
© 2019 JETIR June 2019, Volume 6, Issue 6                                                             www.jetir.org (ISSN-2349-5162) 

JETIR1907J91 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 711 
 

DISTURBANCE PREDICTION FOR TIME VARYING 

SYSTEMS USING FEEDFORWARD NEURAL NETWORK 
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Abstract— In this paper, a feedforward control scheme with disturbance prediction capability is proposed which improves its 

performance under accurate prediction, but it deteriorates due to the inevitable prediction error. A recently developed repetitive 

controller is being used in this paper. A time-base generator has been used as the input signal for neural approximator. The dynamic 

optimization problem (DOP) of shaping the control signal is solvable with the help of a function approximator. Here the feed-

forward neural network (FFNN) is used as the function approximator. A constant-amplitude constant-frequency voltage-source 

inverter along with an output LC filter, is assumed to be equipped with a disturbance load current sensor. This enable the 

implementation of disturbance feed-forward path as part of the non-repetitive subsystem. The robustness to a measured noise is 

also tested alongside. The comparison is based on the results of numerical experiments. 

 

Keywords— Full state feedback control, Repetitive Control, Artificial neural network, Dual Feedforward Neural Network. 

I. INTRODUCTION 

                     A typical process control system, in most operations, works to regulate the output against the frequent and variable 

disturbances, while there is rarely a set-point change. The feedback controller starts to act against a disturbance only when it has 

resulted in output error and may give a poor output regulation, especially for a system with input delay. Disturbance rejection has 

become a major issue in control systems. To improve the performance, feedforward control is a common solution when the 

disturbance is measurable, as this control can act before the disturbance has resulted in output error. Disturbance rejection solely 

based on the feedback control tends to be poor when the disturbance propagates to the output quickly. With measurable disturbances, 

the feedforward control has a great potential for better performance. The feedback controller starts to act against a disturbance only 

when it has resulted in output error and may give a poor output regulation, especially for a system with input delay. One critical issue 

with feedforward control is its realizability. If the disturbance has less time delay to reach the output than that for the control signal, 

the feedforward controller will have time lead and is not physically realizable. Another unrealizable case is that the controller is not 

proper rational. The simplest approximation is to just use the gain of controller, which lose dynamic compensation function of the 

ideal controller. A dynamic proper rational controller appeals with a better approximation. Repetitive process control has gained 

noticeable attention during the last few years. This is mostly due to the increase in developing control systems characterized by nearly 

perfect reference tracking and disturbance rejection capabilities. The repetitiveness of a process to be controlled is common in many 

industrial systems. The repetitive control (RC) or iterative learning control (ILC) are often an appealing solution. Both RC and ILC 

can be analyzed in a uniform framework. The ILC mainly focuses on batch processes. It is common to assume that the initial state of 

can reset. ILC has gained acceptance in industrial robotics. Repetitive control is commonly used in continuous processes which is 

characterized by the initial state of each signal originating from the final state of the previous signal, i.e. resetting is not acceptable. 

However, the distinction between RC and an ILC is that it can be particularly relevant to control schemes that are developed for some 

continuous repetitive processes, and as such could be labelled as Repetitive Control, but at the same time the techniques that are 

adopted here are clearly of iterative nature and include reinforced learning.    

                     A control task encountered in power electronic converters is sometimes related to continuous repetitive processes. Any 

constant-amplitude constant-frequency (CACF) converter may work here just to illustrate its action in the repetitive process. If a 

prime quality voltage wave shape is predicted in CACF VSI with an output LC filter no matter the nonlinear load current presence, 

the repetitiveness of the method is effective and should be exploited. The most common approach is to incorporate periodical terms 

among the controller to urge load harmonics selective rejection. However, there are two major problems that are related in the 

implementation of this scheme. First is its computational burden and the other is the problematic synthesis of periodic terms. That’s 

why most of the CACF VSI controllers are still designed as non-repetitive types. Control tasks can be formulated again to pose the 

problem as an issue of optimization, and usually dynamic. The model predictive control (MPC) is a commonly acknowledged 

optimal scheme that is intended to shape the control signal according to the users given performance index. Here the model of the 

plant acts as a critic. The ILC method directly inspires the DOP formulation for repetitive procedures. The main objective is to 

shape the control signal according to the users input. An appropriate solver operates in online mode and tackles the DOP iteratively, 

where one iteration corresponds to a multiple number of passes and the plant handles the role of a critic. The task of stabilizing the 

system becomes more interesting if an external disturbance other than the controlled output is anticipated to enter the given system. 

