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Abstract : Initial penetration is one of the first steps of an Advanced Persistent Threat (APT) attack, and it is considered one of the most 

significant means of initiating cyber-attacks aimed at organizations. In this paper, we first provide a brief overview on malware as well as the 

anti-malware industry, and present the industrial needs on malware detection. We then survey intelligent malware detection methods, the 

process of detection is usually divided into two stages: feature extraction and classification/clustering. The performance of such intelligent 

malware detection approaches critically depend on the extracted features and the methods for classification/clustering. We provide a 

comprehensive investigation on both the feature extraction and the classification/clustering techniques. We also discuss the additional issues 

and the challenges of malware detection using data mining techniques and finally forecast the trends of malware development 
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I. Introduction 

 

Surfing the Internet, using social media and sharing information back and forth, is not as safe as it used to be. In line with the exponential 

growth in communicated data we, as the users, are more dependent on the Internet than ever. With the increased Internet usage, states, 

companies and private users have to secure themselves even better, in order to protect vulnerable information. During the last couple of years, 

more attention has also been put on Cyber Security. Since 2009, cyber-attacks against organizations have increased, and 91% of all 

organizations were hit by cyber-attacks in 2013. With the rapid development of the Internet, malware became one of the major cyber threats 

nowadays. Any software performing malicious actions, including information stealing, espionage, etc. can be referred to as malware. 

Kaspersky Labs define malware as “a type of computer program designed to infect a legitimate user's computer and inflict harm on it in 

multiple ways.”  

While the diversity of malware is increasing, anti-virus scanners cannot fulfill the needs of protection, resulting in millions of hosts being 

attacked. According to Kaspersky Labs (2016), 6 563 145 different hosts were attacked, and 4 000 000 unique malware objects were 

detected in 2015. In turn, Juniper Research predicts the cost of data breaches to increase to $2.1 trillion globally by 2019. In addition to that, 

there is a decrease in the skill level that is required for malware development, due to the high availability of attacking tools on the Internet 

nowadays. High availability of anti-detection techniques, as well as ability to buy malware on the black market result in the opportunity to 

become an attacker for anyone, not depending on the skill level. Current studies show that more and more attacks are being issued by 

script-kiddies or are automated.  

Therefore, malware protection of computer systems is one of the most important cybersecurity tasks for single users and businesses, since 

even a single attack can result in compromised data and sufficient losses. Massive losses and frequent attacks dictate the need for accurate 

and timely detection methods. Current static and dynamic methods do not provide efficient detection, especially when dealing with zero-day 

attacks. For this reason, machine learning-based techniques can be used.  

This paper discusses the main points and concerns of machine learning-based malware detection, the following benefits to attackers: 

 

1. It is easier to lure users into opening documents than into launching executable programs. 

2. A steady stream of new vulnerabilities has been observed in the recent years in document viewers due to their high complexity caused, 

in turn, by the complexity of document formats. 

3. Flexibility and versatility of document formats offer ample opportunities for obfuscation of embedded malicious content. 
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The same features also hinder the identification of malicious documents and increase the computational burden on the detection tools. The 

favorite formats used by attackers are PDF (targeting Adobe Reader), Flash (targeting Adobe Flash Player), and Microsoft Office files. Here 

it can be seen that both the total amount of malware and new malware have an exponential growth.  

The goal is to determine the best feature representation method and how the features should be extracted, the most accurate algorithm that 

can distinguish the malware families with the lowest error. 

 

1. What is Malware? 

 

Malware is referred to by numerous names. Examples include malicious software, malicious code (MC) and malcode.  

Numerous definitions have been offered to describe malware. For instance, Christodorescu and Jha describe a malware instance as a program 

whose objective is malevolent. McGraw and Morrisett define malicious code as “any code added, changed, or removed from a software 

system in order to intentionally cause harm or subvert the intended function of the system.” For the purposes of this survey, we adopt the 

description given by Vasudevan and Yerraballi in, which describes malware as “a generic term that encompasses viruses, trojans, spywares 

and other intrusive code.” 

The canonical examples of malware include viruses, worms, and Trojan horses. This designation warrants a slightly more detailed discussion 

on these malware. 

Virus: A computer virus is code that replicates by inserting itself into other programs. A program that a virus has inserted itself into is 

infected, and is referred to as the virus’s host. An important caveat is that viruses, in order to function, require their hosts, that is, a virus 

needs an existing host program in order to cause harm.  

Worm: A computer worm replicates itself by executing its own code independent of any other program. The primary distinction between a 

virus and a worm is that a worm does not need a host to cause harm. Another distinction between viruses and worms is their propagation 

model. In general, viruses attempt to spread through programs/files on a single computer system. However, worms spread via network 

connections with the goal of infecting as many computer systems connected to the network as possible. 

Trojan horse: A Trojan horse is malware embedded by its designer in an application or system. The application or system appears to 

perform some useful function but is performing some unauthorized action. Trojan horses are typically associated with accessing and sending 

unauthorized information from its host. Such Trojan horses can be classified as spyware as well. Malware embedded by its designer is not 

limited by this kind of malicious activity. The embedded malware could also be a time bomb.  

Adware. The only purpose of this malware type is displaying advertisements on the computer. Often adware can be seen as a subclass of 

spyware and it will very unlikely lead to dramatic results.  

Spyware. As it implies from the name, the malware that performs espionage can be referred to as spyware. Typical actions of spyware 

include tracking search history to send personalized advertisements, tracking activities to sell them to the third parties subsequently.  

Rootkit. Its functionality enables the attacker to access the data with higher permissions than is allowed. For example, it can be used to give 

an unauthorized user administrative access. Rootkits always hide its existence and quite often are unnoticeable on the system, making the 

detection and therefore removal incredibly hard.  

Backdoor. The backdoor is a type of malware that provides an additional secret “entrance” to the system for attackers. By itself, it does not 

cause any harm but provides attackers with broader attack surface. Because of this, backdoors are never used independently. Usually, they 

are preceding malware attacks of other types.  

