝑛

𝑛!
, 𝑛 = 0, 1, 2, … 

Then,      𝐴−1 {
1

(𝑎𝑣)𝑛+2} =  
1

𝑎2

(
𝑡

𝑎
)𝑛

𝑛!
 

                                                                   =
1

𝑎𝑛+2

𝑡𝑛

𝑛!
, 𝑛 = 0, 1, 2, …,  

3. 𝐴−1 {𝑣𝑘 1

𝑣𝑛+2} , 𝑘 ≤ 𝑛 

Solution: Consider, 

         𝑓(𝑣) =  
1

𝑣𝑛+2 

  𝐴−1{𝑓(𝑣)} =
𝑡𝑛

𝑛!
, 𝑛 = 0, 1, 2, … 

 Clearly, 𝐹(𝑡) =  
𝑡𝑛

𝑛!
, has 𝐹(0) = 𝐹′(0) = ⋯ = 𝐹(𝑛−1)(0) = 0 

 Hence, 𝐴−1{𝑣𝑓(𝑣)} =  𝐹′(𝑡) 

                   𝐴−1{𝑣2𝑓(𝑣)} =  𝐹′′(𝑡) and so on 

                   𝐴−1{𝑣𝑘𝑓(𝑣)} =  𝐹𝑘(𝑡) 

 Therefore, 

                  𝐴−1 {𝑣𝑘 1

𝑣𝑛+2} =  𝐹𝑘(𝑡), 𝑘 ≤ 𝑛. 

    

6 . Applications of Inverse Aboodh transform 

 Inverse Aboodh transform is useful in obtaining the particular solutions of first and second order linear ordinary 

differential equations. 
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6.1 Consider Initial value problem  

  
𝑑2𝑦

𝑑𝑡2 + 𝑦 = 0, 𝑦(0) = 1, 𝑦′(0) = 0 

 To obtain the solution of this O.D.E.  

 Apply Aboodh transform on both sides, gives 

  𝐴{𝑦′′(𝑡)} + 𝐴{𝑦(𝑡)} = 0 

         [1] ⇒ 𝑣2𝐴{𝑦(𝑡)} −
𝑦′(0)

𝑣
− 𝑦(0) + 𝐴{𝑦(𝑡)} = 0 

  ⇒ (𝑣2 + 1)𝐴{𝑦(𝑡)} − 1 = 0 

  ⇒ 𝐴{𝑦(𝑡)} =  
1

𝑣2+1
 

 Applying inverse Aboodh transform on both sides, gives 

  𝑦(𝑡) =  𝐴−1 {
1

𝑣2+1
} = 𝑐𝑜𝑠𝑡 

 Thus the solution to I.V.P. is 𝑦(𝑡) = 𝑐𝑜𝑠𝑡. 

 

6.2 Consider Initial value problem  

  
𝑑2𝑦

𝑑𝑡2 − 𝑦 = 6, 𝑦(0) = 1, 𝑦′(0) = 0 

 To obtain the solution of this O.D.E.  

 Apply Aboodh transform on both sides, gives 

              [1] 𝐴{𝑦′′(𝑡)} − 𝐴{𝑦(𝑡)} = 6 

  ⇒ 𝑣2𝐴{𝑦(𝑡)} −
𝑦′(0)

𝑣
− 𝑦(0) + 𝐴{𝑦(𝑡)} = 6 

  ⇒ (𝑣2 − 1)𝐴{𝑦(𝑡)} − 1 = 6 
   

  ⇒ (𝑣2 − 1)𝐴{𝑦(𝑡)} = 7 

  ⇒ 𝐴{𝑦(𝑡)} =  
7

𝑣2−1
 

 Applying inverse Aboodh transform on both sides, gives 

  𝑦(𝑡) =  7𝐴−1 {
1

𝑣2−1
} = 7𝑐𝑜𝑠ℎ𝑡 
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