Such type of disturbances are irresistible in power electronic converters which is prominently in the form of load current. Besides, 

it is even difficult to determine the upper band of such a disturbance, for example in the case of a diode rectifier it changes 

remarkably with the inductance of the rectifier. It is worthy in noticing that the online trained neurocontrollers are broadly discussed 
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within the context of these non-repetitive control systems and several different motion control systems that are reported. Moreover, 

there are a few attempts to redefine these algorithms to make them suitable within the context of the repetitive control in power 

electronics. The performance of FFNN based controls is then compared numerically.  

II. CHOOSING THE RIGHT LEARNING ALGORITHM: 

The Levenberg–Marquardt backpropagation (BP) algorithm is initially used to guarantee rapid convergence of errors and better 

quality of voltage under stable circumstances. However, the resilient backpropagation, Broyden–Fletcher–Goldfarb–Shanno and 

quasi-Newton algorithm are very less computationally challenging learning algorithms. Choosing any optimization tool based on 

its performance is always hectic, the quality of the output waveform during steady and transient states is a requisite that needs to be 

investigated in the predefined system before selecting the candidates for its practical implementation. It is to be stressed out that 

these learning algorithms are to be used even in a noisy environment and the optimization task is progressive in nature. The 

following is due to the variable load conditions. There are different types of learning algorithms designed for   training the neural 

networks. Consequently, only a commendable decision process is demonstrated and numerous recommendations are made. 

 

III. REPETITIVE CONTROLLER BASED ON FEEDFORWARD NEURAL NETWORKS: 

The main reason is to develop repetitive control schemes that inherently does not suffer from some long-term stability issues that 

are predominant and thus no special measures need to be taken to secure stable operation. By considering, the plug-in direct particle 

swarm controller cost function which is the combination of control error cost and the control signal dynamics cost. The latter 

component does not allow high-frequency oscillations. Although the FFNN based RC using the cost of a control error as the main 

objective, does not allow high-frequency oscillations due to the limited approximation capability of the FFNN with an already fixed 

number of neurons, a fixed activation function and constrained weights. It is very important to know that if the Feedforward neural 

networks activation functions obey a set of assumptions, then the network is a universal function approximator. It is clear that, on 

one hand, the limited number of neurons is required to prevent overlearning and on the other hand, it is quite challenging to select 

the complex network equally effective in the case of linear loads and also for highly nonlinear loads. It is clearly demonstrated that 

by adding a disturbance feedforward path in the k-direction improves the performance and makes selecting the number of neurons 

less challenging. 

a)  The p-direction controller:  

The FFNN based repetitive controller, corresponding to any plug-in RC, needs to be accompanied by a p-direction controller if the 

dynamics is required to be shaped also along the signal, which could be the case in some applications of highly underdamped CACF 

VSI. Here, the full state feedback (FSF) controller is used for this purpose 

 

𝑢𝐹𝑆𝐹 = −(𝑘11𝑖𝐿
𝑚 + 𝑘12𝑢𝐶

𝑚)                      (1) 

 

Where {k11, k12} are the controller gains and {𝑖𝐿
𝑚, 𝑢𝑐

𝑚 } are the measured state variables of the filter. Moreover, the FSF controller 

shapes the passage seen by the plug-in repetitive controller. By increasing damping makes the relevant approximation problem easier. 

Also the reference feedforward (RFF) path is represented as 

 

𝑢𝑅𝐹𝐹 = 𝑘10𝑢𝑐
𝑟𝑒𝑓

= (1 + 𝑘12)𝑢𝑐
𝑟𝑒𝑓

           (2) 

 

It is introduced to keep the gain unity and the disturbance feedforward (pDFF) path is added to compensate it partially for the voltage 

drop 

 

𝑢𝑝𝐷𝐹𝐹 = 𝑘13𝑖𝑙𝑜𝑎𝑑
𝑚 = (�̂�𝑓 + 𝑘11)𝑖𝑙𝑜𝑎𝑑

𝑚                 (3) 

 

Where  �̂�𝑓     is the resistance of the LC filter. Then a significant identification error is assumed (�̂�𝑓 =0.25Rf) in order to make the 

control errors produced by the non-repetitive path more realistic. The sum of these three paths represents the non-repetitive part of 

the overall control. Here, the equation (4) shows the non-repetitive control action.  