Keylogger. The idea behind this malware class is to log all the keys pressed by the user, and, therefore, store all data, including passwords, 

bank card numbers and other sensitive information.  

Ransomware. This type of malware aims to encrypt all the data on the machine and ask a victim to transfer some money to get the 

decryption key. Usually, a machine infected by ransomware is “frozen” as the user cannot open any file, and the desktop picture is used to 

provide information on attacker’s demands.  

Remote Administration Tools (RAT). This malware type allows an attacker to gain access to the system and make possible modifications 

as if it was accessed physically. Intuitively, it can be described in the example of the TeamViewer, but with malicious intentions.  

 

2.1 Who are the Users and Creators of Malware? 

 

Malware writers/users go by a variety of names. Some of the most popular names are black hats, hackers, and crackers. The actual persons or 

organizations that take on the aforementioned names could be an external/internal threat, a foreign government, or an industrial spy. 
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There are essentially two phases in the lifecycle of software during which malware is inserted. These phases are referred to as the pre-release 

phase and the post release phase. An internal threat or insider is generally the only type of hacker capable of inserting malware into software 

before its release to the end-users. An insider is a trusted developer, typically within an organization, of some software to be deployed to its 

end users. All other persons or organizations that take on the hacker role insert malware during the post-release phase, which is when the 

software is available for its intended audience.  

In creating new malware, black hats generally employ one or both of the following techniques: obfuscation and behavior 

addition/modification in order to circumvent malware detectors. Obfuscation attempts to hide the true intentions of malicious code without 

extending the behaviors exhibited by the malware. Behavior addition/ modification effectively creates new malware, although the essence of 

the malware may not have changed. The widespread use of the aforementioned techniques by malware coders along with those mentioned by 

researchers suggests that reused code is a major component in the development of new malware. This implication plays a critical role in 

some of the signature-based malware detection–sometimes referred to as misuse detection–methods . 

 

2.2 The Malware Detector 

 

All malware detection techniques can be divided into signature-based and behavior-based methods. Before going into these methods, it is 

essential to understand the basics of two malware analysis approaches: static and dynamic malware analysis. As it implies from the name, 

static analysis is performed “statically”, i.e. without execution of the file. In contrast, dynamic analysis is conducted on the file while it is 

being executed for example in the virtual machine.  

Static analysis can be viewed as “reading” the source code of the malware and trying to infer the behavioral properties of the file. Static 

analysis can include various techniques :  

1. File Format Inspection: file metadata can provide useful information. For example, Windows PE (portable executable) files can 

provide much information on compile time,imported and exported functions, etc.  

2. String Extraction: this refers to the examination of the software output (e.g. status or error messages) and inferring information about 

the malware operation.  

3. Fingerprinting: this includes cryptographic hash computation, finding the environmental artifacts, such as hardcoded username, 

filename, registry strings.  

4. AV scanning: if the inspected file is a well-known malware, most likely all anti-virus scanners will be able to detect it. Although it 

might seem irrelevant, this way of detection is often used by AV vendors or sandboxes to “confirm” their results.  

5. Disassembly: this refers to reversing the machine code to assembly language and inferring the software logic and intentions. This is the 

most common and reliable method of static analysis.  

Static analysis often relies on certain tools. Beyond the simple analysis, they can provide information on protection techniques used by 

malware. The main advantage of static analysis is the ability to discover all possible behavioral scenarios. Researching the code itself allows 

the researcher to see all ways of malware execution, that are not limited to the current situation. Moreover, this kind of analysis is safer than 

dynamic, since the file is not executed and it cannot result in bad consequences for the system. On the other hand, static analysis is much 

more time-consuming. Because of these reasons it is not usually used in real-world dynamic environments, such as anti-virus systems, but is 

often used for research purposes, e.g. when developing signatures for zero-day malware. 

 Another analysis type is dynamic analysis. Unlike static analysis, here the behavior of the file is monitored while it is executing and the 

properties and intentions of the file are inferred from that information. Usually, the file is run in the virtual environment, for example in the 

sandbox. During this kind of analysis, it is possible to find all behavioral attributes, such as opened files, created mutexes, etc. Moreover, it is 

much faster than static analysis. On the other hand, the static analysis only shows the behavioral scenario relevant to the current system 

properties. 

Now, having the background on malware analysis, we can define the detection methods. The signature-based analysis is a static method 

that relies on pre-defined signatures. These can be file fingerprints, e.g. MD5 or SHA1 hashes, static strings, file metadata. The scenario of 

detection, in this case, would be as follows: when a file arrives at the system, it is statically analyzed by the anti-virus software. If any of the 

signatures is matched, an alert is triggered, stating that this file is suspicious. Very often this kind of analysis is enough since well-known 

malware samples can often be detected based on hash values. 

However, attackers started to develop malware in a way that it can change its signature. This malware feature is referred to as polymorphism. 

Obviously, such malware cannot be detected using purely signature-based detection techniques. Moreover, new malware types cannot be 

detected using signatures, until the signatures are created. Therefore, AV vendors had to come up with another way of detection – 

behavior-based also referred to as heuristics-based analysis. 
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 In this method, the actual behavior of malware is observed during its execution, looking for the signs of malicious behavior: modifying host 

files, registry keys, establishing suspicious connections. By itself, each of these actions cannot be a reasonable sign of malware, but their 

combination can raise the level of suspiciousness of the file. There is some threshold level of suspiciousness defined, and any malware 

exceeding this level raises an alert. 

The accuracy level of heuristics-based detection highly depends on the implementation. The best ones utilize the virtual environment, e.g. the 

sandbox to run the file and monitor its behavior. Although this method is more time-consuming, it is much safer, since the file is checked 

before actually executing. The main advantage of behavior-based detection method is that in theory, it can identify not only known malware 

families but also zero-day attacks and polymorphic viruses. However, in practice, taking into account the high spreading rate of malware, 

such analysis cannot be considered effective against new or polymorphic malware.  

