Design And Analysis Of Gas Turbine Rotor Blade With Variation Of Holes By Using FEA Approach

¹korrapati lakshmi prasanna, ²A.Surendra

¹korrapati lakshmi prasanna M.Tech from Annamacharya Institute of Technology & Sciences, Kadapa Chinthakomma Dinne Village, Post, behind RTO Office, Utukur, Kadapa, Andhra Pradesh.

²A.Surendra working as assistant professor of mechanical department from Annamacharya Institute of Technology & Sciences, Kadapa Chinthakomma Dinne Village, Post, behind RTO Office, Utukur, Kadapa, Andhra Pradesh.

ABSTRACT

Gas turbine has become main functional part of many applications. Blades are considered as the heart of turbine and all other member exist for the sake of the blades. The turbine blade gets effected because the gas coming out from combustion chamber at a high temperature and high velocity. So the point of this undertaking is to examine a gas turbine blade with distinctive kind of alloys for high strength against high temperature effect and different hassles effect. In this task three distinctive and respectable Ni based, high temperature withstanding alloys designed in this field.

Withstanding of gas turbine blades for the prolongations is a noteworthy thought in their configuration of the way that they are subjected to high tangential loads during their working conditions. A few systems have been proposed for the better improvement of the mechanical properties of blades to withstand these extreme conditions.

This project explains designing and analysis of Gas turbine blade, Catia V5 R20 software is used to design the blade with the help of 2D and 3D commands and the analysis of blade is done in ANSYS 15.07 software by meshing the blade and applying the boundary conditions.

INTRODUCTION

Introduction to Gas Turbine

The for the most part gas turbines are the one of the significance of higher gas temperatures and the method for accomplishing this is examined. Gas turbine components are mechanically and thermally stacked. The cutting edge gas turbine as high temperature levels which are more than the dissolving purpose of the turbine components gas turbine components can be shielded from warm over stacking by two basic ways to be specific interior and outer cooling. The inner cooling frameworks comprise of ribbed U-tube which is situated within a sharp edge. Outer cooling is finished by appending coolant to infusion. Most likely a wind plant was the primary turbine to convey profitable work, wherein there is no pre-pressure and no burning. The trademark components of a gas turbine as we consider the name fuse today a weight technique and a glow extension prepare. The gas turbine addresses possibly the most appealing technique for conveying immense measures of drive in a free and moderate unit. The gas turbine may have a future use in conjunction with the oil motor. The distinctive technique for making either push or power, the gas turbine motor is a champion among the most satisfactory. Its basic ideal conditions are:

Outstanding unwavering qualities, high push to-weight proportion, and relative flexibility of vibration. The work from a gas-turbine motor might be given either as torque in a post or as push in a plane. A gas-turbine comprise of the accompanying fundamental parts: a channel, a compressor, a combustor, a turbine and a fumes, the proficiency of the gas turbine is not a right decision for the power plant it is utilized as a part of flying and marine fields since it is independent light weight not requiring cooling water. Weight of the air is expanded in the compressor, which is separated into a few phases. There are two primary sorts of compressors, outspread. The speed of air expanded by the compressors with the accompanying diffusers changes over the dynamic weight (speed) to static weight. Diffusers changes over the dynamic weight (speed) to static weight. The compressor is associated with the turbine by means of a pole going through the focal point of the motor. The working of a gas-turbine depends on that the power picked up from the turbine surpasses the power consumed by the compressor. This is guaranteed by the amassing of vitality in the combustor, through touching off fuel in unique purposed burners. The plan and operation of these burners are essential for a high proficient motor if low outflows are to beachieved. The very dynamic gas from the combustor is extended through a turbine, which drives the compressor in the front

of the motor. After the turbine the gas still contains a lot of vitality which can be extricated in different structures. In airplanes the surplus vitality is changed into a high speed stream in the spout which is the main impetus that impels the vehicle through the air.

The fly speed and thus push could be further expanded, through re-warming the gas in a max engine propulsion. This is regular in superior flying machine, particularly for military applications. For stationary, control producing gas turbines, the additional vitality is changed over into shaft-control in a power turbine. The expanded natural mindfulness and higher fuel costs, there have of late been a solid endeavors towards upgraded efficiencies for every single car impetus. For gas turbines applications, particularly in flying machine, not just the septic fuel utilization (SFC) is of significance additionally the septic work yield. The previous is proportional to the reverse of the proficiency while the last is a measure of the smallness of the power plant, ie. The gas turbine does not require a flywheel as the torque on the pole is constant and uniform, however Flywheel is an imperative prerequisite in an I.C.Engine. The gas turbine can be driven at a high speeds 40000 rpm while this unrealistic with I.C. motors. The work is made by a gas turbine for each kg of air is more as packed to an I.C. Motor.

Introduction to CATIA

CATIA is a totally automation programming which relates with the mechanical field. It is graphical UI which is definitely not hard to learn moreover the item is highlight based and parametric solid illustrating. We can draw 2D and 3D models of an area and as necessities be the social occasion of the parts ought to be conceivable in it.