 

𝑢𝑛𝑜𝑛𝑅𝐶 = 𝑢𝑅𝐹𝐹 + 𝑢𝐹𝑆𝐹 + 𝑢𝑝𝐷𝐹𝐹             (4) 

 

b) The k-direction controller: 

The repetitive path includes a universal function approximator in the form of feedforward neural network along with a DOP-capable 

learning algorithm. Here the Levenberg-Marquard (L-M) training algorithm has been used. It is demonstrated in numerous studies 

that an FFNN trained in the online mode using back propagation (BP) methods such as L-M or resilient back propagations (RPROPs) 

can effectively control the non-repetitive processes. Noticeably, the well-documented practicality of the online trained 

neurocontrollers for non-repetitive processes in adjustable speed drives and generators has not been followed. By using an adequate 

cost function the repetitiveness of the process can be simply exploited by the neurocontroller. The following cost function is used 

for controlling the output voltage of the VSI 
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𝜺𝑨𝑵𝑵
𝜶,𝒌𝟐 (k) = 

𝑘2
2

2
 ∑ (𝑢𝑐

𝑟𝑒𝑓(𝑝) − 𝑢𝑐
𝑚(𝑘, 𝑝))2𝛼

𝑝=1          (5) 

Where 𝑢𝐶
𝑚 denotes the measured output filter capacitor voltage, 𝑢𝐶

𝑟𝑒𝑓
is the reference voltage and 𝑘2 is the error scaling factor. It is 

to be noted that 𝜺𝑨𝑵𝑵
𝜶,𝒌𝟐   is proportional to the mean squared error (MSE) calculated over the entire period of the reference signal, 

hence the repetitiveness of the process is directly incorporated into the functional definition. The time-base generator acts as the 

only input to the FFNN. 

𝑢𝐹𝐹𝑁𝑁(𝑝) = 𝜔10
(2)

+ ∑ 𝜔1𝑛
(2)𝑁

𝑛=1 𝑣𝑛(𝑝),                       (6) 

Where  

𝑣𝑛(𝑝) = 𝑓1(𝜔𝑛0
(1)

+ 𝜔𝑛1
(1)

𝑢𝑇𝐵𝐺(𝑝))                             (7) 

𝑢𝑇𝐵𝐺   denotes the time-base generator signal, ω being the neural networks weights and f1  expressing the activation function. It is 

common to use the hyperbolic tangent as the activation function with an insistence on the latter if the computational burden of the 

neurocontroller is to be considered for the final implementation of the algorithm. Keeping number of hidden neurons (N) constant 

and reducing iteratively. Thus equation (5) should then be seen as a function of the neural weights and the training algorithm is 

employed to continuously solve the DOP. 

 

𝜀𝐴𝑁𝑁
𝛼,𝑘2(𝑘) = 𝜀𝐴𝑁𝑁(𝜔(1)(𝑘), 𝜔(2)(𝑘))                         (8) 

 

The resulting output signal of the neural network is added with the non-repetitive path here a reference feedforward plus a full 

state feedback plus a disturbance feedforward to produce the reference signal for the pulse width modulator (PWM). 

 

IV. DISTURBANCE DUAL FEEDFORWARD: 

The concept of utilizing the data on the external disturbance in the k-direction tends to be real for the ILC or RC systems. The name 

‘k-direction disturbance feedforward’ would create an impact of inconsistency as the disturbance signal is allowed to pass through 

the repetitive part of the system that undoubtedly operates in the feedback mode. The p-direction disturbance feedforward that is 

being used here, is often termed for clarifying the static one in order to indicate that none of the derivatives of the disturbance signal 

are calculated. The word disturbance static feedforward should be interpreted as indicating that the disturbance latest accessible 

sample is used to alter the control signal. A similar perception can be made for the k-direction disturbance feedforward used here 

the most recent sample set of disturbance is passed through the FFNN to enhance a signal modifies the control signal directly. This 

is obvious when the training algorithm is infact redundant and could be halted at a steady state in the k-direction. The accessibility 

of the disturbance signal to add the non-repetitive pDFF has already been harnessed. The pDFF is of proportional type, i.e. it cannot 

compensate completely for the voltage drop whole along the inductive component (Lf ). However, the resistance identification 

errors effect the accuracy of the pDFF whereas the potential kDFF cannot be affected by any such limitations since the k-path uses 

the physical plant in the relevant DOP. Choosing any optimization tool based on its performance is always hectic, the quality of the 

output waveform during steady and transient states is a requisite that needs to be investigated in the predefined system before 

selecting the candidates for its practical implementation.  The training algorithm introduces a feedback action that is required to 

look over the FFNN when any new load conditions arise. It has been already known in the event of the repetitive neurocontroller, 

the resilient backpropagation algorithm – a regular winner for non-repetitive online-trained neurocontrollers over the repetitive 

controller. Many other learning algorithms can operate with the same effectiveness in terms of the time taken for execution and 

offers potentially faster convergence. 