 

2.3 Need for machine learning  

 

As stated before, malware detectors that are based on signatures can perform well on previously-known malware, that was already 

discovered by some anti-virus vendors. However, it is unable to detect polymorphic malware, that has an ability to change its signatures, as 

well as new malware, for which signatures have not been created yet. In turn, the accuracy of heuristics-based detectors is not always 

sufficient for adequate detection, resulting in a lot of false-positives and false-negatives.  

Need for the new detection method is dictated by the high spreading rate of polymorphic viruses. One of the solutions to this problem is 

reliance on the heuristics-based analysis in combination with machine learning methods that offer a higher efficiency during detection. When 

relying on heuristics-based approach, there has to be a certain threshold for malware triggers, defining the amount of heuristics needed for 

the software to be called malicious. For example, we can define a set of suspicious features, such as “registry key changed”, “connection 

established”, “permission changed”, etc. Then we can state, that any software, that triggers at least five features from that set can be called 

malicious. Although this approach provides some level of effectiveness, it is not always accurate, since some features can have more “weight” 

than others, for example, “permission changed” usually results in more severe impact to the system than “registry key changed”. To take 

these correlations into account and provide more accurate detection, machine learning methods can be used.  

 

2. Overall Process Of Malware Detection Using Machine Learning 

 

In the past years, many research efforts have been reported on malware detection based on machine learning algorithms. These techniques 

are capable of classifying previously unseen malware samples, identifying the malware families of malicious samples, and/or inferring 

signatures. In these systems, the detection is generally a two-step process: feature extraction and classification/clustering. 

Machine Learning Basics  

The rapid development of data mining techniques and methods resulted in Machine Learning forming a separate field of Computer Science. 

It can be viewed as a subclass of the Artificial Intelligence field, where the main idea is the ability of a system (computer program, algorithm, 

etc.) to learn from its own actions. It was firstly referred to as "field of study that gives computers the ability to learn without being explicitly 

programmed" by Arthur Samuel in 1959. A more formal definition is given by T. Mitchell: "A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves 

with experience E." .The basic idea of any machine learning task is to train the model, based on some algorithm, to perform a certain task: 

classification, clusterization, regression, etc. Training is done based on the input dataset, and the model that is built is subsequently used to 

make predictions.To develop a deeper understanding, it is worth going through the general workflow of the machine learning process, which 

is shown in Figure 1. 

 

Figure 1. General workflow process 
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As it can be seen, the process consists of 5 stages:  

1. Data intake. At first, the dataset is loaded from the file and is saved in memory.  

2. Data transformation. At this point, the data that was loaded at step 1 is transformed, cleared, and normalized to be suitable for the 

algorithm. Data is converted so that it lies in the same range, has the same format, etc. At this point feature extraction and selection, 

which are discussed further, are performed as well. In addition to that, the data is separated into sets – ‘training set’ and ‘test set’. Data 

from the training set is used to build the model, which is later evaluated using the test set.  

3. Model Training. At this stage, a model is built using the selected algorithm.  

4. Model Testing. The model that was built or trained during step 3 is tested using the test data set, and the produced result is used for 

building a new model, that would consider previous models, i.e. “learn” from them.  

5. Model Deployment. At this stage, the best model is selected (either after the defined number of iteration or as soon as the needed 

result is achieved).  

 

Figure 2.The overall process of malware detection using data mining techniques. 

 

Figure 2 shows the overall process of malware detection using data mining techniques. In the first step, various features such as API calls, 

binary strings, and program behaviors are extracted statically and/or dynamically to capture the characteristics of the file samples. In the 

second step, intelligent techniques such as classification or clustering are used to automatically categorize the file samples into different 

classes/groups based on the analysis of feature representations. Note that these data-mining-based malware detectors mainly differ on the 

feature representation and the employed data mining techniques.  

Classification: To classify any unknown file, which could be either benign or malicious, the classification process can be divided into two 

consecutive steps: model construction and model usage. In the first step, training samples including malware and benign files are provided to 

the system. Then, each sample is parsed to extract the features representing its underlying characteristics. The extracted features are then 

converted to vectors in the training set. Both the feature vectors and the class label of each sample (i.e., malicious or benign) are used as 

inputs for a classification algorithm. 

Clustering: In many cases, very few labeled training samples exist for malware detection. Hence, researchers have proposed the use of 

clustering to automatically group malware samples that exhibit similar behaviors into different groups. Clustering is the task of grouping a 

set of objects such that objects in the same group (called a cluster) are more similar (e.g., using certain distance or similarity measures) to 

each other than to those in other groups (clusters). Clustering allows automatic malware categorization and also enables the signature 

generation for detection. 

For evaluation purposes, the following classical measures shown in Table I are usually employed to evaluate the performance of 

classification-based malware detection. Note that in malware detection, malware samples are often used as positive instances. The True 

Positive Rate (TPR) measure is the rate of malware samples (i.e., positive instances) correctly classified by the classification model, while 

the False Positive Rate (FPR) is the rate of benign files (i.e., negative instances) wrongly classified (i.e., misclassified as malware samples). 
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 The Accuracy (ACY) measures the rate of the correctly classified file instances, including both positive and negative instances. There is 

another type of measurement approach, named the interactive-based measurement approach, which attempts to measure the performance of 

malware detection methods/systems at the transaction level (i.e., considering different user bases). 