The shape or geometry of the model or assembling is destitute upon the qualities which are insinuated as prerequisites. Modules, for instance, sketcher module used to diagram 2D drawings, part arrange module is used to layout the 3D models of geometry, and Assembly work setup is used to gather the differing parts which are pulled in the part arrange module. Kinematics is used to give the generation or development to the part bodies which are arranged and amassed to some degree and get together diagram modules.

Different modules used in CATIA

- Sketcher
- Part Design
- Assembly Design
- Kinematics

By Using the CATIA software the part designs were designed and assembly is made because compared to other software's CATIA is easy to design.

Isometric view

FINITE ELEMENT ANALYSIS (FEA)

Meshing

The real thought in FEA is that the body or structure may be detached into more humble parts of restricted estimations called "Constrained Elements". The primary body or the structure is then considered as an assortment of these portions related at a foreordained number of joints called "focus focuses". Coordinate points of confinement are approximated the removals over each obliged part. Such recognized cutoff points are called "shape limits". This will suggest the improvement inside the portions like the movement at the focuses of the parts.

The Finite Element strategy is an intelligent gadget for settling regular and mostly differential examination in light of the truth it is a numerical mechanical assembly, it can manage the brain boggling issue that can be implied in differential logical verbalization from. The use of FEM is limitless as respects the strategy of balanced diagram issues. Thus of high cost of taking care of compel of years traveled by, FEM has a foundation set apart by being utilized to manage complex and cost fundamental difficulties.

analysis of gas turbine

convection

temperature

Thermal Analysis On 7 Holes Blade Material:

Material: inconel

Temperature distribution

Heat flux

Material: SiC

Temperature distribution

Heat flux

TEMPERATURE DISTRIBUTION

HEAT FLUX

© 2019 JETIR June 2019, Volume 6, Issue 6

result and discussion

S.NO	Number of	Thermal	Heat flux	Thermal	Heat flux
	holes	conductivity	(INCONEL)	conductivity	(SILICON
		(INCONEL)		(SILICON	CARBIDE)
				CARBIDE)	
1	NUMBER OF	Max=1200	1.0456e6	Max=1200	1.13e6
	HOLES-7	Min=1064.7		Min=1173.2	
2	NUMBER OF	Max=1200	1.093e6	Max=1200	1.3551e6
	HOLES-8	Min=890.37		Min=1168.5	
3	NUMBER OF	Max=1200	1.2428e6	Max=1200	1.5907e6
	HOLES-9	Min=850.52		Min=1163.5	

CONCLUSION

Extracting maximum amount of energy from the gases at high temperature to improve thermal efficiency is the main aim of the gas turbine technology.

In this project, mechanical stresses on the turbine blade are analyzed. The design of turbine blade is generated by using CATIA V5 design software, thermal analysis is performed on the turbine blade by applying load.

The turbine blades and are subjected to high temperature, elevated temperatures and are operated in aggressive environments. Study on different materials which are suitable for the improvement of turbine blade, steady state thermal analysis is carried out on turbine blade by applying different materials such as inconel and sic at temperature 1200° c and 30° c of convection Temperature distribution and heat flux values are noted and are tabulated. From the analysis results we noticed that the inconel material is showing maximum

temperature distribution. Thus from the study we can conclude that inconel material with 9 holes is more preferable compared to remaining

REFERENCES:

1. J.C. Han, S. Dutta, and S.V. Ekkad, "Gas Turbine Heat Transfer and Cooling Technology," Taylor & Francis, Inc., New York, New York, December 2000, ISBN # 1-56032-841-X, 646 pages.

2. B. Lakshminryana, "Turbine Cooling and Heat Transfer," Fluid Dynamics and Heat Transfer of Turbo machinery, John Wiley, New York, 1996, pp. 597-721; M.G. Dunn, "Convection Heat Transfer and Aerodynamics in Axial Flow Turbines," ASME Journal of Turbo machinery. 123 no.4 (2001):.637-686.

3. R.J. Goldstein, "Heat Transfer in Gas Turbine Systems," Annuals of The New York Academy of Sciences, New York, New York, Vol. 934, 2001, 2001, 520 pages.

4. D.E. Metzger, L.W. Florschuetz, D.I. Takeuchi, R.D. Behee, and R.A. Berry, "Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets with Cross flow of Spent Air," ASME Journal of Heat Transfer, 101 (1979): 526-531.

AUTHOR DETAILS

¹korrapati lakshmi prasanna M.Tech from Annamacharya Institute of Technology & Sciences, Kadapa Chinthakomma Dinne Village, Post, behind RTO Office, Utukur, Kadapa, Andhra Pradesh

²A.Surendra working as assistant professor of mechanical department from Annamacharya Institute of Technology & Sciences, Kadapa Chinthakomma Dinne Village, Post, behind RTO Office, Utukur, Kadapa, Andhra Pradesh