Therefore, the name disturbance feedforward is used here in relation with the k-direction. The static p-direction DFF cannot fully 

compensate for the voltage drop across the inductor that is present in the output LC filter. In general, the k-direction DFF does not 

have that issue because it operates on the complete course of the disturbance signal and contains ample data needed to compensate 

for the mentioned voltage drop. Measured noise levels are also tested here. The FFNN based learning approach to repetitive control 

gives a significant flexibility that is absent in the classic iterative learning scheme in terms of the controller input signal. The time 

base generator (TBG) signal is passed to the FFNN. The converter output voltage 𝑢𝑉𝑆𝐼 average voltage 𝑢𝑉𝑆𝐼
𝑎𝑣𝑔

 plotted and its relation 

is defined below 

 

𝑢𝑉𝑆𝐼
𝑎𝑣𝑔(𝑡) =

1

𝑇𝑠
∫ 𝑢𝑉𝑆𝐼(𝜏)

𝑡+𝑇𝑠

𝑡
𝑑𝜏,                 (9) 

Where 𝑡 =
𝑘

𝑓𝑟𝑒𝑓 + 𝑝𝑇𝑠 with 𝑓𝑟𝑒𝑓  denotes the reference voltage frequency and 𝑇𝑠 is the sampling time. Then the repetitive part is 

switched on, initially without the kDFF path and with N = 10 (hidden neurons).  
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V. RESULTS AND DISCUSSION:  

Firstly we check the error without using the repetitive control with number of hidden neurons N=10 and with 3% noise level. 

Figure 1 illustrates the performance of the controller with its non-repetitive part only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Performance without repetitive controller (RC). 

 

As shown in figure 1 the error is very high which is usually not considered for application, this is due to the use of a non-repetitive 

controller. Now with the same parameters but using repetitive control the error reduces which is clearly demonstrated below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Error with repetitive controller and without kDFF path at 3% noise level.  

 

By observing the figures 1 and 2 the RMSE is comparatively low in the case with repetitive controller. Without repetitive 

controller the error is at its highest peak. So using RC is definitely worthy in control processes. Similarly with disturbance dual 

feedforward path the error seems to be much reduced and the system performance can be achieved to the best level. The behavior of 

the controllers output voltage and disturbance load currents are also given below. In fig 3 the steady state behavior of the controller 

for the given inputs is determined. 
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Fig 3: Steady state behavior of controller determining average voltage and load current. 

 

Now with number of hidden neurons 10 and with disturbance dual feedforward path the RMSE settles way beyond the kDFF 

disabled system. Figure 4 demonstrates the performance of the controller with the both DFF paths. It can be observed that it is 

possible for the RMSE value to drop below the noise RMS value because its low-pass filtering action inherently present in the 

online trained neural network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Error with repetitive controller and kDFF path and noise level 3%. 
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Fig 5: Steady state behavior of controller determining average voltage and load current. 

 

By comparing the figures 2 and 4 the performance seems to be improved in the case of kDFF enabled path. Till now we have 

conducted with a measured noise level of 3% under controlled conditions.  Now by testing the system with some random measured 

noise levels and observe the error response when the noise level is increased. The measured noise level is then changed to be 5% and 

conducted the test for both kDFF enabled and disabled systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Error with repetitive controller and without kDFF path at 5% noise level. 
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Fig 6:  Error with repetitive controller and with kDFF path at 5% noise level. 

By comparing the figures  4 and 6 the error is increased because of a slight raise in the input noise level but the error changes 

rapidly. From the figures 2 and 7 error detoriarates with increased noise level. Using kDFF path is always recommended as the 

system maintains a descent output i.e.  the performance is  improved  in  this case.  So  by   using dual feedforward  path the system 

stability can be improved. Similarly the system can be tested by increasing or decreasing the number of neurons.  Moreover, in the 

kDFF case this number can be much smaller and thus the resulting control algorithm has appreciably lower computational 

complexity and memory burden.  

 

VI. CONCLUSION 

The performance of the controller has been studied within the context of the pure sine wave inverter and a correct training algorithm 

is selected. The repetitive neurocontroller has been used and a modification was suggested to its approximation space. The resulting 

disturbance dual feedforward algorithm used here illustrates faster convergence than the controller without the kDFF path. 

Moreover, the number of neurons can be decreased due to the presence of the kDFF, which in turn makes the controller less prone 

to the overlearning phenomenon. It also reduces its computational complexity. In a noisy environment is to be noted that the 

approximation task available is quite challenging. This happens because the shape of the desired control signal acquires many 

features from the obtained load current waveform. The number of neurons is just a trade-off between the absence of excessive 

overlearning for linear loads and no-load conditions and an accurate control signal shaping for significantly nonlinear loads. The 

numerical experiments indicate that the kDFF-enabled controller with less than 10 neurons can effectively reduce disturbance 

caused by linear and nonlinear loads. By choosing the best learning algorithm the system can operate with better effectiveness in 

terms of execution time and offer potentially faster convergence rates which leads to less disturbance. Important aspects for future 

study includes the identification of its limits in any unknown noisy environments.  
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