 

Table1.Measures of Classification-Based Malware Detection Performance 

Measures Specifications 

True Positive(TP) Number of file samples correctly classified as malicious 

True Negative(TN) Number of file samples correctly classified as benign 

False Positive(FP) Number of file samples wrongly classified as malicious 

False Negative(FN) Number of file samples wrongly classified as benign 

TP Rate(TPR) TP/(TP+FN) 

FP Rate(FPR) FP/(FP+TN) 

Accuracy(ACY) (TP+TN)/(TP+TN+FP+FN) 

 

The interactive-based measurement approach measures the true protection and false positive impact of malware detection methods/systems 

based on the actual user base. For example, imagine that at time T, there are two testing malware files, A (which has 1 million users) and B 

(which has 10 users), and the malware detection method/system wrongly classified the first file A (e.g., a false negative, classifying the 

malware as a benign file), but classified the second file B correctly as a malware sample. Based on just these two files, the cumulative 

measurement would give the ACY of 50%, since it classified one file correctly and one file incorrectly; but in the interactive-based 

measurement approach, it would assign different weights to the false negatives and true positives based on the users of file A and B. For the 

clustering-based methods, the performance of different algorithms are usually evaluated by using Macro-F1 and Micro-F1 measures, which 

emphasize the performance of the system on rare and common categories, respectively. 

 

a) Feature Extraction 

 

Feature extraction method extracts the patterns used for representing the file samples.In this article, we mainly discuss the detection on 

Windows Portable Executable (PE) files. Note that PE is a common file format for Windows operating systems and PE malware is the 

majority of malware samples. Note that CIH, CodeBlue, CodeRed, Killonce, LoveGate, Nimda, Sircam, and Sobig all aim at PE files. There 

are mainly two different types of feature extraction in malware detection: static analysis and dynamic analysis. 

1. Static Analysis 

Static analysis analyzes the PE files without executing them. The target of static analysis can be binary or source codes [Christodorescu and 

Jha 2003]. A PE file needs to be decompressed/unpacked first if it is compressed by a third-party binary compression tool (e.g., UPX and 

ASPack Shell) or embedded within a homemade packer [Ye et al. 2007]. To decompile windows executables, the disassembler and memory 

dumper tools can be used. Disassemble tools (e.g., IDA Pro [IDAPro 2016]) display malware codes as Intel ×86 assembly instructions. 

Memory dumper tools (e.g., OllyDump [2006]and LordPE [2013]) are used to obtain protected codes located in the main memory and dump 

them to a file [Gandotra et al. 2014]. Memory dump is quite useful for analyzing packed executables that are difficult to disassemble. After 

the executable being unpacked and decrypted, the detection patterns used in static analysis can be extracted, such as Windows API calls, byte 

n-grams, strings, opcodes (operational codes), andcontrol flow graphs. 

2. Dynamic Analysis 

Dynamic analysis techniques (e.g., debugging and profiling) observe the execution (on a real or virtual processor) of the PE files to derive 

features. Various techniques, such as autostart extensibility points, function parameter analysis, function call monitoring, information flow 

tracking, and instruction traces can be applied to perform dynamic analysis. Typical dynamic analysis tools include Valgrind, QEMU, and 

strace. There has been a substantial amount of studies on dynamic analysis of malware, varying in the execution environment for the 

malware and analysis granularity. 

3. Hybrid Analysis 

Both static and dynamic feature extraction approaches have their own advantages and limitations. Compared with dynamic feature 

representation, the static approach is cheaper and can cover all code paths (including the program pieces that are not always executed), 

therefore providing a more accurate and complete characterization of the program functionalities. However, it has high performance 

overhead due to low-level mutation techniques (such as obfuscation and packing). On the contrary, dynamic analysis is resilient to low-level 

obfuscation and is suitable for detecting malware variants and new families, but often performs poorly on trigger-based malware samples.  
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Besides, dynamic analysis is cost expensive and not scalable due to its limited coverage. Based on the statistics from Comodo Cloud Security 

Center, about 80% of the file samples can be well-represented using static features, while just around 40% of the file samples can 

successfully run dynamically. Due to their respective pros and cons, neither static nor dynamic-based feature extraction approaches can 

provide a perfect solution to the feature extraction in malware analysis. Therefore, a comprehensive approach that integrates both static and 

dynamic analysis and gains the benefits of both would be desirable. Hybrid analysis is such an approach that combines the respective 

advantages of both static and dynamic analysis. For example, the packed malware can first go through a dynamic analyzer such as 

PolyUnpack, where the hidden-code bodies of a packed malware instance are extracted by comparing the runtime execution of themalware 

instance with its static code model. Once the hidden-code bodies are uncovered, a static analyzer can continue the analysis of the malware. 

 

b) Feature Selection 

 

The previous section introduced methods for feature extraction for malware analysis and detection. Before describing popular classification 

methods used for malware detection in the next section, here we first discuss key methods used for feature selection and how they have been 

used in malware detection. Feature selection is an important step in many classification or prediction problems. The need for feature 

selection is motivated by the fact that, in certain classification and prediction problems, the number of features could be quite large, at times 

running into the millions, and thus could significantly exceed the capacity of the underlying machine to process within a reasonable time. 

Further, improvement in classification performance and minimization of classification errors could significantly depend on the ability of the 

system to quickly identify, select, and use only the most representative features. For the case of malware detection in particular, it might be 

impractical to construct the required model using each and every extracted feature. For instance, the number of features generated using 

n-grams grows exponentially with n, and using all the features could be quite computationally intensive, in terms of both memory usage and 

CPU time. The large number of features could also introduce unnecessary noise and large amounts of redundant and irrelevant features, 

further confounding the classifier. To reduce these problems, malware classification methods often adopt a feature selection for 

dimensionality reduction and to improve the compactness of the feature representation.  

Feature Selection is essentially the process of selecting a subset of relevant and informative features from a larger collection of features for 

use in model construction. The central assumption is that the data contains many redundant or irrelevant features, which can be eliminated 

without a significant negative impact on later classification or prediction performance. Redundant features are those that provide no 

additional information beyond what is already provided by the currently selected features. Irrelevant features are those that do not provide 

any useful information in the given context. Thus, what is irrelevant could be dependent on the specific application being considered. Three 

important considerations in feature selection are determining the starting point for the selection process, how the selection proceeds given 

this starting point, and the stopping criteria for the selection procedure. For instance, in Forward Feature Selection (FFS), the process starts 

with an empty feature set and with new features added successively to the set. An alternative is Backward Feature Selection (BFS), whereby 

the process starts by using the set of all available features, and then successively removes features from the set. Removal of features (in BFS) 

or addition of features (as in FFS) are usually performed based on certain selection criteria, for instance, by ranking the features based on 

their estimated discrimination ability. Thus, independent of the direction of the search for features to select, another key consideration is how 

the feature subsets are evaluated for inclusion in the selected subset. 

 

c) Classification 

 

After feature extraction (and feature selection), each file sample is now represented in a feature space using the extracted feature vectors. The 

feature space is the basis for subsequent analysis stages, such as classification or clustering. Classification is performed by using the feature 

space generated from a sample training set as the input to a learning algorithm. By analyzing the input vectors, the learning algorithm 

determines parameters and factors that will be applied on the feature vectors in order to classify them into some pre-defined classes. At the 

time of testing, a testing set containing a separate collection of malware and benign file samples is used. Similar to the training samples, 

representative features are extracted from each test sample. Each sample in the testing is then classified as either benign or malicious, using 

the same set of parameters and factors determined from the training samples. 

1. K-nearest neighbours  

K-Nearest Neighbors (KNN) is one of the simplest, though, accurate machine learning algorithms. KNN is a non-parametric algorithm, 

meaning that it does not make any assumptions about the data structure. In real world problems, data rarely obeys the general theoretical 

assumptions, making non-parametric algorithms a good solution for such problems. KNN model representation is as simple as the dataset – 

there is no learning required, the entire training set is stored.  
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KNN can be used for both classification and regression problems. In both problems, the prediction is based on the k training instances that 

are closest to the input instance. The schematic example is outlined in Figure 3.  

 

Figure 3. KNN example 

Different distance measurement methods are used for finding the closest neighbors. The popular ones include Hamming Distance, Manhattan 

Distance, Minkowski distance:  

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑑𝑖𝑗=Σ|𝑥𝑖𝑘−𝑥𝑗𝑘|𝑝𝑘=1 𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 [1] 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑑1(𝑝,𝑞)=||𝑝−𝑞||1=Σ|𝑝𝑖−𝑞𝑖|𝑛𝑖=1 𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 [2] 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒=(Σ|𝑥𝑖−𝑦𝑖|𝑝𝑛𝑖=1)1𝑝⁄ [3] 

 The most used method for continuous variables is generally the Euclidean Distance, which is defined by the formulae below: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒=√Σ(𝑞𝑖−𝑝𝑖)2𝑛𝑖=1 ; 𝑝 𝑎𝑛𝑑 𝑞 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑛−𝑠𝑝𝑎𝑐𝑒[4] 

Euclidian distance is good for the problems, where the features are of the same type. For the features of different types, it is advised to use, 

for example, Manhattan Distance. For the classification problems, the output can also be presented as a set of probabilities of an instance 

belonging to the class. For example, for binary problems, the probabilities can be calculated like 𝑃(0)=𝑁0𝑁0+𝑁1, where P(0) is the 

probability of the 0 class membership and 𝑁0, 𝑁1 are numbers of neighbors belonging to the classes 0 and 1 respectively. 

The value of k plays a crucial role in the prediction accuracy of the algorithm. However, selecting the k value is a non-trivial task. Smaller 

values of k will most likely result in lower accuracy, especially in the datasets with much noise, since every instance of the training set now 

has a higher weight during the decision process. Larger values of k lower the performance of the algorithm. In addition to that, if the value is 

too high, the model can overfit, making the class boundaries less distinct and resulting in lower accuracy again. As a general approach, it is 

advised to select k using the formula below: 

𝑘=√𝑛 [5] 

For classification problems with an even number of classes, it is advised to choose an odd k since this will eliminate the possibility of a tie 

during the majority vote. The drawback of the KNN algorithm is the bad performance on the unevenly distributed datasets.  

2. Support Vector Machines 

Support Vector Machines (SVM) is another machine learning algorithm that is generally used for classification problems. The main idea 

relies on finding such a hyperplane, that would separate the classes in the best way. The term ’support vectors’ refers to the points lying 

closest to the hyperplane, that would change the hyperplane position if removed. The distance between the support vector and the hyperplane 

is referred to as margin.  

 

Figure 4. SVM scheme 

  

http://www.jetir.org/


© 2019 JETIR June 2019, Volume 6, Issue 6                                         www.jetir.org (ISSN-2349-5162) 

JETIR1907J68 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 554 
 

On Figure 4, there is a dataset of two classes. Therefore, the problem lies in a two-dimensional space, and a hyperplane is represented as a 

line. In general, hyperplane can take as many dimensions as we want.  

The algorithm can be described as follows:  

1. We define X and Y as the input and output sets respectively. (𝑥1,1),…,(𝑥𝑚,𝑦𝑚) is the training set.  

2. Given x, we want to be able to predict y. We can refer to this problem as to learning the classifier y=f(x, a), where a is the parameter of 

the classification function.  

3. F(x, a) can be learned by minimizing the training error of the function that learns on training data. Here, L is the loss function, and 𝑅𝑒𝑚𝑝 

is referred to as empirical risk.  

(𝑎)=1𝑚Σ(𝑓(𝑥𝑖,𝑎),𝑦𝑖)=𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟𝑚𝑖=1 [6] 

4. We are aiming at minimizing the overall risk, too. Here, P(x,y) is the joint distribution function of x and y.  

𝑅(𝑎)= ∫𝑙(𝑓(𝑥,𝑎),𝑦)𝑑𝑃(𝑥,𝑦)=𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 [7] 

5. We want to minimize the Training Error + Complexity term. So, we choose the set of hyperplanes, so f(x) = (w⸱x)+b:  

1𝑚Σ(𝑤⋅𝑥𝑖+𝑏,𝑦𝑖)+||𝑤||2𝑚𝑖=1 subject to 𝑚𝑖𝑛𝑖|𝑤⋅𝑥𝑖|=1 [8] 

SVMs are generally able to result in good accuracy, especially on ”clean” datasets. Moreover, it is good with working with the 

high-dimensional datasets, also when the number of dimensions is higher than the number of the samples. However, for large datasets with a 

lot of noise or overlapping classes, it can be more effective. Also, with larger datasets training time can be high.  

a. Class Probability is a probability of a class in the dataset. In other words, if we select a random item from the dataset, this is the probability 

of it belonging to a certain class.  

b. Conditional Probability is the probability of the feature value given the class.  

3. Naive Bayes  

Naive Bayes is the classification machine learning algorithm that relies on the Bayes Theorem. It can be used for both binary and multi-class 

classification problems. The main point relies on the idea of treating each feature independently. Naive Bayes method evaluates the 

probability of each feature independently, regardless of any correlations, and makes the prediction based on the Bayes Theorem. To 

understand the algorithm of Naive Bayes, the concepts of class probabilities and conditional probabilities should be introduced first.  

1. Class probability is calculated simply as the number of samples in the class divided by the total number of samples:  

(𝐶)=(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝐶)𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑁𝑡𝑜𝑡𝑎𝑙) [9] 

2. Conditional probabilities are calculated as the frequency of each attribute value divided by the frequency of instances of that class.  

(𝑉|𝐶)=(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉 𝑎𝑛𝑑 𝐶)𝑐𝑜𝑢𝑛𝑡(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑤𝑖𝑡ℎ 𝑉) [10] 

3. Given the probabilities, we can calculate the probability of the instance belonging to a class and therefore make decisions using the 

Bayes Theorem: 

(𝐴|𝐵)=(𝐵|𝐴)𝑃(𝐴)𝑃(𝐵) [11] 

4. Probabilities of the item belonging to all classes are compared and the class with the highest probability if selected as a result.  

The advantages of using this method include its simplicity and easiness of understanding.  

4. J48Decision Tree  

As it implies from the name, decision trees are data structures that have a structure of the tree. The training dataset is used for the creation of 

the tree, that is subsequently used for making predictions on the test data. In this algorithm, the goal is to achieve the most accurate result 

with the least number of the decisions that must be made. Decision trees can be used for both classification and regression problems.  

 

Table 2. Decision tree example dataset  

Predictors Target  

Outlook  Temperature  Humidity  Windy  Play tennis 

Rainy  Hot  High  False  No  

Rainy  Hot  High True  No  

Overcast  Hot  High False  Yes  

Sunny  Mild  High False  Yes  

Sunny  Cool  Normal  False  Yes  

Overcast  Cool High True  No  

Rainy  Cool  High True  Yes  

Rainy  Mild  High False  No  

Sunny  Cool  Normal  False  Yes  
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The common algorithm for decision trees is ID3 (Iterative Dichotomiser 3). It relies on the concepts of the Entropy and Information Gain. 

Entropy here refers to the level of uncertainty in the data content. For example, the entropy of the coin toss would be indefinite, since there is 

no way to be sure in the result. Contrarily, a coin toss of the coin with two heads on both sides would result in zero entropy, since we can 

predict the outcome with 100% probability before each toss.   

 

Figure 5. Decision tree example 

In simple words, the ID3 algorithm can be described as follows: starting from the root node, at each stage we want to partition the data into 

homogenous (similar in their structure) dataset. More specifically, we want to find the attribute that would result in the highest information 

gain, i.e. return the most homogenous branches :  

1. Calculate the entropy of the target.  

(𝑇,𝑋)=Σ(𝑐)𝐸(𝑐)𝑐∈𝑋 [12] 

(𝑆)=Σ−𝑝𝑖log2𝑝𝑖𝑐𝑖=1 [13] 

2. Split the dataset and calculate the entropy of each branch. Then calculate the information gain of the split, that is the differences in the 

initial entropy and the proportional sum of the entropies of the branches.  

(𝑇,𝑋)=(𝑇)−𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑇,𝑋) [14] 

3. The attribute with the highest Gain value is selected as the decision node.  

4. If one of the branches of the selected decision node has an entropy of 0, it becomes the leaf node. Other branches require further splitting.  

5. The algorithm is run recursively until there is nothing to split anymore.  

J48 is the implementation of the ID3 algorithm, that is included in one of the R packages, and this is the implementation we are going to use 

in our study.Decision tree method achieved its popularity because of its simplicity. It can deal well with large datasets and can handle the 

noise in the datasets very well. Another advantage is that unlike other algorithms, such as SVM or KNN, decision trees operate in a “white 

box”, meaning that we can clearly see how the outcome is obtained and which decisions led to it. These facts made it a popular solution for 

medical diagnosis, spam filtering, security screening and other fields. 

5.  Random Forest  

Random Forest is one of the most popular machine learning algorithms. It requires almost no data preparation and modeling but usually 

results in accurate results. Random Forests are based on the decision trees described in the previous section. More specifically, Random 

Forests are the collections of decision trees, producing a better prediction accuracy. That is why it is called a ’forest’ – it is basically a set of 

decision trees.  

In simple words, the algorithm can be described as follows :  

1. Multiple trees are built roughly on the two third of the training data (62.3%). Data is chosen randomly.  

2. Several predictor variables are randomly selected out of all the predictor variables. Then, the best split on these selected variables is used 

to split the node. By default, the amount of the selected variables is the square root of the total number of all predictors for classification, 

and it is constant for all trees.  

3. Using the rest of the data, the misclassification rate is calculated. The total error rate is calculated as the overall out-of-bag error rate.  

4. Each trained tree gives its own classification result, giving its own ”vote”. The class that received the most ”votes” is chosen as the 

result. 

As in the decision trees, this algorithm removes the need for feature selection for removing irrelevant features – they will not be taken into 

account in any case. The only need for any feature selection with the random forest algorithms arises. when there is a need for dimensionality 

reduction. Moreover, the out-of-bag error rate, which was mentioned earlier can be considered the algorithm’s own cross-validation method. 

This removes the need for tedious cross-validation measures, that would have to be taken otherwise.  
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Figure 6. Random Forest scheme 

Random forests inherit many of the advantages of the decision trees algorithms. They are applicable to both regression and classification 

problems; they are easy to compute and quick to fit. They also usually result in the better accuracy. However, unlike decision trees, it is not 

very easy to interpret the results. In decision trees, by examining the resulting tree, we can gain valuable information about which variables 

are important and how they affect the result. This is not possible with random forests. It can also be described as a more stable algorithm than 

the decision trees – if we modify the data a little bit, decision trees will change, most likely reducing the accuracy. This will not happen in 

the random forest algorithms – since it is the combination of many decision trees, the random forest will remain stable. 

6. Multilayer Perceptron 

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of, at least, three layers of nodes: an 

input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation function. 

MLP utilizes a supervised learning technique called back propagation for training. Its multiple layers and non-linear activation distinguish 

MLP from a linear perceptron. It can distinguish data that is not linearly separable. Multilayer perceptron are sometimes colloquially referred 

to as "vanilla" neural networks, especially when they have a single hidden layer. 

7. Logistic Regression 

The binary logistic regression model has extensions to more than two levels of the dependent variable: categorical outputs with more than 

two values are modelled by multinomial logistic regression, and if the multiple categories are ordered, by ordinal logistic regression, for 

example the proportional odds ordinal logistic model. The model itself simply models probability of output in terms of input, and does not 

perform statistical classification (it is not a classifier), though it can be used to make a classifier, for instance by choosing a cutoff value and 

classifying inputs with probability greater than the cutoff as one class, below the cutoff as the other; this is a common way to make a binary 

classifier. 

8. Logitboost 

In machine learning and computational learning theory, LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie, 

and Robert Tibshirani. The original paper casts the AdaBoost algorithm into a statistical framework. Specifically, if one considers AdaBoost 

as a generalized additive model and then applies the cost functional of logistic regression, one can derive the LogitBoost algorithm.  

9. Bayesian network 

A Bayesian network, Bayes network, belief network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic 

graphical model (a type of statistical model) that represents a set of variables and their conditional dependencies via a directed acyclic graph 

(DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, 

the network can be used to compute the probabilities of the presence of various diseases. 

10. Bagging 

Bootstrap aggregating, also called bagging, is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of 

machine learning algorithms used in statistical classification and regression. It also reduces variance and helps to avoid overfitting. Although 

it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the model averaging 

approach. 

11. Sequential minimal optimization 

Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training 

of support vector machines. It was invented by John Platt in 1998 at Microsoft Research. SMO is widely used for training support vector 

machines and is implemented by the popular LIBSVM tool. The publication of the SMO algorithm in 1998 has generated a lot of excitement 
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in the SVM community, as previously available methods for SVM training were much more complex and required expensive third-party QP 

solvers. 

12. AdaBoost 

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm formulated by Yoav Freund and Robert Schapire, who won the 

2003 Gödel Prize for their work. It can be used in conjunction with many other types of learning algorithms to improve performance. The 

output of the other learning algorithms ('weak learners') is combined into a weighted sum that represents the final output of the boosted 

classifier. AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor of those instances misclassified by previous 

classifiers. AdaBoost is sensitive to noisy data and outliers. In some problems it can be less susceptible to the overfitting problem than other 

learning algorithms. The individual learners can be weak, but as long as the performance of each one is slightly better than random guessing, 

the final model can be proven to converge to a strong learner.  

d) Clustering  

The classification methods typically require a large number of labeled samples. In recent years, there have been research initiatives in 

automatic malware categorization using unsupervised techniques (i.e., clustering techniques). Clustering, a form of unsupervised learning, is 

the process of partitioning a given data set into groups (i.e., clusters) based on the pre-defined distance measures, such that the data points in 

a cluster should be close to each other and data points in different clusters are far away from each other. In malware detection, a cluster is a 

group of file samples sharing some common traits while being “dissimilar” to the malware samples from different clusters. Partitioning and 

Hierarchical clustering are two common types of clustering methods with different characteristics. Hierarchical clustering methods can 

handle data sets with irregular cluster structures, while partitioning clustering (e.g., K-means) is generally effective when the clusters have a 

globular shape. The choice of clustering algorithms in malware detection is largely based on the extracted features and their underlying 

feature distributions.  

This chapter provided background on the machine learning that is essential for understanding the practical implementation of the project, that 

is described in the next chapter. The concepts of feature set, feature extraction, and selection methods were discussed along with the machine 

learning algorithms that will be used in practical part.  

Table 3. Summary of Typical Classification Methods Used in Malware Detection 

 

Survey Classification Methods Description 

Kolter and 

Maloof [2004] 

SVM, NB, DT, and their 

boosted versions 

Using binary n-grams, based on their collected data set with 1,971 benign and 

1,651 malicious executables, their experimental results indicated that boosted 

DTs performed best in malware detection. 

Abou-Assaleh et 

al [2004] 

SVM, DT, kNN classifiers Based on a small sample collection of 65 malware and benign files, using 

binary n-grams of various lengths, the proposed method achieved 98% 

detection accuracy. 

Henchiri and 

Japkowicz 

[2006] 

NB, DTs, SVM, and 

Sequential Minimal 

Optimization (SMO) 

Based on the 16-byte sequences, the obtained results were better than those 

obtained through traditional feature selection. 

Wang et al. 

[2006] 

SVM Using both static and dynamic extracted features, based on their data collection 

consisting of 407 spyware and 740 benign programs, when 10-fold cross 

validation was considered, its overall accuracy reached 96.43%. 

Ye et al. [2007, 

2009] 

NB, DTs, SVM, Associative 

Classification 

Based on the Windows API call features, the associative classifier 

outperformed other classifiers. 

Masud et al. 

[2007, 2008] 

SVM, DT, NB, BDT, and 

BNB 

Based on the hybrid feature sets, the results from Boosted J48 were almost the 

same as SVM. 

Moskovitch et 

al.[2008a, 

2008c] 

 

ANN, DTs, BDT, NB, BNB, 

and SVMs 

The results indicated that the BDT, DT, and ANN outperformed the NB, BDT, 

BNB, and SVM classifiers, based on the n-gram OpCode sequences and byte 

n-grams. 

Siddiqui et al. 

[2009] 

DT, Random Forest, and 

Bagging  

Their experimental results showed that Random Forest performed best based 

on the variable length instruction sequences extracted from 2,774 samples 

including 1,444 worms and 1,330 benign files. 

Ye et al. [2009] DT, NB, SVM, Bagging The experimental results showed that the ensemble of SVMs with bagging 
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performed best based on the extracted interpretable strings. 

Tian et al. 

[2010] 

 

SVM, DT, Random Forest, 

Instance-based Classifier 

They used the API call sequences dynamically extracted from 1,368 malware 

and 456 benign files to demonstrate their work and achieved an accuracy of 

over 97%. 

Firdausi et al. 

[2010] 

KNN, NB, DT, SVM, 

Multilayer Perceptron 

Neural Network (MLP) 

The obtained results based on the dynamically extracted behaviors depicted 

that overall best performance was achieved by J48 DT. 

Anderson et al. 

[2012] 

SVM By combining both static and dynamic analysis, it was tested on a dataset of 

780 malware and 776 benign instances giving and accuracy of 98.07%.  

Santos et al. 

[2013]  

DT, kNN, BN, and SVM 

 

It has been found that the hybrid approach enhanced the performance of both 

approaches when run separately, based on the static and dynamic analysis. 

Islam et al. 

[2013] 

 

DT, Random Forest, SVM, 

and Instance- based 

Classifier 

By combining both static and dynamic analysis, the obtained results showed 

that meta-Random Forest performed best. 

Nissim et 

al.[2017] 

J48, Random Forest, 

Logitboost, Logistic 

Regression, SVM 

It provided a reduction in the labeling efforts of 95.5% and 95.7%, respectfully 

with Random and the SVM-Margin 

Šrndi, Nedim et 

al.[2016] 

Random Forest It has been implemented and evaluated on two formats, PDF and SWF (Flash) 

 

3. Issues And Challenges 

 

Previous studies proved that machine learning methods have been successfully used in malware detection and in the anti-malware industry. 

However, there are still many additional issues that need further investigation.  

—Evaluation and use of the detection results: Though applying data mining techniques, like classification/clustering methods, can detect 

malware from the unknown file sample collection, the verification of the potentially malicious files is one of the challenging issues in real 

application. This is because the inspection of these potentially malicious files always requires the  

knowledge of domain experts and the manual inspection is always time-consuming.  

—Incremental learning: Training a classifier using an historical file sample collection (containing both benign and malicious samples) is 

able to detect newly released malware. However, new malware samples are constantly produced on a daily basis and malware techniques are 

continuously evolving. To account for the temporal trends of malware writing, data-mining-based malware detection systems need to take 

the most recent file sample collection into consideration. In other words, to make the classifier(s) remain effective, the training sets should 

dynamically change to include new samples while retaining the main properties of historical data collection. Therefore, incremental learning 

is one of the issues of data-mining-based 

malware detection systems.  

—Active learning: To further improve the detection accuracy, selecting representative sample(s) from large unknown file collections for 

labeling is also very important. For example, before being detected, the newly released Trojan-Downloader and its related trojans are 

collected from the clients and marked as unknown. If we can recognize the Trojan-Downloader and have it labeled, then, based on the 

extracted features and using classification/clustering methods, its related trojans can be correctly detected. Active learning, as an effective 

paradigm to address the data scarcity problem, optimize the learning benefit from domain experts’ feedback, and reduce the cost of acquiring 

labeled examples for supervised learning, has been intensively studied in recent years. In malware detection, there is limited research using 

active learning to select a representative sample(s) from the large file sample collection. For instance, to further improve the performance of 

a classifier, 

—Prediction of malware prevalence: Except for detecting malware from the unknown file collection, predicting the trend of malware 

prevalence is also very important. However, there is little research on the prediction of malware prevalence. 

—Adversarial Learning: In malware detection, using the data mining approaches opens the possibility for the malware attachers to come 

up with ways to “mistrain” the classifiers (e.g., by changing the data distribution or feature importance). Thus, questions arise as to how to 

develop techniques that are robust and secure in adversarial scenarios. 
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4. Conclusion 

 

In recent years, a few research efforts have been conducted on surveys of machine learning based malicious document detection, the authors 

reviewed the malware propagation, analysis and detection; the researchers surveyed the feature representation and classification methods for 

malware detection. In this article, we not only overview the development of malware and present the needs on malware detection, but also 

provide a comprehensive study on machine-learning-based methods for malware detection based on both static and dynamic representations. 

Furthermore, we also discuss the additional issues and challenges of malware detection using machine learning. Due to the exponential 

growth of malware samples, intelligent methods for efficient and effective malware detection at the cloud (server) side are urgently needed. 

As a result, much research has been conducted on developing intelligent malware detection systems using machine learning techniques. In 

these methods, the process of malware detection is generally divided into two steps: feature extraction and classification/clustering. We 

provide a comprehensive investigation on both the feature extraction and the classification/clustering steps. We conclude that machine 

learning based malware detection framework can be designed to achieve good detection performance with high accuracy while maintaining 

low false positives. 

Many developed systems have been successfully integrated into commercial anti-malware products. The following are some practical 

insights from our view:  

(1) Based on different data sets with different feature representation methods, there is no single classifier/ clustering algorithm always 

performing best. In other words, the performances of such malware detection methods critically depend on the extracted features, data 

distributions, and the categorization methods.  

(2) Generally, compared with individual classifiers, an ensemble of classifiers can always help improve the detection accuracy. In real 

applications, a successful malware detection framework should utilize multiple diverse classifiers on various types of feature representations. 

(3) For feature extraction, both static and dynamic analysis approaches have their own advantages and limitations. 

(4) In order to achieve the best detection performance in real applications, it is often better to have enough training samples with balanced 

distributions for both classes (malware and benign files). 
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